首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The delta isoform of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) predominates in the heart. To investigate the role of CaMKII in cardiac function, we made transgenic (TG) mice that express the nuclear delta(B) isoform of CaMKII. The expressed CaMKIIdelta(B) transgene was restricted to the myocardium and highly concentrated in the nucleus. Cardiac hypertrophy was evidenced by an increased left ventricle to body weight ratio and up-regulation of embryonic and contractile protein genes including atrial natriuretic factor, beta-myosin heavy chain, and alpha-skeletal actin. Echocardiography revealed ventricular dilation and decreased cardiac function, which was also observed in hemodynamic measurements from CaMKIIdelta(B) TG mice. Surprisingly, phosphorylation of phospholamban at both Thr(17) and Ser(16) was significantly decreased in the basal state as well as upon adrenergic stimulation. This was associated with diminished sarcoplasmic reticulum Ca(2+) uptake in vitro and altered relaxation properties in vivo. The activity and expression of protein phosphatase 2A were both found to be increased in CaMKII TG mice, and immunoprecipitation studies indicated that protein phosphatase 2A directly associates with CaMKII. Our findings are the first to demonstrate that CaMKII can induce hypertrophy and dilation in vivo and indicate that compensatory increases in phosphatase activity contribute to the resultant phenotype.  相似文献   

2.
3.
Phospholamban is a phosphoprotein in the cardiac sarcoplasmic reticulum (SR) which regulates the apparent Ca(2+) affinity of the SR Ca(2+)-ATPase (SERCA2). To determine the levels of phospholamban which are associated with maximal inhibition of SERCA2, several lines of transgenic mice were generated which expressed increasing levels of a non-phosphorylatable form of phospholamban (S16A,T17A) specifically in the heart. This mutant form of phospholamban was chosen to prevent phosphorylation as a compensatory mechanism in vivo. Quantitative immunoblotting revealed increased phospholamban protein levels of 1.8-, 2.6-, 3.7-, and 4.7-fold in transgenic hearts compared with wild types. There were no changes in the expression levels of SERCA2, calsequestrin, calreticulin, and ryanodine receptor. Assessment of SR Ca(2+) uptake in hearts of transgenic mice indicated increases in the inhibition of the affinity of SERCA2 for Ca(2+) with increased phospholamban expression. Maximal inhibition was obtained at phospholamban expression levels of 2.6-fold or higher. Transgenic hearts with functional saturation in phospholamban:SERCA2 (>/=2.6:1) exhibited increases in beta-myosin heavy chain expression, associated with cardiac hypertrophy. These findings demonstrate that overexpression of a non-phosphorylatable form of phospholamban in transgenic mouse hearts resulted in saturation of the functional phospholamban:SERCA2 ratio at 2.6:1 and suggest that approximately 40% of the SR Ca(2+) pumps are functionally regulated by phospholamban in vivo.  相似文献   

4.
An AMP-activated kinase (AMPK) signaling pathway is activated during myocardial ischemia and promotes cardiac fatty acid (FA) uptake and oxidation. Similarly, the multifunctional Ca2+/calmodulin-dependent protein kinase II (CaMKII) is also triggered by myocardial ischemia, but its function in FA metabolism remains unclear. Here, we explored the role of CaMKII in FA metabolism during myocardial ischemia by investigating the effects of cardiac CaMKII on AMPK-acetyl-CoA carboxylase (ACC), malonyl CoA decarboxylase (MCD), and FA translocase cluster of differentiation 36 (FAT/CD36), as well as cardiac FA uptake and oxidation. Moreover, we tested whether CaMKII and AMPK are binding partners. We demonstrated that diseased hearts from patients with terminal ischemic heart disease displayed increased phosphorylation of CaMKII, AMPK, and ACC and increased expression of MCD and FAT/CD36. AC3-I mice, which have a genetic myocardial inhibition of CaMKII, had reduced gene expression of cardiac AMPK. In post-MI (myocardial infarction) AC3-I hearts, AMPK-ACC phosphorylation, MCD and FAT/CD36 levels, cardiac FA uptake, and FA oxidation were significantly decreased. Notably, we demonstrated that CaMKII interacted with AMPK α1 and α2 subunits in the heart. Additionally, AC3-I mice displayed significantly less cardiac hypertrophy and apoptosis 2 weeks post-MI. Overall, these findings reveal a unique role for CaMKII inhibition in repressing FA metabolism by interacting with AMPK signaling pathways, which may represent a novel mechanism in ischemic heart disease.  相似文献   

5.
Transgenic (TG) mice expressing a Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitory peptide targeted to the cardiac myocyte longitudinal sarcoplasmic reticulum (LSR) display reduced phospholamban phosphorylation at Thr17 and develop dilated myopathy when stressed by gestation and parturition (Ji Y, Li B, Reed TD, Lorenz JN, Kaetzel MA, and Dedman JR. J Biol Chem 278: 25063-25071, 2003). In the present study, these animals (TG) are evaluated for the effect of inhibition of sarcoplasmic reticulum (SR) CaMKII activity on the contractile characteristics and Ca2+ cycling of myocytes. Analysis of isolated work-performing hearts demonstrated moderate decreases in the maximal rates of contraction and relaxation (+/-dP/dt) in TG mice. The response of the TG hearts to increases in load is reduced. The TG hearts respond to isoproterenol (Iso) in a dose-dependent manner; the contractile properties were reduced in parallel to wild-type hearts. Assessment of isolated cardiomyocytes from TG mice revealed 40-47% decrease in the maximal rates of myocyte shortening and relengthening under both basal and Iso-stimulated conditions. Although twitch Ca2+ transient amplitudes were not significantly altered, the rate of twitch intracellular Ca2+ concentration decline was reduced by approximately 47% in TG myocytes, indicating decreased SR Ca2+ uptake function. Caffeine-induced Ca2+ transients indicated unaltered SR Ca2+ content and Na+/Ca2+ exchange function. Phosphorylation assays revealed an approximately 30% decrease in the phosphorylation of ryanodine receptor Ser2809. Iso stimulation increased the phosphorylation of both phospholamban Ser16 and the ryanodine receptor Ser2809 but not phospholamban Thr17 in TG mice. This study demonstrates that inhibition of SR CaMKII activity at the LSR results in alterations in cardiac contractility and Ca2+ handling in TG hearts.  相似文献   

6.
Fatty acid synthase (FAS) promotes energy storage through de novo lipogenesis and participates in signaling by the nuclear receptor PPARα in noncardiac tissues. To determine if de novo lipogenesis is relevant to cardiac physiology, we generated and characterized FAS knockout in the myocardium (FASKard) mice. FASKard mice develop normally, manifest normal resting heart function, and have normal cardiac PPARα signaling as well as fatty acid oxidation. However, they decompensate with stress. Most die within 1 h of transverse aortic constriction, probably due to arrhythmia. Voltage clamp measurements of FASKard cardiomyocytes show hyperactivation of L-type calcium channel current that could not be reversed with palmitate supplementation. Of the classic regulators of this current, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) but not protein kinase A signaling is activated in FASKard hearts, and knockdown of FAS in cultured cells activates CaMKII. In addition to being intolerant of the stress of acute pressure, FASKard hearts were also intolerant of the stress of aging, reflected as persistent CaMKII hyperactivation, progression to dilatation, and premature death by ~1 year of age. CaMKII signaling appears to be pathogenic in FASKard hearts because inhibition of its signaling in vivo rescues mice from early mortality after transverse aortic constriction. FAS was also increased in two mechanistically distinct mouse models of heart failure and in the hearts of humans with end stage cardiomyopathy. These data implicate a novel relationship between FAS and calcium signaling in the heart and suggest that FAS induction in stressed myocardium represents a compensatory response to protect cardiomyocytes from pathological calcium flux.  相似文献   

7.
8.
9.
To investigate the role of Ca2+/calmodulin-dependent kinase II in cardiac sarcoplasmic reticulum function, transgenic mice were designed and generated to target the expression of a Ca2+/calmodulin-dependent kinase II inhibitory peptide in cardiac longitudinal sarcoplasmic reticulum using a truncated phospholamban transmembrane domain. The expressed inhibitory peptide was highly concentrated in cardiac sarcoplasmic reticulum. This resulted in a 59.7 and 73.6% decrease in phospholamban phosphorylation at threonine 17 under basal and beta-adrenergic stimulated conditions without changing phospholamban phosphorylation at serine 16. Sarcoplasmic reticulum Ca2+ uptake assays showed that the Vmax was decreased by approximately 30% although the apparent affinity for Ca2+ was unchanged in heterozygous hearts. The in vivo measurement of cardiac function showed no significant reductions in positive and negative dP/dt, but a moderate 18% decrease in dP/dt40, indicative of isovolumic contractility, and a 26.1% increase in the time constant of relaxation (tau) under basal conditions. The changes in these parameters indicate a moderate cardiac dysfunction in transgenic mice. Although the 3 and 4-month-old transgenic mice displayed no overt signs of cardiac disease, when stressed by gestation and parturition, the 7-month-old female mice develop dilated heart failure, suggesting the important role of Ca2+/calmodulin-dependent kinase II pathway in the development of cardiac disease.  相似文献   

10.
The objective of this study was to establish whether 1) hyperactivity of renin-angiotensin-aldosterone system (RAAS) produces apoptosis in early stages of cardiac disease; and 2) Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is involved in these apoptotic events. Two models of hypertrophy were used at an early stage of cardiac disease: spontaneously hypertensive rats (SHR) and isoproterenol-treated rats (Iso-rats). At 4 mo, SHR showed blood pressure, aldosterone serum levels, used as RAAS activity index, and left ventricular mass index, used as hypertrophy index, above control values by 84.2 ± 2.6 mmHg, 211.2 ± 25.8%, and 8.6 ± 1.1 mg/mm, respectively. There was also an increase in apoptotis (Bax-to-Bcl-2 ratio and terminal deoxynucleotidyl transferase dUTP-mediated nick-end labeling positive cells) associated with an enhancement of CaMKII activity with respect to age-matched controls (phosphorylated-CaMKII, 98.7 ± 14.1 above control). Similar results were observed in 4-mo-old Iso-rats. Cardiac function studied by echocardiography remained unaltered in all groups. Enalapril treatment significantly prevented hypertrophy, apoptosis, and CaMKII activity. Moreover, intracellular Ca(2+) handling in isolated myocytes was similar between SHR, Iso-rats, and their aged-matched controls. However, SHR and Iso-rats showed a significant increase in superoxide anion generation (lucigenin) and lipid peroxidation (thiobarbituric acid reactive substance). In transgenic mice with targeted cardiomyocyte expression of a CaMKII inhibitory peptide (AC3-I) or a scrambled control peptide (AC3-C), Iso treatment increased thiobarbituric acid reactive substance in both strains, whereas it increased CaMKII activity and apoptosis only in AC3-C mice. Endogenous increases in RAAS activity induce ROS and CaMKII-dependent apoptosis in vivo. CaMKII activation could not be associated with intracellular Ca(2+) increments and was directly related to the increase in oxidative stress.  相似文献   

11.
12.
Calsequestrin (CSQ) is a Ca(2+) storage protein that interacts with triadin (TRN), the ryanodine receptor (RyR), and junctin (JUN) to form a macromolecular tetrameric Ca(2+) signaling complex in the cardiac junctional sarcoplasmic reticulum (SR). Heart-specific overexpression of CSQ in transgenic mice (TG(CSQ)) was associated with heart failure, attenuation of SR Ca(2+) release, and downregulation of associated junctional SR proteins, e.g., TRN. Hence, we tested whether co-overexpression of CSQ and TRN in mouse hearts (TG(CxT)) could be beneficial for impaired intracellular Ca(2+) signaling and contractile function. Indeed, the depressed intracellular Ca(2+) concentration ([Ca](i)) peak amplitude in TG(CSQ) was normalized by co-overexpression in TG(CxT) myocytes. This effect was associated with changes in the expression of cardiac Ca(2+) regulatory proteins. For example, the protein level of the L-type Ca(2+) channel Ca(v)1.2 was higher in TG(CxT) compared with TG(CSQ). Sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a (SERCA2a) expression was reduced in TG(CxT) compared with TG(CSQ), whereas JUN expression and [(3)H]ryanodine binding were lower in both TG(CxT) and TG(CSQ) compared with wild-type hearts. As a result of these expressional changes, the SR Ca(2+) load was higher in both TG(CxT) and TG(CSQ) myocytes. In contrast to the improved cellular Ca(2+), transient co-overexpression of CSQ and TRN resulted in a reduced survival rate, an increased cardiac fibrosis, and a decreased basal contractility in catheterized mice, working heart preparations, and isolated myocytes. Echocardiographic and hemodynamic measurements revealed a depressed cardiac performance after isoproterenol application in TG(CxT) compared with TG(CSQ). Our results suggest that co-overexpression of CSQ and TRN led to a normalization of the SR Ca(2+) release compared with TG(CSQ) mice but a depressed contractile function and survival rate probably due to cardiac fibrosis, a lower SERCA2a expression, and a blunted response to β-adrenergic stimulation. Thus the TRN-to-CSQ ratio is a critical modulator of the SR Ca(2+) signaling.  相似文献   

13.
Rac1-GTPase activation plays a key role in the development and progression of cardiac remodeling. Therefore, we engineered a transgenic mouse model by overexpressing cDNA of a constitutively active form of Zea maize Rac gene (ZmRacD) specifically in the hearts of FVB/N mice. Echocardiography and MRI analyses showed cardiac hypertrophy in old transgenic mice, as evidenced by increased left ventricular (LV) mass and LV mass-to-body weight ratio, which are associated with relative ventricular chamber dilation and systolic dysfunction. LV hypertrophy in the hearts of old transgenic mice was further confirmed by an increased heart weight-to-body weight ratio and histopathology analysis. The cardiac remodeling in old transgenic mice was coupled with increased myocardial Rac-GTPase activity (372%) and ROS production (462%). There were also increases in α(1)-integrin (224%) and β(1)-integrin (240%) expression. This led to the activation of hypertrophic signaling pathways, e.g., ERK1/2 (295%) and JNK (223%). Pravastatin treatment led to inhibition of Rac-GTPase activity and integrin signaling. Interestingly, activation of ZmRacD expression with thyroxin led to cardiac dilation and systolic dysfunction in adult transgenic mice within 2 wk. In conclusion, this is the first study to show the conservation of Rho/Rac proteins between plant and animal kingdoms in vivo. Additionally, ZmRacD is a novel transgenic model that gradually develops a cardiac phenotype with aging. Furthermore, the shift from cardiac hypertrophy to dilated hearts via thyroxin treatment will provide us with an excellent system to study the temporal changes in cardiac signaling from adaptive to maladaptive hypertrophy and heart failure.  相似文献   

14.
15.
Enhanced gene expression of the Na(+)/Ca(2+) exchanger in failing hearts may be a compensatory mechanism to promote influx and efflux of Ca(2+), despite impairment of the sarcoplasmic reticulum (SR). To explore this, we monitored intracellular calcium (Ca(i)(2+)) and cardiac function in mouse hearts engineered to overexpress the Na(+)/Ca(2+) exchanger and subjected to ischemia and hypoxia, conditions known to impair SR Ca(i)(2+) transport and contractility. Although baseline Ca(i)(2+) and function were similar between transgenic and wild-type hearts, significant differences were observed during ischemia and hypoxia. During early ischemia, Ca(i)(2+) was preserved in transgenic hearts but significantly altered in wild-type hearts. Transgenic hearts maintained 40% of pressure-generating capacity during early ischemia, whereas wild-type hearts maintained only 25% (P < 0.01). During hypoxia, neither peak nor diastolic Ca(i)(2+) decreased in transgenic hearts. In contrast, both peak and diastolic Ca(i)(2+) decreased significantly in wild-type hearts. The decline of Ca(i)(2+) was abbreviated in hypoxic transgenic hearts but prolonged in wild-type hearts. Peak systolic pressure decreased by nearly 10% in hypoxic transgenic hearts and >25% in wild-type hearts (P < 0.001). These data demonstrate that enhanced gene expression of the Na(+)/Ca(2+) exchanger preserves Ca(i)(2+) homeostasis during ischemia and hypoxia, thereby preserving cardiac function in the acutely failing heart.  相似文献   

16.
Cold shock and wind stimuli initiate Ca(2+) transients in transgenic tobacco (Nicotiana plumbaginifolia) seedlings (named MAQ 2.4) containing cytoplasmic aequorin. To investigate whether these stimuli initiate Ca(2+) pathways that are spatially distinct, stress-induced nuclear and cytoplasmic Ca(2+) transients and the expression of a stress-induced calmodulin gene were compared. Tobacco seedlings were transformed with a construct that encodes a fusion protein between nucleoplasmin (a major oocyte nuclear protein) and aequorin. Immunocytochemical evidence indicated targeting of the fusion protein to the nucleus in these plants, which were named MAQ 7.11. Comparison between MAQ 7.11 and MAQ 2.4 seedlings confirmed that wind stimuli and cold shock invoke separate Ca(2+) signaling pathways. Partial cDNAs encoding two tobacco calmodulin genes, NpCaM-1 and NpCaM-2, were identified and shown to have distinct nucleotide sequences that encode identical polypeptides. Expression of NpCaM-1, but not NpCaM-2, responded to wind and cold shock stimulation. Comparison of the Ca(2+) dynamics with NpCaM-1 expression after stimulation suggested that wind-induced NpCaM-1 expression is regulated by a Ca(2+) signaling pathway operational predominantly in the nucleus. In contrast, expression of NpCaM-1 in response to cold shock is regulated by a pathway operational predominantly in the cytoplasm.  相似文献   

17.
18.
Calmodulin kinase II inhibition protects against structural heart disease   总被引:1,自引:0,他引:1  
Beta-adrenergic receptor (betaAR) stimulation increases cytosolic Ca(2+) to physiologically augment cardiac contraction, whereas excessive betaAR activation causes adverse cardiac remodeling, including myocardial hypertrophy, dilation and dysfunction, in individuals with myocardial infarction. The Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) is a recently identified downstream element of the betaAR-initiated signaling cascade that is linked to pathological myocardial remodeling and to regulation of key proteins involved in cardiac excitation-contraction coupling. We developed a genetic mouse model of cardiac CaMKII inhibition to test the role of CaMKII in betaAR signaling in vivo. Here we show CaMKII inhibition substantially prevented maladaptive remodeling from excessive betaAR stimulation and myocardial infarction, and induced balanced changes in excitation-contraction coupling that preserved baseline and betaAR-stimulated physiological increases in cardiac function. These findings mark CaMKII as a determinant of clinically important heart disease phenotypes, and suggest CaMKII inhibition can be a highly selective approach for targeting adverse myocardial remodeling linked to betaAR signaling.  相似文献   

19.
Sorcin is a penta-EF hand Ca2+-binding protein that associates with both cardiac ryanodine receptors and L-type Ca2+ channels and has been implicated in the regulation of intracellular Ca2+ cycling. To better define the function of sorcin, we characterized transgenic mice in which sorcin was overexpressed in the heart. Transgenic mice developed normally with no evidence of cardiac hypertrophy and no change in expression of other calcium regulatory proteins. In vivo hemodynamics revealed significant reductions in global indices of contraction and relaxation. Contractile abnormalities were also observed in isolated adult transgenic myocytes, along with significant depression of Ca2+ transient amplitudes. Whole cell ICa density and the time course of activation were normal in transgenic myocytes, but the rate of inactivation was significantly accelerated. These effects of sorcin on L-type Ca2+ currents were confirmed in Xenopus oocyte expression studies. Finally, we examined the expression of sorcin in normal and failing hearts from spontaneous hypertensive heart failure rats. In normal myocardium, sorcin extensively co-localized with ryanodine receptors at the Z-lines, whereas in myopathic hearts the degree of co-localization was markedly disrupted. Together, these data indicate that sorcin modulates intracellular Ca2+ cycling and Ca2+ influx pathways in the heart.  相似文献   

20.
Cardiac failure is associated with increased levels of oxidized DNA, especially mitochondrial (mtDNA). It is not known if oxidized mtDNA contributes to cardiac dysfunction. To test if protection of mtDNA can reduce cardiac injury, we produced transgenic mice with cardiomyocyte-specific overexpression of the DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1) isoform 2a. In one line of mice, the transgene increased OGG1 activity by 115% in mitochondria and by 28% in nuclei. OGG1 transgenic mice demonstrated significantly lower cardiac mitochondrial levels of the DNA guanine oxidation product 7,8-dihydro-8-oxoguanine (8-oxo-dG) under basal conditions, after doxorubicin administration, or after transaortic constriction (TAC), but the transgene produced no detectable reduction in nuclear 8-oxo-dG content. OGG1 mice were tested for protection from the cardiac effects of TAC 13 wk after surgery. Compared with FVB-TAC mice, hearts from OGG1-TAC mice had lower levels of β-myosin heavy chain mRNA but they did not display significant differences in the ratio of heart weight to tibia length or protection of cardiac function measured by echocardiography. The principle benefit of OGG1 overexpression was a significant decrease in TAC-induced cardiac fibrosis. This protection was indicated by reduced Sirius red staining on OGG1 cardiac sections and by significantly decreased induction of collagen 1 and 3 mRNA expression in OGG1 hearts after TAC surgery. These results provide a new model to assess the damaging cardiac effects of 8-oxo-dG formation and suggest that increased repair of 8-oxo-dG in mtDNA decreases cardiac pathology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号