首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Generic features associated with the adsorption of proteins on solid surfaces are reviewed within the framework of the hydrophobic-polar (HP) lattice protein model. The thermodynamic behaviour and structural properties of various HP protein sequences interacting with attractive surfaces have been studied using extensive Wang–Landau sampling with different types of surfaces, each of which attracts either: all monomers, only hydrophobic (H) monomers or only polar (P) monomers, respectively. Consequently, different types of folding behaviour occur for varied surface strengths. Analysis of the combined patterns of various structural observables, e.g. the derivatives of the number of interaction contacts, together with the specific heat, leads to the identification of fundamental categories of folding and transition hierarchies. We also inferred a connection between the transition categories and the relative surface strengths, i.e. the ratios of the surface attractive strengths to the intra-chain attraction among H monomers. Thus, we believe that the folding hierarchies and identification scheme are generic for different HP sequences interacting with attractive surfaces, regardless of the chain length, sequence or surface attraction.  相似文献   

2.
Cell adhesion on biomaterial surfaces and the vitality of anchorage dependent cells is affected by several parameters of an adsorbate layer which is intentionally or spontaneously formed. Surface pre-treatments and several conditioning steps prior and during to the cell/biomaterial contact affect the composition, orientation, quantity and viscoelasticity of the interfacing layer between cells and biomaterial. This work was performed to elucidate the response of cells on two modified biomaterial surfaces based on protein or carbohydrate adsorbates: (a) Masked UV irradiations opened a simple route to obtain chemically patterned substrates controlling serum protein adsorption and cell adhesion. It is possible to achieve structures of subcellular size and to produce immobilized gradients. In order to examine the protein matrix deposited on these substrates we applied a quartz microbalance technique (QCM-D) capable to extract viscoelastic data in addition to the mass uptake during plasma protein deposition. It was found that the quantity and viscosity of surface bound albumin is lowered when the surface is modified (patterned) by UV exposure. Hence, the UV modification promotes the competitive adsorption of cell adhesion proteins from the media or upon secretion by the cells and yields to the observed cell patterns. (b) Another tissue engineering technique, using immobilized, modified and/or cross linked hyaluronic acid (HA), an important extra cellular matrix component in vivo, is also examined by QCM-D. Our data demonstrate that HA can be modified by an activation with a carbodiimide, followed by the application of an alpha,omega-bisamino polyethyleneglycol. The QCM-D data can be interpreted as a stiffening of the HA layer combined with the release of hydration water. Further, the hydration state and the viscoelastic behaviour of surface bound ultrathin HA hydrogels was examined. Quantification of viscoelastic parameters of thin films of ECM by QCM-D is valuable for the interpretation of durotaxis, describing effects of mechanical substrate parameters on the adhesion and motility of cells.  相似文献   

3.
The interaction of cells and tissues with artificial materials designed for applications in biotechnologies and in medicine is governed by the physical and chemical properties of the material surface. There is optimal cell adhesion to moderately hydrophilic and positively charged substrates, due to the adsorption of cell adhesion-mediating molecules (e.g. vitronectin, fibronectin) in an advantageous geometrical conformation, which makes specific sites on these molecules (e.g. specific amino acid sequences) accessible to cell adhesion receptors (e.g. integrins). Highly hydrophilic surfaces prevent the adsorption of proteins, or these molecules are bound very weakly. On highly hydrophobic materials, however, proteins are adsorbed in rigid and denatured forms, hampering cell adhesion. The wettability of the material surface, particularly in synthetic polymers, can be effectively regulated by physical treatments, e.g. by irradiation with ions, plasma or UV light. The irradiation-activated material surface can be functionalized by various biomolecules and nanoparticles, and this further enhances its attractiveness for cells and its effectiveness in regulating cell functions. Another important factor for cell-material interaction is surface roughness and surface topography. Nanostructured substrates (i.e. substrates with irregularities smaller than 100nm), are generally considered to be beneficial for cell adhesion and growth, while microstructured substrates behave more controversially (e.g. they can hamper cell spreading and proliferation but they enhance cell differentiation, particularly in osteogenic cells). A factor which has been relatively less investigated, but which is essential for cell-material interaction, is material deformability. Highly soft and deformable substrates cannot resist the tractional forces generated by cells during cell adhesion, and cells are not able to attach, spread and survive on such materials. Local variation in the physical and chemical properties of the material surface can be advantageously used for constructing patterned surfaces. Micropatterned surfaces enable regionally selective cell adhesion and directed growth, which can be utilized in tissue engineering, in constructing microarrays and in biosensorics. Nanopatterned surfaces are an effective tool for manipulating the type, number, spacing and distribution of ligands for cell adhesion receptors on the material surface. As a consequence, these surfaces are able to control the size, shape, distribution and maturity of focal adhesion plaques on cells, and thus cell adhesion, proliferation, differentiation and other cell functions.  相似文献   

4.
Microcontact printing provides a rapid, highly reproducible method for the creation of well-defined patterned substrates.(1) While microcontact printing can be employed to directly print a large number of molecules, including proteins,(2) DNA,(3) and silanes,(4) the formation of self-assembled monolayers (SAMs) from long chain alkane thiols on gold provides a simple way to confine proteins and cells to specific patterns containing adhesive and resistant regions. This confinement can be used to control cell morphology and is useful for examining a variety of questions in protein and cell biology. Here, we describe a general method for the creation of well-defined protein patterns for cellular studies.(5) This process involves three steps: the production of a patterned master using photolithography, the creation of a PDMS stamp, and microcontact printing of a gold-coated substrate. Once patterned, these cell culture substrates are capable of confining proteins and/or cells (primary cells or cell lines) to the pattern. The use of self-assembled monolayer chemistry allows for precise control over the patterned protein/cell adhesive regions and non-adhesive regions; this cannot be achieved using direct protein stamping. Hexadecanethiol, the long chain alkane thiol used in the microcontact printing step, produces a hydrophobic surface that readily adsorbs protein from solution. The glycol-terminated thiol, used for backfilling the non-printed regions of the substrate, creates a monolayer that is resistant to protein adsorption and therefore cell growth.(6) These thiol monomers produce highly structured monolayers that precisely define regions of the substrate that can support protein adsorption and cell growth. As a result, these substrates are useful for a wide variety of applications from the study of intercellular behavior(7) to the creation of microelectronics.(8) While other types of monolayer chemistry have been used for cell culture studies, including work from our group using trichlorosilanes to create patterns directly on glass substrates,(9) patterned monolayers formed from alkane thiols on gold are straight-forward to prepare. Moreover, the monomers used for monolayer preparation are commercially available, stable, and do not require storage or handling under inert atmosphere. Patterned substrates prepared from alkane thiols can also be recycled and reused several times, maintaining cell confinement.(10).  相似文献   

5.
Micro-patterning tools adopted from the semiconductor industry have mostly been optimized to pattern features onto rigid silicon and glass substrates, however, recently the need to pattern on soft substrates has been identified in simulating cellular environments or developing flexible biosensors. We present a simple method of introducing a variety of patterned materials and structures into ultra-flexible polydimethylsiloxane (PDMS) layers (elastic moduli down to 3 kPa) utilizing water-soluble dextran sacrificial thin films. Dextran films provided a stable template for photolithography, metal deposition, particle adsorption, and protein stamping. These materials and structures (including dextran itself) were then readily transferrable to an elastomer surface following PDMS (10 to 70∶1 base to crosslinker ratios) curing over the patterned dextran layer and after sacrificial etch of the dextran in water. We demonstrate that this simple and straightforward approach can controllably manipulate surface wetting and protein adsorption characteristics of PDMS, covalently link protein patterns for stable cell patterning, generate composite structures of epoxy or particles for study of cell mechanical response, and stably integrate certain metals with use of vinyl molecular adhesives. This method is compatible over the complete moduli range of PDMS, and potentially generalizable over a host of additional micro- and nano-structures and materials.  相似文献   

6.
Protein patterning has become an important topic as advances are made in biologically integrated devices and protein chip technology. Versatile and effective patterning requires substrates that can be quantified, with active presentation of proteins and control over protein density and orientation. Herein we describe a model system and the use of low-energy electron beam lithography to pattern molecular templates for immobilization of antibodies through ligand recognition. The templates were patterned over a background of poly(ethylene glycol) (PEG) modified silicon oxide (SiO x ). These substrates were exposed to a low-voltage (2 keV) electron beam to remove PEG selectively from exposed regions. These regions were then functionalized with a dinitrophenyl (DNP) ligand and tested for specific binding of fluorescently labeled anti-DNP antibodies. The PEG modified regions in conjunction with ligand-presenting regions in the patterned arrays substantially reduces non-specific adsorption of proteins, yielding a specific/nonspecific ratio of approx 10. The surface coverage of the biologically active DNP groups on SiO x and the amount of immobilized antibody on DNP were measured with a fluorescence-based, enzyme-linked immunosorbent assay. The specificity of the interaction between DNP ligand and fluorescently labeled anti-DNP antibodies was evaluated with fluorescence microscopy. This approach to patterning of molecular templates and assays for quantification are generally applicable to immobilization of any ligand-receptor pair on a wide range of substrates.  相似文献   

7.
Cellulose accessibilities of a set of hornified lignocellulosic substrates derived by drying the never dried pretreated sample and a set of differently pretreated lodgepople pine substrates, were evaluated using solute exclusion and protein adsorption methods. Direct measurements of cellulase adsorption onto cellulose surface of the set of pretreated substrates were also carried out using an in situ UV-Vis spectrophotometric technique. The cellulose accessibilities measured by the solute exclusion and a cellulose-binding module (CBM)-containing green fluorescent protein (TGC) adsorption methods correlate well for both sets of samples. The substrate enzymatic digestibilities (SEDs) of the hornified substrates are proportional to the measured cellulose accessibilities. Approximately over 90% of the SED was contributed by the accessible pore surfaces of the hornified substrates, suggesting that the substrate external surface plays a minor role contributing to cellulose accessibility and SED. The cellulose accessibilities of the pretreated substrates correlated well with the amounts of cellulase adsorbed. The SEDs of these substrates directly correlated with the amounts of adsorbed cellulase.  相似文献   

8.
Biomimetic micro-patterned surfaces of three S-layer (fusion) proteins, wild type (SbpA), enhanced green fluorescence protein (SbpA-EGFP) and streptavidin (SbpA-STV), were built by microcontact printing of poly-L-lysine grafted polyethylene glycol (PLL-g-PEG). The functionality of the adsorbed proteins was studied with atomic force microscopy and fluorescence microscopy. Atomic force microscopy (AFM) measurements showed that wild-type SbpA recrystallized on PLL-g-PEG free areas, while fluorescent properties of SbpA-EGFP and the interaction of SbpA-streptavidin heterotetramers with biotin were not affected due to the adsorption on the micro patterned substrates.  相似文献   

9.
Biomaterials that prevent nonspecific protein adsorption and cell adhesion are of high relevance for diverse applications in tissue engineering and diagnostics. One of the most widely applied materials for this purpose is Poly(ethylene glycol) (PEG). We have investigated how micrometer line topography and substrate elasticity act upon the antiadhesive properties of PEG-based hydrogels. In our studies we apply bulk hydrogel cross-linked from star-shaped poly(ethylene oxide-stat-propylene oxide) macromonomers. Substrate surfaces were topographically patterned via replica molding. Additionally, the mechanical properties were altered by variations in the cross-linking density. Surface patterns with dimensions in the range of the cells' own size, namely 10 μm wide grooves, induced significant cell adhesion and spreading on the Acr-sP(EO-stat-PO) hydrogels. In contrast, there was only little adhesion to smaller and larger pattern sizes and no adhesion at all on the smooth substrates, regardless the rigidity of the gel. The effect of varied substrate stiffness on cell behavior was only manifest in combination with topography. Softer substrates with line patterns lead to significantly higher cell adhesion and spreading than stiff substrates. We conclude that the physical and mechanical surface characteristics can eliminate the nonadhesive properties of PEG-based hydrogels to a large extent. This has to be taken into account when designing surfaces for biomedical application such as scaffolds for tissue engineering which rely on the inertness of PEG.  相似文献   

10.
The influence of fibronectin (Fn) coated surfaces patterned with poly(ethylene glycol) microgels having inter-gel spacings between 0.5 and 3.0 μm on the adhesion of Staphylococcus aureus strains with and without Fn-binding proteins and cellular adhesion/spreading was investigated. Quantitative force measurements between a S. aureus cell and a patterned surface showed that the adhesion force between the bacterium and the patterned surface increased substantially after Fn adsorption, regardless of the strain used, but decreased with decreasing inter-gel spacing. In flow-chamber experiments, the Fn-binding strain adhered at a higher rate after Fn adsorption than the strain lacking Fn-binding proteins. In both cases, the adhesion rates decreased with decreasing inter-gel spacing. Osteoblast-like cells could bind to patterned surfaces despite the microgels, and adsorbed Fn substantially amplified this effect. Even under highly non-adhesive conditions associated with closely spaced microgels, adsorbed Fn preserves a window of inter-gel spacing around 1 μm where the adhesion of staphylococcal cells is hindered while cells can still adhere and spread.  相似文献   

11.
Grafting a dense layer of soluble polymers onto a surface is a well-established method for controlling protein adsorption. In the present study, polyethylene oxide (PEO) layers of three different grafting densities were prepared, i.e. 10-15 nm2, 5.5 nm2 and 4 nm2 per polymer chain, respectively. The adsorption of different proteins on the PEO grafted surfaces was measured in real time by reflectometry. Furthermore, the change of the zeta-potential of such surfaces resulting from adsorption of the proteins was determined using the streaming potential method. Both the protein adsorption and the zeta-potential were monitored for 1 h after exposure of the protein solution to the surface. The adsorption pattern for a mixture of saliva proteins was compared to those observed for a number of well-defined model-proteins (lysozyme, human serum albumin, beta-lactoglobulin and ovalbumin). The results of the adsorption kinetics and streaming potential measurements indicate that the effect of the PEO layer on protein adsorption primarily depends on the size and the charge of the protein molecules. The saliva proteins are strongly blocked for adsorption, whereas the change in the zeta-potential is larger than for the other proteins (except lysozyme). It is concluded that positively charged protein molecules, having dimensions larger than those of lysozyme, are involved in the initial stage of adsorption from saliva onto a negatively charged surface.  相似文献   

12.
The desorption patterns of serum proteins in hydrophobic chromatography suggest that serum proteins that remain immersed in an aqueous medium and do not become in a protein-air interface are very hydrophilic. Contact angle measurements on fairly thick layers of hydrated serum proteins, formed on ultrafiltration membranes, yield surface tensions that correlate well with the degree of hydrophilicity derived from desorption data obtained by hydrophobic chromatography. For further confirmation the absorptivity of four human serum proteins was measured with respect to surfaces of different polymers of various surface tensions, for solution in aqueous solvents of different surface tensions. The surface tension of the solvent from which a dissolved protein adsorbs to precisely the same extent onto all solid substrates (regardless of their surface tensions) is equal to the surface tension of that protein. The surface tensions found by the contact angle (first value given) and by the protein adsorption methods (second value given) were. in erg/cm2; alpha 2-macroglobulin, 71.0, 71.0; serum albumin, 70.5, 70.2; immunoglobulin M, 69.5, 69.4; immunoglobulin G, 67.4, 67.7.  相似文献   

13.
In the present paper, we report the study of the adsorption behavior of a model protein such as human serum albumin (HSA) onto surfaces of a-SiC:H and a-C:H thin films deposited by using the plasma-enhanced chemical vapor deposition (PECVD) technique. The surface composition and surface energy of the various substrates as well as the evaluation of the adsorbed amount of protein has been carried out by means of X-ray photoelectron spectroscopy (XPS) and contact angle measurements. It has been found that HSA tends to preferentially adsorb on Si-rich surfaces, as far as the relative amount of adsorbed HSA decreases with increasing S-C concentration. Preliminary elements of mechanistic models are proposed for the correlation between chemical factors and the observed protein adsorption behavior.  相似文献   

14.
Poly(ethylene) glycol (PEG) is an excellent material to modify surfaces to resist non-specific protein adsorption. Linear PEG has been extensively studied both theoretically and experimentally and it has been found that resistance of PEG-coated surfaces to protein adsorption depends mainly on the molecular weight of the polymer and the surface grafting density. End-functionalized star-shaped PEGs allow for interpolymer crosslinking to form a dense layer. An excellent example of such a system consists of a 6-arm PEG/PPG (4 : 1) star polymer functionalized with isocyanate using IPDI. The end functionalization may be further biofunctionalized to recognize specific biomolecules such as streptavidin, His-tagged proteins, amino-terminated oligonucleotides and cell receptors. This functionalization may be patterned into specific geometries using stamping techniques or randomly distributed by statistical reaction of the end group with the biofunctional molecule in solution. The surface preparation uses simple spin-, dip- or spray-coating and produces smooth layers with low background fluorescence. These properties, together with the advantageous chemical properties of PEG, render the surfaces ideal for immobilizing proteins on surfaces with detection limits down to the single molecule level. Proteins immobilized on such surfaces are able to maintain their folded, functional form and are able to completely refold if temporarily exposed to denaturing conditions. Immobilized enzyme molecules were able to perform their function with the same activity as the enzyme in solution. Future directions of using surfaces coated with such crosslinked star polymers in highly sensitive and robust biotechnology applications will be discussed.  相似文献   

15.
Grafting a dense layer of soluble polymers onto a surface is a well-established method for controlling protein adsorption. In the present study, polyethylene oxide (PEO) layers of three different grafting densities were prepared, i.e. 10?–?15 nm2, 5.5 nm2 and 4 nm2 per polymer chain, respectively. The adsorption of different proteins on the PEO grafted surfaces was measured in real time by reflectometry. Furthermore, the change of the zeta-potential of such surfaces resulting from adsorption of the proteins was determined using the streaming potential method. Both the protein adsorption and the zeta-potential were monitored for 1?h after exposure of the protein solution to the surface. The adsorption pattern for a mixture of saliva proteins was compared to those observed for a number of well-defined model-proteins (lysozyme, human serum albumin, β-lactoglobulin and ovalbumin). The results of the adsorption kinetics and streaming potential measurements indicate that the effect of the PEO layer on protein adsorption primarily depends on the size and the charge of the protein molecules. The saliva proteins are strongly blocked for adsorption, whereas the change in the zeta-potential is larger than for the other proteins (except lysozyme). It is concluded that positively charged protein molecules, having dimensions larger than those of lysozyme, are involved in the initial stage of adsorption from saliva onto a negatively charged surface.  相似文献   

16.
The ability to control cell patterning on artificial substrates with various physicochemical properties is of essence for important implications in cytology and biomedical fields.Despite extensive progress,the ability to control the cell-surface interaction is complicated by the complexity in the physiochemical features ofbioactive surfaces.In particular,the manifestation of special wettability rendered by the combination of surface roughness and surface chemistry further enriches the cell-surface interaction.Herein we investigated the cell adhesion behaviors of Circulating Tumor Cells (CTCs) on topographically patterned but chemically homogeneous surfaces.Hamessing the distinctive cell adhesion on surfaces with different topography,we further explored the feasibility of controlled cell patterning using periodic lattices of alternative topographies.We envision that our method provides a designer's toolbox to manage the extracellular environment.  相似文献   

17.
Regular arrays of nonadherent B cells over large areas were produced with the use of micropatterned molecular templates consisting of a newly designed poly(allylamine)-g-poly(ethylene glycol) polycation graft copolymer. Polymer-on-polymer stamping (POPS) techniques were applied successfully to create micron scale patterns of the graft copolymer on negatively charged multilayer surfaces without losing resistance to the nonspecific adsorption of proteins. To generate templates for B cell arrays, the characteristics of the patterned surface were modified via introduction of surface biotinylation and specific protein adsorption. The qualities of B cell arrays resulting from each template suggest the binding strength between nonadherent B cells and the template surface is the controlling factor in the fabrication of clean and regular arrays of immobilized lymphocytes over large areas, which is critical in many bio-technological and immunological applications.  相似文献   

18.
Previous studies have demonstrated greater functions ofosteoblasts (bone-forming cells) on nanophase compared with conventional metals. Nanophase metals possess a biologically inspired nanostructured surface that mimics the dimensions of constituent components in bone, including collagen and hydroxyapatite. Not only do these components possess dimensions on the nanoscale, they are aligned in a parallel manner creating a defined orientation in bone. To date, research has yet to evaluate the effect that organized nanosurface features can have on the interaction of osteoblasts with material surfaces. Therefore, to determine if surface orientation of features can mediate osteoblast adhesion and morphology, this study investigated osteoblast function on patterned titanium substrates containing alternating regions of micron rough and nano rough surfaces prepared by novel electron beam evaporation techniques. This study was also interested in determining whether or not the size of the patterned regions had an effect on osteoblast behavior and alignment. Results indicated early controlled osteoblast alignment on these patterned materials as well as greater osteoblast adhesion on the nano rough regions of these patterned substrates. Interestingly, decreasing the width of the nano rough regions (from 80 microm to 22 microm) on these patterned substrates resulted in a decreased number of osteoblasts adhering to these areas. Changes in the width of the nano rough regions also resulted in changes in osteoblast morphology, thus, suggesting there is an optimal pattern dimension that osteoblasts prefer. In summary, results of this study provided evidence that aligned nanophase metal features on the surface of titanium improved early osteoblast functions (morphology and adhesion) promising for their long term functions, criteria necessary to improve orthopedic implant efficacy.  相似文献   

19.
Protein adsorption on surfaces is a complex phenomenon that is described by the balance of convective/diffusive transport of the protein species to the surface and its adsorption/desorption at the surface. The extent of binding depends on a variety of factors such as protein/surface interactions, availability of binding sites, localized concentrations of protein near biomaterial surfaces and flow characteristics of the protein in that region. Factors such as time-varying flows, complex device geometries, presence of multiple competitive species, or possible denaturing of proteins when they attach to the surface make it extremely difficult to quantitatively analyze protein interactions with surfaces. Adsorption/desorption rate constants are often inferred using simplistic models which neglect mass transport and have limited use across different microfluidic systems and flow protocols. In this work, we have developed and demonstrated a fluidics-resolved model that evaluates protein adsorption, accounting for both the fluidic transport and the biochemical kinetics in complex biomicrofluidic devices. The model is valid for both flow and static conditions. An automated procedure was also developed to extract the "intrinsic" mass-transport-independent adsorption kinetic rate constants from experimental data using a least squares optimization method. The automated data extraction methodology is applied to two proteins (alkaline phosphatase and glucose oxidase) that have been brought into contact with poly(etheretherketone) and Teflon capillaries. The applicability of the procedure in analyzing flow and adsorption in complex microfluidic structures is also demonstrated.  相似文献   

20.
The adsorption of proteins on inorganic surfaces is of fundamental biological importance. Further, biomedical and nanotechnological applications increasingly use interfaces between inorganic material and polypeptides. Yet, the underlying adsorption mechanism of polypeptides on surfaces is not well understood and experimentally difficult to analyze. Therefore, we investigate here the interactions of polypeptides with a gold(111) surface using computational molecular dynamics (MD) simulations with a polarizable gold model in explicit water. Our focus in this paper is the investigation of the interaction of polypeptides with β-sheet folds. First, we concentrate on a β-sheet forming model peptide. Second, we investigate the interactions of two domains with high β-sheet content of the biologically important extracellular matrix protein fibronectin (FN). We find that adsorption occurs in a stepwise mechanism both for the model peptide and the protein. The positively charged amino acid Arg facilitates the initial contact formation between protein and gold surface. Our results suggest that an effective gold-binding surface patch is overall uncharged, but contains Arg for contact initiation. The polypeptides do not unfold on the gold surface within the simulation time. However, for the two FN domains, the relative domain-domain orientation changes. The observation of a very fast and strong adsorption indicates that in a biological matrix, no bare gold surfaces will be present. Hence, the bioactivity of gold surfaces (like bare gold nanoparticles) will critically depend on the history of particle administration and the proteins present during initial contact between gold and biological material. Further, gold particles may act as seeds for protein aggregation. Structural re-organization and protein aggregation are potentially of immunological importance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号