首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, structural characterization, aptamer stability and thrombin of a new modified thrombin-ligand complex binding aptamer (TBA) containing anti-guanine bases and a loop position locked nucleic acid (LNA) are presented. NMR, circular dichroic spectroscopy and molecular modeling were used to characterize the three-dimensional structure of two G-quadruplexes. LNA-modification of the anti-guanosines yields G-quadruplexes that show affinity and inhibitory activity toward thrombin, whereas LNA-modification of a thymine nucleotide in the TGT loop increases the thermal stability of TBA. As assessed by denatured PAGE electrophoresis, all modified aptamers display an increase in environmental stability. The prothrombin time assay and fibrinogen assay showed that the aptamers still had good inhibitory activity, and 15 of them had the longest PT time. Therefore, the LNA modification is well suited to improve the physicochemical and biological properties of the native thrombin-binding aptamer.  相似文献   

2.
Aptamer-based drugs represent an attractive approach in pharmacological therapy. The most studied aptamer, thrombin binding aptamer (TBA), folds into a well-defined quadruplex structure and binds to its target with good specificity and affinity. Modified aptamers with improved biophysical properties could constitute a new class of therapeutic aptamers. In this study we show that the modified thrombin binding aptamer (mTBA), 3′GGT5′-5′TGGTGTGGTTGG3′, which also folds into a quadruplex structure, is more stable than its unmodified counterpart and shows a higher thrombin affinity. The stability of the modified aptamer was investigated using differential scanning calorimetry, and the energetics of mTBA and TBA binding to thrombin was characterized by means of isothermal titration calorimetry (ITC). ITC data revealed that TBA/thrombin and mTBA/thrombin binding stoichiometry is 1:2 for both interactions. Structural models of the two complexes of thrombin with TBA and with mTBA were also obtained and subjected to molecular dynamics simulations in explicit water. Analysis of the models led to an improvement of the understanding of the aptamer-thrombin recognition at a molecular level.  相似文献   

3.
Several researches have been devoted to structure-activity relationship and to post-SELEX modifications of the thrombin binding aptamer (TBA), one of the first aptamers discovered by the SELEX methodology. However, no studies on TBA dealing with the effects of introduction of inversion of polarity sites have been reported yet. In this frame, we have undertaken the synthesis and the study of a mini-library composed of several TBA analogues containing a 3'-3' or a 5'-5' inversion of polarity site at different positions into the sequence. Particularly, in this article, we present preliminary results about their structural and biological properties.  相似文献   

4.
Protein-aptamer interactions have been used in a wide range of fields, including medical diagnosis and protein delivery. Herein, we report a method for thrombin delivery with thrombin-binding aptamer (TBA), which is one of the well-known aptamers for thrombin, by generating giant thrombin nanoparticles (GTNPs). GTNPs can be synthesized by crosslinking thrombin with DNA nanostructures that possess several TBA molecules. To generate GTNPs, two different DNA nanostructures were used. Y-shaped DNA with TBA and X-shaped DNA with TBA were used for 250 and 650 nm GTNPs, respectively. Controlled release of thrombin from GTNPs was performed by adding complementary DNA (cDNA) to TBA. To investigate thrombin release from GTNPs, the sizes of the GTNPs were measured using dynamic light scattering, atomic force microscopy (AFM), and scanning electron microscopy (SEM). We confirmed a decrease in the size of GTNPs with various concentrations of cDNA, suggesting the release of thrombin. Based on these results, we expect that our method can be used to control the amount of thrombin released effectively. Our method is also widely applicable for effective protein delivery.  相似文献   

5.
A new modified acyclic nucleoside, namely N(1)-(3-hydroxy-2-hydroxymethyl-2-methylpropyl)-thymidine, was synthesized and transformed into a building block useful for oligonucleotide (ON) automated synthesis. A series of modified thrombin binding aptamers (TBAs) in which the new acyclic nucleoside replaces, one at the time, the thymidine residues were then synthesized and characterized by UV, CD, MS, and (1)H NMR. The biological activity of the resulting TBAs was tested by Prothrombin Time assay (PT assay) and by purified fibrinogen clotting assay. From a structural point of view, nearly all the new TBA analogues show a similar behavior as the unmodified counterpart, being able to fold into a bimolecular or monomolecular quadruplex structure depending on the nature of monovalent cations (sodium or potassium) coordinated in the quadruplex core. From the comparison of structural and biological data, some important structure-activity relationships emerged, particularly when the modification involved the TT loops. In agreement with previous studies we found that the folding ability of TBA analogues is more affected by modifications involving positions 4 and 13, rather than positions 3 and 12. On the other hand, the highest anti-thrombin activities were detected for aptamers containing the modification at T13 or T12 positions, thus indicating that the effects produced by the introduction of the acyclic nucleoside on the biological activity are not tightly connected with structure stabilities. It is noteworthy that the modification at T7 produces an ON being more stable and active than the natural TBA.  相似文献   

6.
Aptamers are structured oligonucleotides that recognize molecular targets and can function as direct protein inhibitors. The best-known example is the thrombin-binding aptamer, TBA, a single-stranded 15-mer DNA that inhibits the activity of thrombin, the key enzyme of coagulation cascade. TBA folds as a G-quadruplex structure, as proved by its NMR structure. The X-ray structure of the complex between TBA and human α-thrombin was solved at 2.9-Å resolution, but did not provide details of the aptamer conformation and the interactions with the protein molecule. TBA is rapidly processed by nucleases. To improve the properties of TBA, a number of modified analogs have been produced. In particular, a modified TBA containing a 5′-5′ polarity inversion site, mTBA, has higher stability and higher affinity toward thrombin with respect to TBA, although it has a lower inhibitory activity. We present the crystal structure of the thrombin–mTBA complex at 2.15-Å resolution; the resulting model eventually provides a clear picture of thrombin–aptamers interaction, and also highlights the structural bases of the different properties of TBA and mTBA. Our findings open the way for a rational design of modified aptamers with improved potency as anticoagulant drugs.  相似文献   

7.
In the work, a label-free electrochemiluminescence (ECL) aptasensor for the sensitive and selective detection of thrombin was constructed based on target-induced direct ECL signal change by virtue of a novel assembly strategy of oligonucleotide and luminol functionalized gold nanoparticles (luminol-AuNPs). It is the first label-free ECL biosensor based on luminol and its analogs functionalized AuNPs. Streptavidin AuNPs coated with biotinylated DNA capture probe 1 (AuNPs-probe 1) were firstly assembled onto an gold electrode through 1,3-propanedithiol. Then luminol-AuNPs co-loaded with thiolated DNA capture probe 2 and thiolated thrombin binding aptamer (TBA) (luminol-AuNPs-probe 2/TBA) were assembled onto AuNPs-probe 1 modified electrode through the hybridization between capture probes 1 and 2. The luminol-AuNPs-probe 2/TBA acted as both molecule recognition probe and sensing interface. An Au/AuNPs/ds-DNA/luminol-AuNPs/TBA multilayer architecture was obtained. In the presence of target thrombin, TBA on the luminol-AuNPs could capture the thrombin onto the electrode surface, which produced a barrier for electro-transfer and influenced the electro-oxidation reaction of luminol, leading to a decrease in ECL intensity. The change of ECL intensity indirectly reflected the concentration of thrombin. Thus, the approach showed a high sensitivity and a wider linearity for the detection of thrombin in the range of 0.005-50nM with a detection limit of 1.7pM. This work reveals that luminol-AuNPs are ideal platform for label-free ECL bioassays.  相似文献   

8.
Aptamers, an emerging class of therapeutics, are DNA or RNA molecules that are selected to bind molecular targets that range from small organic compounds to large proteins. All of the determined structures of aptamers in complex with small molecule targets show that aptamers cage such ligands. In structures of aptamers in complex with proteins that naturally bind nucleic acid, the aptamers occupy the nucleic acid binding site and often mimic the natural interactions. Here we present a crystal structure of an RNA aptamer bound to human thrombin, a protein that does not naturally bind nucleic acid, at 1.9 A resolution. The aptamer, which adheres to thrombin at the binding site for heparin, presents an extended molecular surface that is complementary to the protein. Protein recognition involves the stacking of single-stranded adenine bases at the core of the tertiary fold with arginine side chains. These results exemplify how RNA aptamers can fold into intricate conformations that allow them to interact closely with extended surfaces on non-RNA binding proteins.  相似文献   

9.
We have developed a colorimetric probe, based on the aggregation of gold nanoparticles (Au NPs), for the detection of DNA and for the analysis of single-nucleotide polymorphism (SNP); this probe functions through the modulation of the activity of thrombin (Thr) in the presence of bivalent thrombin-binding aptamers (TBAs). The bivalent TBAs were formed from TBA(27') (comprising a 27-base sequence providing TBA(27) functionality, a T(5) linker, and an 11-base sequence for hybridization) and TBA(15') (comprising a 15-base sequence providing TBA(15) functionality, a T(5) linker, and a 12-base sequence for hybridization) through their hybridization with perfectly matched DNA (DNA(pm)). The bivalent TBAs interacted specifically with thrombin, suppressing its activity toward fibrinogen-modified Au NPs (Fib-Au NPs). The potency of the inhibitory effect of TBA(15')-TBA(27')/DNA(pm) toward thrombin - and, thus, the degree of aggregation of the Fib-Au NPs - was highly dependent on the concentration of DNA(pm). Under the optimal conditions (50 pM thrombin, 2 nM TBA(15'), 2 nM TBA(27'), and 38 pM Fib-Au NPs), the linear relationship of the response of the probe toward DNA(pm) extended from 0.1 to 2 nM, with a correlation coefficient of 0.97. The limit of detection (LOD) for DNA(pm) was 20 pM, based on a signal-to-noise ratio of 3. We also applied a corresponding TBA(15″)-TBA(27″)/Thr/Fib-Au NP probe to the detection of the SNP of the Arg249Ser unit in the TP53 gene, with an LOD of 32 pM. Relative to conventional molecular beacon-based and crosslinking aggregation-based Au NP probes, our new approach offers higher sensitivity and higher selectivity toward DNA.  相似文献   

10.
BackgroundThe thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative activities. Its chemico-physical and/or biological properties can be tuned by the site-specific replacement of selected residues.MethodsFour oligodeoxynucleotides (ODNs) based on the TBA sequence (5′-GGTTGGTGTGGTTGG-3′) and containing 2′-deoxyuridine (U) or 5-bromo-2′-deoxyuridine (B) residues at positions 4 or 13 have been investigated by NMR and CD techniques. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay) have been tested and compared with two further ODNs containing 5-hydroxymethyl-2′-deoxyuridine (H) residues in the same positions, previously investigated.ResultsThe CD and NMR data suggest that all the investigated ODNs are able to form G-quadruplexes strictly resembling that of TBA. The introduction of B residues in positions 4 or 13 increases the melting temperature of the modified aptamers by 7 °C. The replacement of thymidines with U in the same positions results in an enhanced anticoagulant activity compared to TBA, also at low ODN concentration. Although all ODNs show antiproliferative properties, only TBA derivatives containing H in the positions 4 and 13 lose the anticoagulant activity and remarkably preserve the antiproliferative one.ConclusionsAll ODNs have shown antiproliferative activities against two cancer cell lines but only those with U and B are endowed with anticoagulant activities similar or improved compared to TBA.General significance:The appropriate site-specific replacement of the residues in the TT loops of TBA with commercially available thymine analogues is a useful strategy either to improve the anticoagulant activity or to preserve the antiproliferative properties by quenching the anticoagulant ones.  相似文献   

11.
Pruden A  Suidan M 《Biodegradation》2004,15(4):213-227
The effect of a BTEX mixture on the biodegradation of methyl tert-butyl ether (MTBE) and its degradation intermediate, tert-butyl alcohol (TBA) was investigated in the pure bacterial culture UC1, which has been identified to be a strain of the known MTBE-degrader PM1 based on greater than 99% 16S rDNA similarity. Several degradation studies were carried out on UC1 at three initial concentration levels of MTBE or TBA: 6-7; 15-17; and 40-45 mg/l, both with and without BTEX present cumulatively at about half of the MTBE or TBA molar mass in the system. The BTEX mixture was observed not to affect either the rate or the degradation lag period of MTBE or TBA degradation, except that the TBA degradation rate actually increased when BTEX was present initially in the highest concentration studies. When serving as the sole substrate, the MTBE degradation rate ranged from 48 +/- 1.2 to 200 +/- 7.0 mg(MTBE)/g(dw) h, and the TBA degradation rate from 140 +/- 18 to 530 +/- 70 mg(TBA)/g(dw) h. When present with BTEX, MTBE and TBA rates ranged from 46 +/- 2.2 to 210 +/- 14 and 170 +/- 28 to 780 +/- 43 mg(TBA)/g(dw) h, respectively. In studies where varying concentrations of TBA were present with 5 mg/l MTBE, both compounds were degraded simultaneously with no obvious preference for either substrate. In the highest concentration study of TBA with 5 mg/l MTBE, BTEX was also observed to increase the ultimate rate of TBA degradation. In addition to exploring the affect of BTEX, this study also provides general insight into the metabolism of MTBE and TBA by pure culture UC1.  相似文献   

12.
Mixed duplex/quadruplex oligonucleotides have attracted great interest as therapeutic targets as well as effective biomedical aptamers. In the case of thrombin-binding aptamer (TBA), the addition of a duplex motif to the G-quadruplex module improves the aptamer resistance to biodegradation and the affinity for thrombin. In particular, the mixed oligonucleotide RE31 is significantly more effective than TBA in anticoagulation experiments and shows a slower disappearance rate in human plasma and blood. In the crystal structure of the complex with thrombin, RE31 adopts an elongated structure in which the duplex and quadruplex regions are perfectly stacked on top of each other, firmly connected by a well-structured junction. The lock-and-key shape complementarity between the TT loops of the G-quadruplex and the protein exosite I gives rise to the basic interaction that stabilizes the complex. However, our data suggest that the duplex motif may have an active role in determining the greater anti-thrombin activity in biological fluids with respect to TBA. This work gives new information on mixed oligonucleotides and highlights the importance of structural data on duplex/quadruplex junctions, which appear to be varied, unpredictable, and fundamental in determining the aptamer functional properties.  相似文献   

13.
A sensitive chronocoulometric aptasensor for the detection of thrombin has been developed based on gold nanoparticle amplification. The functional gold nanoparticles, loaded with link DNA (LDNA) and report DNA (RDNA), were immobilized on an electrode by thrombin aptamers performing as a recognition element and capture probe. LDNA was complementary to the thrombin aptamers and RDNA was noncomplementary, but could combine with [Ru(NH3)6]3+ (RuHex) cations. Electrochemical signals obtained by RuHex that bound quantitatively to the negatively charged phosphate backbone of DNA via electrostatic interactions were measured by chronocoulometry. In the presence of thrombin, the combination of thrombin and thrombin aptamers and the release of the functional gold nanoparticles could induce a significant decrease in chronocoulometric signal. The incorporation of gold nanoparticles in the chronocoulometric aptasensor significantly enhanced the sensitivity. The performance of the aptasensor was further increased by the optimization of the surface density of aptamers. Under optimum conditions, the chronocoulometric aptasensor exhibited a wide linear response range of 0.1–18.5 nM with a detection limit of 30 pM. The results demonstrated that this nanoparticle-based amplification strategy offers a simple and effective approach to detect thrombin.  相似文献   

14.
Aptamers-based assays for diagnostics, environmental and food analysis   总被引:1,自引:0,他引:1  
Aptamers are single stranded DNA or RNA ligands which can be selected for different targets starting from a huge library of molecules containing randomly created sequences. Aptamers have been selected to bind very different targets, from proteins to small organic dyes. In addition to the very important aspect of having an unlimited source of identical affinity recognition molecules available due to the selection process, aptamers can offer advantages over antibodies that make them very promising for analytical applications. The use of aptamers as therapeutic tools is nowadays well established. On the contrary, the analytical application of aptamers in diagnostic devices or in systems for environmental and food analysis, is still under investigation and the scientific community still need further research to demonstrate the advancements brought by this new kind of ligands. This review will focus on these latter applications with particular attention to the detection of food pathogens, terrorism threat agents, thrombin and cytokines.  相似文献   

15.
A 15-mer DNA aptamer (named TBA) adopts a G-quadruplex structure that strongly inhibits fibrin-clot formation by binding to thrombin. We have performed thermodynamic analysis, binding affinity and biological activity studies of TBA variants modified by unlocked nucleic acid (UNA) monomers. UNA-U placed in position U3, U7 or U12 increases the thermodynamic stability of TBA by 0.15–0.50 kcal/mol. In contrast, modification of any position within the two G-quartet structural elements is unfavorable for quadruplex formation. The intramolecular folding of the quadruplexes is confirmed by Tm versus ln c analysis. Moreover, circular dichroism and thermal difference spectra of the modified TBAs displaying high thermodynamic stability show bands that are characteristic for antiparallel quadruplex formation. Surface plasmon resonance studies of the binding of the UNA-modified TBAs to thrombin show that a UNA monomer is allowed in many positions of the aptamer without significantly changing the thrombin-binding properties. The biological effect of a selection of the modified aptamers was tested by a thrombin time assay and showed that most of the UNA-modified TBAs possess anticoagulant properties, and that the construct with a UNA-U monomer in position 7 is a highly potent inhibitor of fibrin-clot formation.  相似文献   

16.
Oligonucleotide conjugates containing acridine and quindoline derivatives linked through a threoninol molecule were synthesized. We showed that these conjugates formed duplexes and quadruplexes with higher thermal stability than the corresponding unmodified oligonucleotides. When acridine is located in the middle of the sequence, DNA duplexes have a similar stability independently of the natural base present in front of acridine. Self-complementary oligonucleotides and thrombin binding aptamers (TBA) carrying the acridine and quindoline molecules are studied by NMR.  相似文献   

17.
It is noteworthy that the formation of the DNA G-quadruplex is induced by factors other than stabilizing cations because this event probably occurs in living cells. Previous studies have shown that thrombin-binding DNA aptamer (TBA) forms a chair-type intramolecular G-quadruplex structure that binds with thrombin protein in the absence of stabilizing cations. Here, we used circular dichroism (CD) spectroscopy to confirm G-quadruplex formation in the presence of thrombin without stabilizing cations. We obtained characteristic CD spectra that demonstrated that TBA forms the distinctive G-quadruplex structure. Additionally, we investigated G-quadruplex formation induced by change of solvent environment: the influence of low-temperature conditions and molecular crowding.  相似文献   

18.
An “anti-oxidant cocktail” consisting of betacarotene, vitamins B6, C, E, zinc, and selenium or corresponding placebos were given for one y as daily dietary supplements to 45 elderly residents of a nursing home. Initially, the serum TBA reactant levels were higher (2.7±0.7 μmol/L) than those of an ad hoc control group of healthy younger adults (2.3±0.6 μmol/L),p<0.01. After three mo supplementation, the levels among the verum elderly had decreased to 2.2±0.6 μmol/L, and they remained at this lower level until the end of the study period, whereas the placebo group showed no change. A significant inverse correlation (r=−0.428,p<0.01) existed between the concentrations of serum TBA reactants and whole blood selenium (B-Se), but only B-Se levels above 200 μg/L were associated with a decrease in serum lipid peroxides. Serum alpha-tocopherol concentration also correlated inversely with serum TBA reactants but this correlation (r=−0.273,p<0.76) was not as strong as that of B-Se. Deficient vitamin B6 status, in biochemical terms, was observed in 25% of the elderly; a daily supplement of 2 mg B6 fully cured all cases of deficiency. The verum group improved slightly in several psychological tests, whereas subjects on placebo remained unchanged or deteriorated during the follow-up period. Clinical amelioration among the verum subjects was reported by the nurses; no toxic side effects were reported. In conclusion, the elderly benefited biochemically and clinically of dietary antioxidant supplements.  相似文献   

19.
Multivalent circular aptamers or ‘captamers’ have recently been introduced through the merger of aptameric recognition functions with the basic principles of DNA nanotechnology. Aptamers have strong utility as protein-binding motifs for diagnostic applications, where their ease of discovery, thermal stability and low cost make them ideal components for incorporation into targeted protein assays. Here we report upon a property specific to circular DNA aptamers: their intrinsic compatibility with a highly sensitive protein detection method termed the ‘proximity extension’ assay. The circular DNA architecture facilitates the integration of multiple functional elements into a single molecule: aptameric target recognition, nucleic acid hybridization specificity and rolling circle amplification. Successful exploitation of these properties is demonstrated for the molecular analysis of thrombin, with the assay delivering a detection limit nearly three orders of magnitude below the dissociation constants of the two contributing aptamer–thrombin interactions. Real-time signal amplification and detection under isothermal conditions points towards potential clinical applications, with both fluorescent and bioelectronic methods of detection achieved. This application elaborates the pleiotropic properties of circular DNA aptamers beyond the stability, potency and multitargeting characteristics described earlier.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号