首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They are named based on their prostane ring structure and by the localization of hydroxyl groups on the carbon side chain; these structural differences result in a broad array of isoprostane molecules with varying biological properties. Generation of specific isoprostanes is also regulated by host cell redox conditions; reducing conditions favor F?-isoprostane production while under conditions with deficient antioxidant capacity, D?- and E?-isoprostanes are formed. F?-isoprostanes (F?-isoP) are considered reliable markers of oxidative stress in pulmonary diseases including asthma. Importantly, F?-isoP and other isoprostanes function as ligands for PG receptors, and potentially other receptors that have not yet been identified. They have been reported to have important biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and permeability, and macrophage adhesion and function. In this review, we will summarize the evidence that F?-isoP functions as a marker of oxidative stress in asthma, and that F?-isoP and other isoprostanes exert biological effects that contribute to the pathogenesis of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.  相似文献   

2.
Isoprostanes are prostaglandin (PG)-like compounds generated in vivo following oxidative stress by non-enzymatic peroxidation of polyunsaturated fatty acids, including arachidonic acid. They are named based on their prostane ring structure and by the localization of hydroxyl groups on the carbon side chain; these structural differences result in a broad array of isoprostane molecules with varying biological properties. Generation of specific isoprostanes is also regulated by host cell redox conditions; reducing conditions favor F2-isoprostane production while under conditions with deficient antioxidant capacity, D2- and E2-isoprostanes are formed. F2-isoprostanes (F2-isoP) are considered reliable markers of oxidative stress in pulmonary diseases including asthma. Importantly, F2-isoP and other isoprostanes function as ligands for PG receptors, and potentially other receptors that have not yet been identified. They have been reported to have important biological properties in many organs. In the lung, isoprostanes regulate cellular processes affecting airway smooth muscle tone, neural secretion, epithelial ion flux, endothelial cell adhesion and permeability, and macrophage adhesion and function. In this review, we will summarize the evidence that F2-isoP functions as a marker of oxidative stress in asthma, and that F2-isoP and other isoprostanes exert biological effects that contribute to the pathogenesis of asthma. This article is part of a Special Issue entitled Biochemistry of Asthma.  相似文献   

3.
Isoprostanes: an overview and putative roles in pulmonary pathophysiology   总被引:1,自引:0,他引:1  
Isoprostanes are produced during peroxidation of membrane lipids by free radicals and reactive oxygen species. Initially, they were recognized as being valuable markers of oxidative stress, and in the past 10 years, dozens of disease states and experimental conditions with diverse etiologies have been shown to be associated with marked increases in urinary, plasma, and tissue levels of isoprostanes. However, they are not just mere markers; they evoke important biological responses on virtually every cell type found within the lung, and these responses exhibit compound-, tissue-, and species-related variations. In fact, the isoprostanes may mediate many of the features of the disease states for which they are used as indicators. In this review, I describe the chemistry, metabolism, and pharmacology of isoprostanes, with a particular emphasis on pulmonary cell types, and the possible roles of isoprostanes in pulmonary pathophysiology.  相似文献   

4.
Plasma and urinary levels of malondialdehyde-like products (MDA) and isoprostanes were identified as markers of in vivo lipid peroxidation in an animal model of CCl4 poisoning. We sought to determine the extent to which the formation of these oxidation products is influenced by inhibition of the cyclooxygenase enzymes which catalytically generate proinflammatory lipid peroxidation products known as prostaglandins and thromboxane. In the present studies, after induction of oxidant stress in rats with CCl4, lipid peroxidation products measured in plasma and urine demonstrate that isoprostanes and MDA can be partially inhibited by cyclooxygenase inhibitors, albeit to different extents. The lowering of isoprostane and MDA formation, however, may not to due primarily to the diminution of catalytic generation of isoprostanes or MDA by the cyclooxygenases but, rather, may be the result of the suppression of nonenzymatic lipid peroxidation. This is suggested since 8,12-iso-iPF2alpha-VI is also reduced by indomethacin, yet, unlike other isoprostanes and MDA, it is not generated catalytically by the cyclooxygenase. Thus, although the two cyclooxygenase inhibitors we tested have statistically significant effects on the measurements of both isoprostanes and MDA in this study, the results provide evidence that these lipid-degradation products primarily constitute markers of oxidative stress.  相似文献   

5.
Isoprostanes are prostaglandin-like bioactive molecules generated via nonenzymatic peroxidation of lipid membrane-derived arachidonic acid by free radicals and reactive oxygen species. Their cognate receptors, biological actions, and signaling pathways are poorly understood. Aside from being sensitive and specific biomarkers of oxidative stress, E- and F-ring isoprostanes have important biological functions and likely mediate many of the disease-related pathological changes for which they are used as indicators. The biochemical pathways involved in isoprostane formation, their pathogenetic relevance to adult disease states, and their biological function are addressed. Developmentally, plasma and tissue content data show that isoprostane levels are highest during fetal and early neonatal life, when compared with adults. As such, the available data suggesting that isoprostanes play an important biological role, as well as possibly actively participate in the regulation of pulmonary vascular tone and the transition from fetal to postnatal life, are here reviewed. Lastly, the association between isoprostanes and certain neonatal clinical conditions is addressed. Although its existence has been recognized for almost 20 years, little is known about the critical importance of isoprostanes during fetal life and immediate neonatal period. This review is an attempt to bridge this knowledge gap.  相似文献   

6.
Imbusch R  Mueller MJ 《Plant physiology》2000,124(3):1293-1304
Isoprostanes F(2) are arachidonate autoxidation products in mammals that have been shown to be induced during several human disorders associated with enhanced free-radical generation. Isoprostanes F(2) represent not only extremely reliable markers of oxidative stress in vivo, but they also exert potent biological effects. Therefore, it has been postulated that isoprostanoids are mediators of oxidant injury in vivo. Higher plants, however, do not synthesize arachidonic acid or isoprostanes. Here we show that a series of isoprostane F(2) analogs termed phytoprostanes F(1) (previously dinor isoprostanes F(1)) are formed by an analogous pathway from alpha-linolenate in plants. High-performance liquid chromatography and gas chromatography-mass spectrometry methods using [(18)O](3)phytoprostanes F(1) as internal standard have been developed to quantify phytoprostanes F(1). In fresh peppermint (Mentha piperita) leaves, phytoprostanes F(1) were found in free form (76 ng/g of dry weight) and at about 150-fold higher levels esterified in lipids. It is notable that these levels of phytoprostanes F(1) are more than two orders of magnitude higher than the basal levels of isoprostanes F(2) in mammalian tissues. Furthermore, wounding, as well as butyl hydroperoxide or cupric acetate stress triggered a dramatic increase of free and esterified phytoprostanes F(1). Thus phytoprostanes F(1) may represent a sensitive measure of oxidative damage in plants similar to isoprostanes in mammals. However, one of the most exciting issues to be clarified is the possibility that linolenate-derived phytoprostanes F(1) exert biological activities in plants and/or animals.  相似文献   

7.
The isoprostanes are a group of biologically active arachidonic acid metabolites initially thought to be formed under conditions of oxidative stress and independently of cyclooxygenase. However, recent studies have demonstrated isoprostane production under conditions in which cyclooxygenase is intentionally activated/induced. Here we describe for the first time formation of isoprostanes by human vascular cells via independent pathways of oxidative stress and cyclooxygenase induction. We compared the release of the isoprostane with that of the traditional prostaglandin, prostaglandin E2. Cyclooxygenase-2 induction was confirmed by Western blot. When cells were stimulated with cytokines, the release of isoprostanes was inhibited by the cyclooxygenase-1 and -2 inhibitor indomethacin as well by as the cyclooxygenase-2 selective inhibitor L-745,337. However, treatment of cells with the superoxide-producing enzyme xanthine oxidase also resulted in isoprostane release, which was not affected by cyclooxygenase inhibition, unlike PGE2 release under the same condition. Thus, two independent pathways relating to oxidative stress and cyclooxygenase-2 induction form isoprostanes. These findings may have particular importance in diseases such as sepsis and ARDS in which oxidant stress occurs and cyclooxygenase is induced.  相似文献   

8.
Oxidative stress leads to lipid peroxidation and may contribute to the pathogenesis of lesions in multiple sclerosis (MS), an autoimmune disease characterized by inflammatory as well as degenerative phenomena. Isoprostanes are prostaglandin-like compounds which are formed by free radical catalysed peroxidation of arachidonic acid esterified in membrane phospholipids. They are a new class of sensitive specific markers for in vivo lipid peroxidation. In this study 26 patients (15 females and 11 males; mean age 48.2 ± 15.2 year; mean disease duration 10.0 ± 6.5 year) with secondary progressive MS (SPMS) and 12 healthy controls were enrolled. In patients with multiple sclerosis the lipid peroxidation as the level of urine isoprostanes and the level of thiobarbituric acid reactive species (TBARS) in plasma were estimated. Moreover, we estimated the total antioxidative status (TAS) in plasma. It was found that the urine isoprostanes level was over 6-fold elevated in patients with SPMS than in control (P < 0.001). In SPMS patients TBARS level was also statistically higher than in controls (P < 0.01). However, we did not observed any difference of TAS level in serum between SPMS patients and controls (P > 0.05). In patients with SPMS the lipid peroxidation and oxidative stress measured as the increased level of isoprostanes was observed. Thus, we suggest that the level of isoprostanes may be used as non-invasive marker for a determination of oxidative stress what in turn, together with clinical symptoms, may determine an specific antioxidative therapy in SPMS patients.  相似文献   

9.
10.
Oxidation products of lipids, proteins, and DNA in the blood, plasma, and urine of rats were measured as part of a comprehensive, multilaboratory validation study searching for noninvasive biomarkers of oxidative stress. This article is the second report of the nationwide Biomarkers of Oxidative Stress Study using acute CCl4 poisoning as a rodent model for oxidative stress. The time-dependent (2, 7, and 16 h) and dose-dependent (120 and 1200 mg/kg i.p.) effects of CCl4 on concentrations of lipid hydroperoxides, TBARS, malondialdehyde (MDA), isoprostanes, protein carbonyls, methionine sulfoxidation, tyrosine products, 8-hydroxy-2'-deoxyguanosine (8-OHdG), leukocyte DNA-MDA adducts, and DNA-strand breaks were investigated to determine whether the oxidative effects of CCl4 would result in increased generation of these oxidation products. Plasma concentrations of MDA and isoprostanes (both measured by GC-MS) and urinary concentrations of isoprostanes (measured with an immunoassay or LC/MS/MS) were increased in both low-dose and high-dose CCl4-treated rats at more than one time point. The other urinary markers (MDA and 8-OHdG) showed significant elevations with treatment under three of the four conditions tested. It is concluded that measurements of MDA and isoprostanes in plasma and urine as well as 8-OHdG in urine are potential candidates for general biomarkers of oxidative stress. All other products were not changed by CCl4 or showed fewer significant effects.  相似文献   

11.
A key tenet of the oxidative stress theory of aging is that levels of accrued oxidative damage increase with age. Differences in damage generation and accumulation therefore may underlie the natural variation in species longevity. We compared age-related profiles of whole-organism lipid peroxidation (urinary isoprostanes) and liver lipid damage (malondialdehyde) in long living naked mole-rats [maximum lifespan (MLS) > 28.3 years] and shorter-living CB6F1 hybrid mice (MLS approximately 3.5 years). In addition, we compared age-associated changes in liver non-heme iron to assess how intracellular conditions, which may modulate oxidative processes, are affected by aging. Surprisingly, even at a young age, concentrations of both markers of lipid peroxidation, as well as of iron, were at least twofold (P < 0.005) greater in naked mole tats than in mice. This refutes the hypothesis that prolonged naked mole-rat longevity is due to superior protection against oxidative stress. The age-related profiles of all three parameters were distinctly species specific. Rates of lipid damage generation in mice were maintained throughout adulthood, while accrued damage in old animals was twice that of young mice. In naked mole-rats, urinary isoprostane excretion declined by half with age (P < 0.001), despite increases in tissue iron (P < 0.05). Contrary to the predictions of the oxidative stress theory, lipid damage levels did not change with age in mole-rats. These data suggest that the patterns of age-related changes in levels of markers of oxidative stress are species specific, and that the pronounced longevity of naked mole-rats is independent of oxidative stress parameters.  相似文献   

12.
The isoprostanes (IsoPs) are a unique series of prostaglandin-like compounds formed in vivo from the free radical-catalyzed peroxidation of arachidonic acid. This review summarizes our current knowledge regarding these compounds. Novel aspects of the biochemistry and bioactivity of IsoPs are detailed and methods by which these compounds are analyzed are discussed. A considerable portion of this review deals with the utility of measuring IsoPs as markers of oxidant injury in human diseases particularly in association with risk factors that predispose to atherosclerosis, a condition in which excessive oxidative stress has been causally implicated.  相似文献   

13.
To estimate the oxidative stress in patients with prostate cancer and in a control group, we used the biomarker of lipid peroxidation?Cisoprostanes (8-isoPGF2) and the level of selected antioxidants (glucose and uric acid [UA]). The level of urinary isoprostanes was determined in patients and controls using an immunoassay kit according to the manufacturer??s instruction. The levels of UA and glucose were also determined in serum by the use of UA Assay Kit and Glucose Assay Kit. We observed a statistically increased the level of isoprostanes in urine of patients with prostate cancer in compared with a control group. The concentration of tested antioxidants in blood from patients with prostate cancer was also higher than in healthy subjects. Moreover, our experiments indicate that the correlation between the increased amount of UA and the lipid peroxidation exists in prostate cancer patients (in all tested groups). Prostate cancer risk by urinary isoprostanes level was analyzed, and a positive association was found (relative risk for highest vs. lowest quartile of urinary isoprostanes?=?1.6; 95?% confidence interval 1.2?C2.4; p for trend?=?0.03). We suggest that reactive oxygen species induce peroxidation of unsaturated fatty acid in patients with prostate cancer, and the level of isoprostanes may be used as a non-invasive marker for determination of oxidative stress. We also propose that UA may enhance the oxidative stress in patients with prostate cancer.  相似文献   

14.
This study aims to determine if isoprostanes accurately reflect in vivo lipid peroxidation or whether they are influenced by the lipid content of the diet. Isoprostanes were measured in urine of healthy subjects under different conditions of lipid intake and under conditions of oxidative stress (fasting). We found that isoprostanes were not influenced by the lipid content of the diet: the urinary level remained constant over 24 h as well as over 4 consecutive days when switching from high to low lipid intake. Urinary isoprostane excretion was increased by 40% following a 24 h fast. We concluded that urinary isoprostane excretion reflects endogenous lipid peroxidation in vivo.  相似文献   

15.
Early mitochondrial dysfunction in long-lived Mclk1+/- mice   总被引:2,自引:0,他引:2  
Reduced activity of CLK-1/MCLK1 (also known as COQ7), a mitochondrial enzyme that is necessary for ubiquinone biosynthesis, prolongs the lifespan of nematodes and mice by a mechanism that is distinct from that of the insulin signaling pathway. Here we show that 2-fold reduction of MCLK1 expression in mice reveals an additional function for the protein, as this level of reduction does not affect ubiquinone levels yet affects mitochondrial function substantially. Indeed, we observe that the phenotype of young Mclk1(+/-) mutants includes a severe reduction of mitochondrial electron transport, ATP synthesis, and total nicotinamide adenine dinucleotide (NAD(tot)) pool size as well as an alteration in the activity of key enzymes of the tricarboxylic acid cycle. Surprisingly, we also find that Mclk1 heterozygosity leads to a dramatic increase in mitochondrial oxidative stress by a variety of measures. Furthermore, we find that the mitochondrial dysfunction is accompanied by a decrease in oxidative damage to cytosolic proteins as well as by a decrease in plasma isoprostanes, a systemic biomarker of oxidative stress and aging. We propose a mechanism for the conjunction of low ATP levels, high mitochondrial oxidative stress, and low non-mitochondrial oxidative damage in a long-lived mutant. Our model helps to clarify the relationship between energy metabolism and the aging process and suggests the need for a reformulation of the mitochondrial oxidative stress theory of aging.  相似文献   

16.
Isoprostanes are markers of free radical-catalyzed lipid peroxidation. Evidence suggests that oxidative stress occurs in pregnancies with fetal growth restriction (FGR). The aim of this study was to analyze F2-isoprostanes in amniotic fluid of FGR pregnancies. We tested the hypothesis that F2-isoprostanes are reliable markers to distinguish FGR pregnancies from normal ones and appropriate-for-gestational-age (AGA) from small-for-gestational-age (SGA) newborns. F2-isoprostanes levels were measured by colorimetric enzyme immunoassay in the amniotic fluid of 77 pregnancies with normal fetal growth (group I) and 37 with FGR (group II). Fetal biometry and Doppler measurements were obtained using an ATL HDI 3000 ultrasound system. Isoprostanes were higher in group II than group I. The ROC curve distinguished group I from group II, showing 100% sensitivity and 88.3% specificity at a cutoff of 94 pg/ml. There were no statistical differences in isoprostanes levels between AGA and SGA newborns in group II. The area under the ROC curve drawn to distinguish AGA and SGA newborns showed a sensitivity of 100% and a specificity of 72.3% at a cutoff of 94 pg/ml. The relative risk index indicated a 8.05 times higher risk of birth weight below the 3rd percentiles in group II than in group I. High isoprostanes concentrations can be detected in the amniotic fluid of FGR pregnancies and the assay of isoprostanes in amniotic fluid is a reliable assessment of fetal oxidative stress. Common use of this predictive marker in obstetrics will improve the ability of clinicians to identify those fetuses who will be born SGA or with a birth weight below the 25th percentile.  相似文献   

17.
After a brief introduction to oxidative stress, the discovery of F(2)-isoprostanes as specific and reliable markers of oxidative stress is described. Isoprostanes are also agonists of important biological effects. Since a relation between oxidative stress and collagen hyperproduction has been previously suggested and since lipid peroxidation products have been proposed as possible mediators of liver fibrosis, we investigated whether collagen synthesis is induced by F(2)-isoprostanes the most proximal products of lipid peroxidation. In a rat model of carbon tetrachloride-induced hepatic fibrosis, plasma isoprostanes were markedly elevated for the entire experimental period; hepatic collagen content was also increased. When hepatic stellate cells from normal liver were cultured up to activation (expression of alpha-smooth muscle-alpha actin) and then treated with F(2)-isoprostanes in the concentration range found in the in vivo studies (10(-9)-10(-8)M), a striking increase in DNA synthesis, in cell proliferation and in collagen synthesis was observed. Moreover, F(2)-isoprostanes increased the production of transforming growth factor-beta1 by U937 cells, assumed as a model of Kupffer cells or liver macrophages. The data suggest the possibility that F(2)-isoprostanes generated by lipid peroxidation in hepatocytes mediate hepatic stellate cell proliferation and collagen hyperproduction seen in hepatic fibrosis.  相似文献   

18.
Reactive oxygen species (ROS) generated by mitochondrial respiration and other processes are often viewed as hazardous substances. Indeed, oxidative stress, defined as an imbalance between oxidant production and antioxidant protection, has been linked to several neurological disorders, including cerebral ischemia-reperfusion and Parkinson's disease. Consequently, cells and organisms have evolved specialized antioxidant defenses to balance ROS production and prevent oxidative damage. Research in our laboratory has shown that neuronal levels of ascorbate, a low molecular weight antioxidant, are ten-fold higher than those in much less metabolically active glial cells. Ascorbate levels are also selectively elevated in the CNS of anoxia-tolerant reptiles compared to mammals; moreover, plasma and CSF ascorbate concentrations increase markedly in cold-adapted turtles and in hibernating squirrels. Levels of the related antioxidant, glutathione, vary much less between neurons and glia or among species. An added dimension to the role of the antioxidant network comes from recent evidence that ROS can act as neuromodulators. One example is modulation of dopamine release by endogenous hydrogen peroxide, which we describe here for several mammalian species. Together, these data indicate adaptations that prevent oxidative stress and suggest a particularly important role for ascorbate. Moreover, they show that the antioxidant network must be balanced precisely to provide functional levels of ROS, as well as neuroprotection.  相似文献   

19.
F(2)-isoprostanes, prostaglandin F(2)-like compounds formed by free radical-catalyzed lipid peroxidation, are considered the most reliable markers of oxidative stress. It has been repeatedly suggested that newborns are exposed to conditions of oxidative stress resulting from the change from a low oxygen pressure in utero to a high oxygen pressure at birth. We measured the levels of F(2)-isoprostanes in plasma of newborns by gas chromatography/mass spectrometry and we found that F(2)-isoprostanes are significantly higher in term newborns compared to healthy adults. The greatest values were found in preterm newborns in whom F(2)-isoprostanes are even higher than in term babies. Moreover a significant inverse correlation was found between the plasma levels of isoprostanes and the gestational age. A quite normal level of isoprostanes was found in the mothers both at delivery and during pregnancy. Placental total F(2)-isoprostanes (sum of free plus esterified) were significantly higher in preterm compared to term deliveries and such a difference might account for the difference in plasma isoprostanes. Plasma non-protein-bound iron is higher in preterm than in term newborns, even if no correlation was found with plasma F(2)-isoprostanes. Erythrocyte desferrioxamine-chelatable iron content (0 time) and release (24 h of aerobic incubation) are higher in newborns than in adults and in preterm than in term newborns, but again no correlation was found with plasma F(2)-isoprostanes. The marked increase in plasma isoprostanes suggests that oxidative stress is a feature of the physiopathological changes seen in the perinatal period.  相似文献   

20.
Abstract: Increased awareness for a role of oxidative stress in the pathogenesis of Alzheimer's disease has highlighted the issue of whether oxidative damage is a fundamental step in the pathogenesis or instead results from disease-associated pathology. In vitro experiments support both possibilities: Oxidative stress increases amyloid-β production, and, conversely, amyloid-β increases oxidative damage. To address the relationship between amyloid-β and oxidative stress in vivo, we examined, using an array of oxidative markers, transgenic mice that overexpress amyloid-β precursor protein and, as in Alzheimer's disease, develop characteristic amyloid-β deposits within the brain parenchyma. Transgenic animals show the same type of oxidative damage that is found in Alzheimer's disease, and it is important that this damage directly correlates with the presence of amyloid-β deposits. The significance of these studies is twofold. First, they provide evidence that amyloid-β and oxidative damage are inextricably linked in vivo. Second, they support the use of transgenic animals for the development of antioxidant therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号