首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hirata A  Adachi M  Utsumi S  Mikami B 《Biochemistry》2004,43(39):12523-12531
The optimum pH of Bacillus cereus beta-amylase (BCB, pH 6.7) differs from that of soybean beta-amylase (SBA, pH 5.4) due to the substitution of a few amino acid residues near the catalytic base residue (Glu 380 in SBA and Glu 367 in BCB). To explore the mechanism for controlling the optimum pH of beta-amylase, five mutants of BCB (Y164E, Y164F, Y164H, Y164Q, and Y164Q/T47M/Y164E/T328N) were constructed and characterized with respect to enzymatic properties and X-ray structural crystal analysis. The optimum pH of the four single mutants shifted to 4.2-4.8, approximately 2 pH units and approximately 1 pH unit lower than those of BCB and SBA, respectively, and their k(cat) values decreased to 41-3% of that of the wild-type enzyme. The X-ray crystal analysis of the enzyme-maltose complexes showed that Glu 367 of the wild type is surrounded by two water molecules (W1 and W2) that are not found in SBA. W1 is hydrogen-bonded to both side chains of Glu 367 and Tyr 164. The mutation of Tyr 164 to Glu and Phe resulted in the disruption of the hydrogen bond between Tyr 164 Oeta and W1 and the introduction of two additional water molecules near position 164. In contrast, the triple mutant of BCB with a slightly decreased pH optimum at pH 6.0 has no water molecules (W1 and W2) around Glu 367. These results suggested that a water-mediated hydrogen bond network (Glu 367...W1...Tyr 164...Thr 328) is the primary requisite for the increased pH optimum of wild-type BCB. This strategy is completely different from that of SBA, in which a hydrogen bond network (Glu 380...Thr 340...Glu 178) reduces the optimum pH in a hydrophobic environment.  相似文献   

2.
The crystal structure of a chitinase from Carica papaya has been solved by the molecular replacement method and is reported to a resolution of 1.5 A. This enzyme belongs to family 19 of the glycosyl hydrolases. Crystals have been obtained in the presence of N-acetyl- d-glucosamine (GlcNAc) in the crystallization solution and two well-defined GlcNAc molecules have been identified in the catalytic cleft of the enzyme, at subsites -2 and +1. These GlcNAc moieties bind to the protein via an extensive network of interactions which also involves many hydrogen bonds mediated by water molecules, underlying their role in the catalytic mechanism. A complex of the enzyme with a tetra-GlcNAc molecule has been elaborated, using the experimental interactions observed for the bound GlcNAc saccharides. This model allows to define four major substrate interacting regions in the enzyme, comprising residues located around the catalytic Glu67 (His66 and Thr69), the short segment E89-R90 containing the second catalytic residue Glu89, the region 120-124 (residues Ser120, Trp121, Tyr123, and Asn124), and the alpha-helical segment 198-202 (residues Ile198, Asn199, Gly201, and Leu202). Water molecules from the crystal structure were introduced during the modeling procedure, allowing to pinpoint several additional residues involved in ligand binding that were not previously reported in studies of poly-GlcNAc/family 19 chitinase complexes. This work underlines the role played by water-mediated hydrogen bonding in substrate binding as well as in the catalytic mechanism of the GH family 19 chitinases. Finally, a new sequence motif for family 19 chitinases has been identified between residues Tyr111 and Tyr125.  相似文献   

3.
Multiple-sequence alignment of glycoside hydrolase (GH) families 32, 43, 62, and 68 revealed three conserved blocks, each containing an acidic residue at an equivalent position in all the enzymes. A detailed analysis of the site-directed mutations so far performed on invertases (GH32), arabinanases (GH43), and bacterial fructosyltransferases (GH68) indicated a direct implication of the conserved residues Asp/Glu (block I), Asp (block II), and Glu (block III) in substrate binding and hydrolysis. These residues are close in space in the 5-bladed beta-propeller fold determined for Cellvibrio japonicus alpha-L-arabinanase Arb43A [Nurizzo et al., Nat Struct Biol 2002;9:665-668] and Bacillus subtilis endo-1,5-alpha-L-arabinanase. A sequence-structure compatibility search using 3D-PSSM, mGenTHREADER, INBGU, and SAM-T02 programs predicted indistinctly the 5-bladed beta-propeller fold of Arb43A and the 6-bladed beta-propeller fold of sialidase/neuraminidase (GH33, GH34, and GH83) as the most reliable topologies for GH families 32, 62, and 68. We conclude that the identified acidic residues are located at the active site of a beta-propeller architecture in GH32, GH43, GH62, and GH68, operating with a canonical reaction mechanism of either inversion (GH43 and likely GH62) or retention (GH32 and GH68) of the anomeric configuration. Also, we propose that the beta-propeller architecture accommodates distinct binding sites for the acceptor saccharide in glycosyl transfer reaction.  相似文献   

4.
Gerratana B  Cleland WW  Frey PA 《Biochemistry》2001,40(31):9187-9195
Escherichia coli dTDP-glucose 4,6-dehydratase and UDP-galactose 4-epimerase are members of the short-chain dehydrogenase/reductase SDR family. A highly conserved triad consisting of Ser/Thr, Tyr, and Lys is present in the active sites of these enzymes as well in other SDR proteins. Ser124, Tyr149, and Lys153 in the active site of UDP-galactose 4-epimerase are located in similar positions as the corresponding Thr134, Tyr160, and Lys164, in the active site of dTDP-glucose 4,6-dehydratase. The role of these residues in the first hydride transfer step of the dTDP-glucose 4,6-dehydratase mechanism has been studied by mutagenesis and steady-state kinetic analysis. In all mutants except T134S, the k(cat) values are more than 2 orders of magnitude lower than of wild-type enzyme. The substrate analogue, dTDP-xylose, was used to investigate the effects of the mutations on rate of the first hydride transfer step. The first step becomes significantly rate limiting upon mutation of Tyr160 to Phe and only partly rate limiting in the reaction catalyzed by K164M and T134A dehydratases. The pH dependence of k(cat), the steady-state NADH level, and the fraction of NADH formed with saturating dTDP-xylose show shifts in the pK(a) assigned to Tyr160 to more basic values by mutation of Lys164 and Thr134. The pK(a) of Tyr160, as determined by the pH dependence of NADH formation by dTDP-xylose, is 6.41. Lys164 and Thr134 are believed to play important roles in the stabilization of the anion of Tyr160 in a fashion similar to the roles of the corresponding residues in UDP-galactose 4-epimerase, which facilitate the ionization of Tyr149 in that enzyme [Liu, Y., et al. (1997) Biochemistry 35, 10675--10684]. Tyr160 is presumably the base for the first hydride transfer step, while Thr134 may relay a proton from the sugar to Tyr160.  相似文献   

5.
Limited proteolysis of rabbit liver and muscle aldolases by subtilisin and cathepsin B results in decreased catalytic activity, associated with the release of acid-soluble peptides from the COOH terminus. Analysis of the sequence of these peptides confirms the COOH-terminal sequence of the muscle enzyme and provides new information on the COOH-terminal sequence of the liver enzyme. As previously reported for muscle aldolase, cathepsin B releases mainly dipeptides from the COOH terminus of liver aldolase. The COOH-terminal sequence of rabbit liver aldolase is SerThrGlnSerLeuPheThrAla SerTyrThrTyr. The Gln-Ser bond is resistant to Staphylococcus aureus protease, which hydrolyzes a GluSer bond at the corresponding positions in the muscle enzyme.  相似文献   

6.
Using directed evolution and site‐directed mutagenesis, we have isolated a highly thermostable variant of Aspergillus niger glucoamylase (GA), designated CR2‐1 . CR2‐1 includes the previously described mutations Asn20Cys and Ala27Cys (forming a new disulfide bond), Ser30Pro, Thr62Ala, Ser119Pro, Gly137Ala, Thr290Ala, His391Tyr and Ser436Pro. In addition, CR2‐1 includes several new putative thermostable mutations, Val59Ala, Val88Ile, Ser211Pro, Asp293Ala, Thr390Ser, Tyr402Phe and Glu408Lys, identified by directed evolution. CR2‐1 GA has a catalytic efficiency (kcat/Km) at 35°C and a specific activity at 50°C similar to that of wild‐type GA. Irreversible inactivation tests indicated that CR2‐1 increases the free energy of thermoinactivation at 80°C by 10 kJ mol?1 compared with that of wild‐type GA. Thus, CR2‐1 is more thermostable (by 5 kJ mol?1 at 80°C) than the most thermostable A. niger GA variant previously described, THS8 . In addition, Val59Ala and Glu408Lys were shown to individually increase the thermostability in GA variants by 1 and 2 kJ mol?1, respectively, at 80°C.  相似文献   

7.
8.
Amino acid residues on PotB and PotC involved in spermidine uptake were identified by random and site-directed mutagenesis. It was found that Trp(8), Tyr(43), Trp(100), Leu(110), and Tyr(261) in PotB and Trp(46), Asp(108), Glu(169), Ser(196), Asp(198), and Asp(199) in PotC were strongly involved in spermidine uptake and that Tyr(160), Glu(172), and Leu(274) in PotB and Tyr(19), Tyr(88), Tyr(148), Glu(160), Leu(195), and Tyr(211) in PotC were moderately involved in spermidine uptake. Among 11 amino acid residues that were strongly involved in spermidine uptake, Trp(8) in PotB was important for insertion of PotB and PotC into membranes. Tyr(43), Trp(100), and Leu(110) in PotB and Trp(46), Asp(108), Ser(196), and Asp(198) in PotC were found to be involved in the interaction with PotD. Leu(110) and Tyr(261) in PotB and Asp(108), Asp(198), and Asp(199) in PotC were involved in the recognition of spermidine, and Trp(100) and Tyr(261) in PotB and Asp(108), Glu(169), and Asp(198) in PotC were involved in ATPase activity of PotA. Accordingly, Trp(100) in PotB was involved in both PotD recognition and ATPase activity, Leu(110) in PotB was involved in both PotD and spermidine recognition, and Tyr(261) in PotB was involved in both spermidine recognition and ATPase activity. Asp(108) and Asp(198) in PotC were involved in PotD and spermidine recognition as well as ATPase activity. These results suggest that spermidine passage from PotD to the cytoplasm is coupled to the ATPase activity of PotA through a structural change of PotA by its ATPase activity.  相似文献   

9.
Streptomyces griseus trypsin (SGT) is a bacterial trypsin that lacks the conserved disulphide bond surrounding the autolysis loop. We investigated the molecular mechanism by which SGT is stabilized against autolysis. The autolysis loop connects to another surface loop via a salt bridge (Glu146-Arg222), and the Arg222 residue also forms a cation-pi interaction with Tyr217. Elimination of these bonds by site-directed mutagenesis showed that the surface salt bridge at Glu146-Arg222 is the main force stabilizing the enzyme against autolysis. The effect of the cation-pi interaction at Tyr217-Arg222 is small, however, its presence increases the half-life by about five hours and enhances the protein stability more than three-fold considering the catalytic activity in the presence of the salt bridge. The melting temperature also showed cooperation between the salt bridge and cation-pi interaction. These findings show that S. griseus trypsin is stabilized against autolysis through a cooperative network of a salt bridge and cation-pi interaction, which compensate for the absence of the conserved C136-C201 disulphide bond.  相似文献   

10.
The IRS-1 PH and PTB domains are essential for insulin-stimulated IRS-1 Tyr phosphorylation and insulin signaling, while Ser/Thr phosphorylation of IRS-1 disrupts these signaling events. To investigate consensus PKC phosphorylation sites in the PH-PTB domains of human IRS-1, we changed Ser24, Ser58, and Thr191 to Ala (3A) or Glu (3E), to block or mimic phosphorylation, respectively. The 3A mutant abrogated the inhibitory effect of PKCdelta on insulin-stimulated IRS-1 Tyr phosphorylation, while reductions in insulin-stimulated IRS-1 Tyr phosphorylation, cellular proliferation, and Akt activation were observed with the 3E mutant. When single Glu mutants were tested, the Ser24 to Glu mutant had the greatest inhibitory effect on insulin-stimulated IRS-1 Tyr phosphorylation. PKCdelta-mediated IRS-1 Ser24 phosphorylation was confirmed in cells with PKCdelta catalytic domain mutants and by an RNAi method. Mechanistic studies revealed that IRS-1 with Ala and Glu point mutations at Ser24 impaired phosphatidylinositol-4,5-bisphosphate binding. In summary, our data are consistent with the hypothesis that Ser24 is a negative regulatory phosphorylation site in IRS-1.  相似文献   

11.
The crystal structure of prolyl tripeptidyl aminopeptidase from Porphyromonas gingivalis was determined. Prolyl tripeptidyl aminopeptidase consists of beta-propeller and catalytic domains, and a large cavity between the domains; this structure is similar to dipeptidyl aminopeptidase IV. A catalytic triad (Ser603, His710, and Asp678) was located in the catalytic domain; this triad was virtually identical to that of the enzymes belonging to the prolyl oligopeptidase family. The structure of an inactive S603A mutant enzyme complexed with a substrate was also determined. The pyrrolidine ring of the proline residue appeared to fit into a hydrophobic pocket composed of Tyr604, Val629, Trp632, Tyr635, Tyr639, Val680, and Val681. There were characteristic differences in the residues of the beta-propeller domain, and these differences were related to the substrate specificity of tripeptidyl activity. The N-terminal amino group was recognized by salt bridges, with two carboxyl groups of Glu205 and Glu206 from a helix in dipeptidyl aminopeptidase IV. In prolyl tripeptidyl aminopeptidase, however, the Glu205 (located in the loop) and Glu636 were found to carry out this function. The loop structure provides sufficient space to accommodate three N-terminal residues (Xaa-Xaa-Pro) of substrates. This is the first report of the structure and substrate recognition mechanism of tripeptidyl peptidase.  相似文献   

12.
RCL is an enzyme that catalyzes the N-glycosidic bond cleavage of purine 2'-deoxyribonucleoside 5'-monophosphates. Recently, the structures of both free wild type and GMP-bound mutant complex have been determined by multidimensional NMR, revealing a doubly wound α/β protein existing in a symmetric homodimer. In this work, we investigated the catalytic mechanism by rational site-directed mutagenesis, steady-state and pre-steady-state kinetics, ITC binding analysis, methanolysis, and NMR study. First, we provide kinetic evidence in support of the structural studies that RCL functions in a dimeric form, with an apparent dissociation constant around 0.5 μM in the presence of substrate dGMP. Second, among the eight residues under investigation, the highly conserved Glu93 is absolutely critical and Tyr13 is also important likely contributing to the chemical step, whereas Ser117 from the neighboring subunit and Ser87 could be the key residues for the phosphate group recognition. Lastly, we demonstrate by methanolysis study that the catalytic reaction proceeds via the formation of a reaction intermediate, which is subsequently hydrolyzed by solvent nucleophile resulting in the formation of normal product deoxyribose monophosphate (dR5P) or methoylated-dR5P. In conclusion, the current study provides mechanistic insights into a new class of nucleotide hydrolase, which resembles nucleoside 2'-deoxyribosyltransferases structurally and functionally but also possesses clear distinction.  相似文献   

13.
The photosynthetic reaction center from the purple bacterium Rhodobacter sphaeroides has been modified such that the bacteriochlorophyll dimer, when it becomes oxidized after light excitation, is capable of oxidizing tyrosine residues. One factor in this ability is a high oxidation-reduction midpoint potential for the dimer, although the location and protein environment of the tyrosine residue appear to be critical as well. These factors were tested in a series of mutants, each of which contains changes, at residues L131, M160, M197, and M210, that give rise to a bacteriochlorophyll dimer with a midpoint potential of at least 800 mV. The protein environment was altered near tyrosine residues that are either present in the wild type or introduced by mutagenesis, focusing on residues that could act as acceptors for the phenolic proton of the tyrosine upon oxidation. These mutations include Ser M190 to His, which is near Tyr L162, the combination of His M193 to Tyr and Arg M164 to His, which adds a Tyr-His pair, and the combinations of Arg L135 to Tyr with Tyr L164 to His, Arg L135 to Tyr with Tyr L144 to Glu, and Arg L135 to Tyr with Tyr L164 to Phe. Radicals were produced in the mutants by using light to initiate electron transfer. The radicals were trapped by freezing the samples, and the relative populations of the oxidized dimer and tyrosyl radicals were determined by analysis of low-temperature electron paramagnetic resonance spectra. The mutants all showed evidence of tyrosyl radical formation at high pH, and the extent of radical formation at Tyr L135 with pH differed depending on the identity of L144 and L164. The results show that tyrosine residues within approximately 10 A of the dimer can become oxidized when provided with a suitable protein environment.  相似文献   

14.
In this study, we characterized rat and mouse aldo-keto reductases (AKR1C16 and AKR1C13, respectively) with 92% sequence identity. The recombinant enzymes oxidized non-steroidal alcohols using NAD+ as the preferred coenzyme, and showed low 3α/17β/20α-hydroxysteroid dehydrogenase (HSD) activities. The substrate specificity differs from that of rat NAD+-dependent 3α-HSD (AKR1C17) that shares 95% sequence identity with AKR1C16. To elucidate the residues determining the substrate specificity of the enzymes, we performed site-directed mutagenesis of Tyr24, Asp128 and Phe129 of AKR1C16 with the corresponding residues (Ser, Tyr and Leu, respectively) of AKR1C17. The double mutation (Asp128/Tyr-Phe129/Leu) had few effects on the substrate specificity, while the Tyr24/Ser mutant showed only 3α-HSD activity, and the triple mutation of the three residues produced an enzyme that had almost the same properties as AKR1C17. The importance of the residue 24 for substrate recognition was verified by the mutagenesis of Ser24/Tyr of AKR1C17 which resulted in a decrease in 3α-HSD activity and appearance of 17β- and 20α-HSD activities. AKR1C16 is also 92% identical with rat NAD+-dependent 17β-HSD (AKR1C24), which possesses Tyr24. The replacement of Asp128, Phe129 and Ser137 of AKR1C16 with the corresponding residues (Glu, Ser and Phe, respectively) of AKR1C24 increased the catalytic efficiency for 17β- and 20α-hydroxysteroids.  相似文献   

15.
CtXynGH30 is a carbohydrate active modular enzyme and component of cellulosome of Clostridium thermocellum. The full length CtXynGH30 contains an N-terminal catalytic module named as Xyn30A and a family 6 carbohydrate binding module (CBM6) at C-terminus. Xyn30A was modeled by computer program Modeller9v8 taking crystal structure of XynC from B. subtilis as a template to generate the molecular model. Model refinement was done using energy minimization by implementing steepest descent algorithm with GROMOS96 43a1 force field. Quality assessment by Ramachandran plot showed that 91% amino acids lie in most favourable region and 9% in additional allowed region. Structural analysis depicted that Xyn30A has a (β/α)8 barrel fold. Additionally, it had a β-strand rich structure called ‘side β-structure’ attached with main catalytic core. Structural superimposition reflected that Glu136 act as a catalytic acid/base while Glu225 act as a catalytic nucleophile. Multiple sequence alignment showed that these catalytic residues are conserved within the family. The docking results showed that these residues display polar interaction with linear and substituted xylo-oligosaccharides. The binding interaction of ligands depicted that aromatic amino acids Trp81, Tyr139, Trp143, Phe172, His198, Tyr200, Tyr227, Trp264 and Tyr265 create binding site pocket around the active site. We report overall structural feature, conserved active site residues and enzyme-ligand docking of first glucuronoxylan-xylanohydrolase (Xyn30A) of family 30 glycosyl hydrolase (GH30) from Clostridium thermocellum.  相似文献   

16.
Ferredoxin-NAD(P)+ reductase ([EC 1.18.1.2], [EC 1.18.1.3]) from Chlorobaculum tepidum (CtFNR) is structurally homologous to the bacterial NADPH-thioredoxin reductase (TrxR), but possesses a unique C-terminal extension relative to TrxR that interacts with the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group. In this study, we introduce truncations to the C-terminal residues to examine their role in the reactions of CtFNR with NADP+ and NADPH by spectroscopic and kinetic analyses. The truncation of the residues from Tyr326 to Glu360 (the whole C-terminal extension region), from Phe337 to Glu360 (omitting Phe337 on the re-face of the isoalloxazine ring) and from Ser338 to Glu360 (leaving Phe337 intact) resulted in a blue-shift of the flavin absorption bands. The truncations caused a slight increase in the dissociation constant toward NADP+ and a slight decrease in the Michaelis constant toward NADPH in steady-state assays. Pre-steady-state studies of the redox reaction with NADPH demonstrated that deletions of Tyr326–Glu360 decreased the hydride transfer rate, and the amount of reduced enzyme increased at equilibrium relative to wild-type CtFNR. In contrast, the deletions of Phe337–Glu360 and Ser338–Glu360 resulted in only slight changes in the reaction kinetics and redox equilibrium. These results suggest that the C-terminal region of CtFNR is responsible for the formation and stability of charge-transfer complexes, leading to changes in redox properties and reactivity toward NADP+/NADPH.  相似文献   

17.
Stehle F  Brandt W  Milkowski C  Strack D 《FEBS letters》2006,580(27):6366-6374
Structures of the serine carboxypeptidase-like enzymes 1-O-sinapoyl-beta-glucose:L-malate sinapoyltransferase (SMT) and 1-O-sinapoyl-beta-glucose:choline sinapoyltransferase (SCT) were modeled to gain insight into determinants of specificity and substrate recognition. The structures reveal the alpha/beta-hydrolase fold as scaffold for the catalytic triad Ser-His-Asp. The recombinant mutants of SMT Ser173Ala and His411Ala were inactive, whereas Asp358Ala displayed residual activity of 20%. 1-O-sinapoyl-beta-glucose recognition is mediated by a network of hydrogen bonds. The glucose moiety is recognized by a hydrogen bond network including Trp71, Asn73, Glu87 and Asp172. The conserved Asp172 at the sequence position preceding the catalytic serine meets sterical requirements for the glucose moiety. The mutant Asn73Ala with a residual activity of 13% underscores the importance of the intact hydrogen bond network. Arg322 is of key importance by hydrogen bonding of 1-O-sinapoyl-beta-glucose and L-malate. By conformational change, Arg322 transfers L-malate to a position favoring its activation by His411. Accordingly, the mutant Arg322Glu showed 1% residual activity. Glu215 and Arg219 establish hydrogen bonds with the sinapoyl moiety. The backbone amide hydrogens of Gly75 and Tyr174 were shown to form the oxyanion hole, stabilizing the transition state. SCT reveals also the catalytic triad and a hydrogen bond network for 1-O-sinapoyl-beta-glucose recognition, but Glu274, Glu447, Thr445 and Cys281 are crucial for positioning of choline.  相似文献   

18.
The reduction of inactive estrone (E1) to the active estrogen 17beta-estradiol (E2) is catalyzed by type 1 17beta-hydroxysteroid dehydrogenase (17HSD1). Crystallographic studies, modeling and activity measurement of mutants and chimeric enzymes have led to the understanding of its mechanism of action and the molecular basis for the estrogenic specificity. An electrophilic attack on the C17-keto oxygen by the Tyr 155 hydroxyl is proposed for initiation of the transition state. The active site is a hydrophobic pocket with catalytic residues at one end and the recognition machinery on the other. Tyr 155, Lys 159 and Ser 142 are essential for the activity. The presence of certain other amino acids near the substrate recognition end of the active site including His 152 and Pro 187 is critical to the shape complementarity of estrogenic ligands. His 221 and Glu 282 form hydrogen bonds with 3-hydroxyl of the aromatic A-ring of the ligand. This mechanism of recognition of E1 by 17HSD1 is similar to that of E2 by estrogen receptor alpha. In a ternary complex with NADP(+) and equilin, an equine estrogen with C7=C8 double bond, the orientation of C17=O of equilin relative to the C4-hydride is more acute than the near normal approach of the hydride for the substrate. In the apo-enzyme structure, a substrate-entry loop (residues 186-201) is in an open conformation. The loop is closed in this complex and Phe 192 and Met 193 make contacts with the ligand. Residues of the entry loop could be partially responsible for the estrogenic specificity.  相似文献   

19.
Glycoside hydrolysis by retaining family 18 chitinases involves a catalytic acid (Glu) which is part of a conserved DXDXE sequence motif that spans strand four of a (betaalpha)8 barrel (TIM barrel) structure. These glycoside hydrolases are unusual in that the positive charge emerging on the anomeric carbon after departure of the leaving group is stabilized by the substrate itself (the N-acetyl group of the distorted -1 sugar), rather than by a carboxylate group on the enzyme. We have studied seven conserved residues in the catalytic center of chitinase B from Serratia marcescens. Putative roles for these residues are proposed on the basis of the observed mutational effects, the pH-dependency of these effects, pKa calculations and available structural information. The results indicate that the pKa of the catalytic acid (Glu144) is 'cycled' during catalysis as a consequence of substrate-binding and release and, possibly, by a back and forth movement of Asp142 between Asp140 and Glu144. Rotation of Asp142 towards Glu144 also contributes to an essential distortion of the N-acetyl group of the -1 sugar. Two other conserved residues (Tyr10 and Ser93) are important because they stabilize the charge on Asp140 while Asp142 points towards Glu144. Asp215, lying opposite Glu144 on the other side of the scissile glycosidic bond, contributes to catalysis by promoting distortion of the -1 sugar and by increasing the pKa of the catalytic acid. The hydroxyl group of Tyr214 makes a major contribution to the positioning of the N-acetyl group of the -1 sugar. Taken together, the results show that catalysis in family 18 chitinases depends on a relatively large number of (partly mobile) residues that interact with each other and the substrate.  相似文献   

20.
Glycosyltrehalose trehalohydrolase (GTHase) is an α-amylase that cleaves the α-1,4 bond adjacent to the α-1,1 bond of maltooligosyltrehalose to release trehalose. To investigate the catalytic and substrate recognition mechanisms of GTHase, two residues, Asp252 (nucleophile) and Glu283 (general acid/base), located at the catalytic site of GTHase were mutated (Asp252→Ser (D252S), Glu (D252E) and Glu283→Gln (E283Q)), and the activity and structure of the enzyme were investigated. The E283Q, D252E, and D252S mutants showed only 0.04, 0.03, and 0.6% of enzymatic activity against the wild-type, respectively. The crystal structure of the E283Q mutant GTHase in complex with the substrate, maltotriosyltrehalose (G3-Tre), was determined to 2.6-Å resolution. The structure with G3-Tre indicated that GTHase has at least five substrate binding subsites and that Glu283 is the catalytic acid, and Asp252 is the nucleophile that attacks the C1 carbon in the glycosidic linkage of G3-Tre. The complex structure also revealed a scheme for substrate recognition by GTHase. Substrate recognition involves two unique interactions: stacking of Tyr325 with the terminal glucose ring of the trehalose moiety and perpendicularly placement of Trp215 to the pyranose rings at the subsites −1 and +1 glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号