首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The submicroscopic organization of the retinal rods of the rabbit has been studied with high resolution electron microscopy in thin longitudinal and cross-sections. The outer rod segment consists of a stack of flattened sacs or cisternae each of them limited by a thin homogeneous membrane of about 30 A. The membrane of the rod sacs is attached to the surface membrane and is also in continuity with short tubular stalks of about 100 to 150 A which apparently end in relation with the connecting cilium. The bundle of filaments that constitute the connection between the outer and the inner segments is described under the name of connecting cilium. This fibrous component has a structure that is very similar to that of the cilium. It shows 9 pairs of peripheral filaments of about 160 A in diameter, a matrix material, and a surface membrane. Very infrequently two central single filaments are observed. The connecting cilium has a typical basal body in the inner segment; its distal end penetrates the outer segment, where it establishes some structural relation to the rod sacs. The relationships and submicroscopic organization of the connecting cilium were studied in longitudinal and in cross-sections passing at different levels of the rod segments. The inner rod segment shows two distinct regions: a distal and a proximal one. The distal region, corresponding to the ellipsoid of classical histology is mainly composed of longitudinally packed mitochondria. It also contains the basal body of the cilium, vacuoles of the endoplasmic reticulum, dense particles, and intervening matrix with very fine filaments. In the proximal region of the inner segment the mitochondria are lacking and within the matrix it is possible to recognize elements of the Golgi complex, vacuoles of the endoplasmic reticulum, dense particles and numerous neuroprotofibrils of 160 to 200 A in diameter which collect and form a definite bundle at the exit of the rod fiber. The interpretation of the connecting fibers as a portion of a cilium and of the outer segment as a differentiation of the distal part of a primitive cilium are discussed. The importance of the continuity of the surface membranes of the outer segment, connecting cilium, and inner segment is emphasized and its possible physiological role is discussed.  相似文献   

2.
MORPHOGENESIS OF THE RETINAL RODS : AN ELECTRON MICROSCOPE STUDY   总被引:4,自引:12,他引:4       下载免费PDF全文
The morphogenesis of the retinal rods has been studied with the electron microscope in white mice from birth up to the 16th day of age. Observations have been mainly concentrated on specimens of the 8th and 12th days and on the differentiation of the inner and outer segments of the retinal rods. In the morphogenesis of the outer segment three main stages have been considered. The first stage consists in the development of a primitive cilium projecting from a bulge of protoplasm which constitutes the primordium of the inner segment. A basal body, nine pairs of peripheral filaments, a surface membrane, and a matrix filled with a fine vesicular material have been recognized as components of the primitive cilium. The vesicles are called "morphogenetic material" because it is believed that they represent the macromolecular primordium of the rod sacs of the future outer segment. The second stage corresponds to the great enlargment of the apical region of the primitive cilium due to the rapid building up of the lamellar material of the rod sacs. The primitive rod sacs appear to be connected with the ciliary filaments. The basal portion of the primitive cilium remains undifferentiated and constitutes the connecting cilium of the adult rod (1). The third stage consists in the remodelling and reorientation of the rod sacs into their permanent transverse disposition. This process starts in the middle portion of the outer segments and proceeds towards both extremities which can be considered as zones of growth of the outer segment. The inner segment is at the beginning a bulge of protoplasm containing unoriented mitochondria, a basal body, a small Golgi zone, and numerous dense particles. Then this region becomes elongated and the different components assume the stratified disposition found in the adult (1). The demonstration that the entire outer segment of the rod cell is the result of the differentiation of a primitive cilium is discussed in view of the conflicting interpretations found in the literature. The possible macromolecular mechanisms that may be involved in the submicroscopic morphogenesis of the rod sacs are discussed and the possible role of the morphogenetic material is considered. The results described in this paper confirm and extend the interpretation of the submicroscopic morphology of the adult rod cell as presented in a previous paper (1).  相似文献   

3.
The fine structure of the cone and rod outer segments of the toad was studied under the electron microscope after fixation in osmium tetroxide and fixation in formaldehyde followed by chromation. In the OsO4-fixed specimens, the rod outer segment appears to be built of a stack of lobulated flattened sacs, each of which is made of two membranes of about 40 A separated by an innerspace of about 30 A. The distance between the rod sacs is about 50 A. The sacs in the cone outer segment are originated by the folding of a continuous membrane. The thickness of the membranes and width of the spaces between the cone sacs is the same as in rod, but the sac innerspace is slightly narrower in the cone (~ 20 A). After fixation in formaldehyde and chromation, two different dense lines (l1 and l2) separated by spaces of less density appear. One of the lines, l1, has a thickness of 70 A and is less dense than the other, l2, which is 30 A thick. The correlation of the patterns obtained with both fixatives is considered and two possible interpretations are given. The possibility that l2 is related to a soluble phospholipid component is discussed. It is suggested that the outer segments have a paracrystallin organization similar to that found in myelin.  相似文献   

4.
The retina of the adult teleost Garra rufa retains a curved, open embryonic fissure indicating an asymmetrical postembryonic retinal growth. Undifferentiated, oval photoreceptors are observed on both sides of the middle of the fissure with their larger diameter running parallel to the fissure to which they may attach by desmosomes. They detach from the fissure, rotate to become perpendicular to it and begin an active process of differentiation as they slide along the temporal side of the outer half of the fissure. This process is divided into stages for simplicity. The photoreceptors develop stumpy inner segments extending into a ventricular space that appears between the retinal pigment epithelium and the photoreceptors. Calycal processes arise from the inner segments and the distal centriole of each photoreceptor forms a connecting cilium. The proximal centriole is retained for some time after the outer segment develops. The formation of rod spherules and cone pedicles takes place almost concomitantly with the outer segments. Double cones appear first as single cones before pairing. One or more of the principal cone mitochondria accumulate electron-dense material and merge to form the ellipsosome. The retinal pigment epithelium undergoes a parallel differentiation. The developmental events described in the present work conform those recorded in embryonic teleostean retinas.  相似文献   

5.
王艺磊  郑微云 《动物学报》1994,40(2):119-124
对真鲷光感受细胞的超微结构进行观察,结果表明:视杆外段膜盘为游离膜盘,视锥外段膜盘则为连续的膜结构,视锥和视杆均含有连接纤毛和辅助外段。花萼状突起起源于内段。椭体内充满线粒体,无球状小体。双锥椭圆体并生膜为六层,视锥内段无鳍状突起,视锥突触带,在明适应视网膜中数量增多,在暗适应视网中数量减少,视杆突触带在这两种适应网膜中数量不变,每一杆小球只有一个突触带,而锥小足有4-6个突触带。  相似文献   

6.
Eukaryotic cells use membrane organelles, like the endoplasmic reticulum or the Golgi, to carry out different functions. Vertebrate rod photoreceptors use hundreds of membrane sacs (the disks) for the detection of light. We have used fluorescent tracers and single cell imaging to study the properties of rod photoreceptor disks. Labeling of intact rod photoreceptors with membrane markers and polar tracers revealed communication between intradiskal and extracellular space. Internalized tracers moved along the length of the rod outer segment, indicating communication between the disks as well. This communication involved the exchange of both membrane and aqueous phase and had a time constant in the order of minutes. The communication pathway uses approximately 2% of the available membrane disk area and does not allow the passage of molecules larger than 10 kDa. It was possible to load the intradiskal space with fluorescent Ca(2+) and pH dyes, which reported an intradiskal Ca(2+) concentration in the order of 1 microM and an acidic pH 6.5, both of them significantly different than intracellular and extracellular Ca(2+) concentrations and pH. The results suggest that the rod photoreceptor disks are not discrete, passive sacs but rather comprise an active cellular organelle. The communication between disks may be important for membrane remodeling as well as for providing access to the intradiskal space of the whole outer segment.  相似文献   

7.
The use of lectin cytochemistry together with proteolytic digestion techniques to partially characterize lectin binding sites of several intracellular compartments in frog photoreceptors was studied. Uniform access of reagents to all intracellular compartments was obtained by performing the experiments directly on semithin sections of retinal tissue embedded in a hydrophilic plastic resin. Protease pretreatment of sections of Xenopus laevis eyecup leads to a loss of wheat germ agglutinin (WGA) binding sites from most of the rod outer segment. Under experimental conditions used here, cone outer segment WGA binding sites are resistant to proteolytic digestion. Another major difference between rod and cone under segments is that rod outer segments are heavily labeled with succinylated WGA, whereas cone outer segments are barely labeled except for a region of intense staining thought to be at the connecting cilium. WGA binding sites in the shed outer segment tip (phagosome) are also relatively resistant to proteolytic digestion, as is the tip region of a few rod outer segments. This difference in lectin binding properties between the bulk of the outer segment membrane and the shed outer segment membrane is the only distinction we have observed between the two compartments in terms of their glycoconjugates. These results may be useful in terms of designing experiments to isolate cone and rod outer segments separately. They indicate that a change in outer segment glycoconjugates may accompany the shedding and phagocytosis events, as previously suggested, but this change does not necessarily involve the addition of saccharides to outer segment glycoproteins.  相似文献   

8.
Mature retinal rod photoreceptors sequester opsin in the disk and plasma membranes of the rod outer segment (ROS). Opsin is synthesized in the inner segment and is transferred to the outer segment along the connecting cilium that joins the two compartments. We have investigated early stages of retinal development during which the polarized distribution of opsin is established in the rod photoreceptor cell. Retinas were isolated from newborn rats, 3-21 d old, and incubated with affinity purified biotinyl-sheep anti-bovine opsin followed by avidin- ferritin. At early postnatal ages prior to the development of the ROS, opsin is labeled by antiopsin on the inner segment plasma membrane. At the fifth postnatal day, as ROS formation begins opsin was detected on the connecting cilium plasma membrane. However, the labeling density of the ciliary plasma membrane was not uniform: the proximal cilium was relatively unlabeled in comparison with the distal cilium and the ROS plasma membrane. In nearly mature rat retinas, opsin was no longer detected on the inner segment plasma membrane. A similar polarized distribution of opsin was also observed in adult human rod photoreceptor cells labeled with the same antibodies. These results suggest that some component(s) of the connecting cilium and its plasma membrane may participate in establishing and maintaining the polarized distribution of opsin.  相似文献   

9.
Cone and rod photoreceptors utilize cyclic guanosine monophosphate (cGMP) in the light regulation of membrane polarization. The prototype for visual transduction is established for rod photoreceptors, which utilize a cascade of reactions to regulate a cyclic nucleotide phosphodiesterase (PDE) (EC 3.1.4.17) and thereby control the intracellular concentration of cGMP. Although cones appear to utilize a comparable cGMP cascade for their phototransduction, evidence exists that the PDE from cone photoreceptors may be different from that of rods. Dissociated cone photoreceptors, isolated retinas, and cone outer segments from the lizard, Anolis carolinensis, have been used to identify and characterize a PDE enzyme complex that shares several features in common with the rod outer segment (ROS) PDE complex. Immunoadsorption and sodium dodecyl sulfate-polyacrylamide gel electrophoresis have identified a subunit of lizard cone PDE that has an apparent electrophoretic mobility of 84 kDa and a subunit of lizard rod PDE that migrates at approximately 90 kDa. The lizard cone PDE complex is similar in size, extraction, activation, and immunological characteristics to the PDE complex of rod photoreceptors from lizard, bovine, and human retinas. The lizard cone PDE complex, and perhaps that from cone photoreceptors in general, differs from that of ROS in its chromatographic properties on anion-exchange resins. The sharing of physical and activation properties of the rod and cone PDE complex is compatible with the phototransduction process occurring by a similar mechanism in both cell types. The differences in light sensitivity and speed of response may be attributable to features of the individual proteins that form the PDE complexes of rods and cones or to other undisclosed features of the respective cascades.  相似文献   

10.
To study precursor-product relationships between cytoplasmic membranes of the inner segment of photoreceptors and the continually renewed outer disc membrane, we have compared the density and size distribution of intramembrane particles (IMP) in various membrane compartments of freeze-fractured photoreceptor inner and outer segments. Both rod and cone outer segments of Xenopus laevis are characterized by a relatively uniform distribution of approximately 4,400-4,700 IMP/micron2 in P-face (PF) leaflets of disc membranes. A similar distribution of IMP is found in the outer segment plasma membrane, the ciliary plasma membrane, and in the plasma membrane of the inner segment in the immediate periciliary region. In each case the size distribution of IMP can be characterized as unimodal with a mean diameter of approximately 10 nm. PF leaflets of endoplasmic reticulum, Golgi complex, and vesicles near the cilium have IMP with a size distribution like that in the cilium and outer segment, but with an average density of approximately 2,000/micron2. In contrast, IMP are smaller in average size (approximately 7.5 nm) in PF leaflets of inner segment plasma membrane, exclusive of the periciliary rgion. The similarity of size distribution of IMP in inner segment cytoplasmic membranes and those within the plasmalemma of the cilium and outer segment suggest a precursor-product relationship between the two systems. The structure of the vesicle-rich periciliary region and the segregation of IMP with different size distributions in this region suggest that components destined for incorporation into the outer segment exist as preformed membrane packages (vesicles) which fuse with the inner segment plasma membrane in the periciliary region. Subsequently, membrane components may be transferred to forming discs of the outer segment via the ciliary plasma membrane.  相似文献   

11.
Summary The ultrastructure of the accessory outer segment (AOS) — a ciliumlike structure emanating from the inner segment and running alongside the outer segment of photoreceptors — is described. The AOS occurs in both rods and cones of Poecilia reticulata. Its ultrastructure, including the arrangement of microtubules, which originate from the ciliary stalk, is the same in rods and cones. The cone-AOS is connected with the outer segment by a thin plasmabridge, whereas the rod-AOS lies embedded within the outer segment. The outer segment of the cone, in contrast to that of the rod, is separated from the pigment epithelium by a large extracellular space. An intimate contact, however, is secured by the AOS; its membrane is closely appositioned to the pigment epithelium membrane. The functional significance of the AOS and its possible occurrence in other vertebrate classes, are discussed.  相似文献   

12.
The fine structure of the retinal photoreceptors has been studied by light and electron microscopy in the southern fiddler ray or guitarfish (Trygonorhina fasciata). The duplex retina of this species contains only rods and single cones in a ratio of about 40:1. No multiple receptors (double cones), no repeating pattern or mosaic of photoreceptors and no retinomotor movements of these photoreceptors were noted. The rods are cylindrical cells with inner and outer segments of the same diameter. Cones are shorter, stouter cells with a conical outer segment and a wider inner segment. Rod outer segment discs display several irregular incisures to give a scalloped outline to the discs while cone outer segment discs have only a single incisure. In all photoreceptors a non-motile cilium joins the inner and outer segments. The inner segment is the synthetic centre of photoreceptors and in this compartment is located an accumulation of mitochondria (the ellipsoid), profiles of both rough and smooth endoplasmic reticulum, prominent Golgi zones and frequent autophagic vacuoles. The nuclei of rods and cones have much the same chromatin pattern but cone nuclei are invariably located against or particularly through the external limiting membrane (ELM). Numerous Landolt's clubs which are ciliated dendrites of bipolar cells as well as Müller cell processes project through the ELM, which is composed of a series of zonulae adherentes between these cells and the photoreceptors. The synaptic region of both rods (spherules) and cones (pedicles) display both invaginated (ribbon) synapses and superficial (conventional) synapses with cones showing more sites than the rods.  相似文献   

13.
中国大鲵视网膜的光镜和扫描电镜研究   总被引:7,自引:0,他引:7  
用光镜和扫描电镜观察了大鲵视网膜各类细胞的形态及分布, 对视细胞和节细胞进行计数。视网腊中三个核层及两个网状层分布均匀,无中央凹。每张视网膜的视细胞总数约130000,节细胞约8000,视杆与视锥之比为8.5:1。扫描电镜下,视杆外节表面的小叶间沟清晰;视杆视锥外节均有从内节伸出的20-30条萼状突起;核周体表面亦有20-30条细胞质突起。文中还报道了幼体视细胞的形态及密度。讨论了上述结构的机能。  相似文献   

14.
Abstract A previous light microscopic study of the retina of Telescopus fallax has showed the presence of three types of photoreceptors: large single cones (type A), large double cones (type B), and small single rods (type D). The present electron microscopic study has demonstrated that the small single rod is a morphological cone characterized by possessing a slightly tapering outer segment and a very extensive zone of continuity between the discs and the plasma membrane of the outer segment.  相似文献   

15.
Due to extensive elaboration of the photoreceptor cilium to form the outer segment, axonemal transport (IFT) in photoreceptors is extraordinarily busy, and retinal degeneration is a component of many ciliopathies. Functional loss of heterotrimeric kinesin-2, a major anterograde IFT motor, causes mislocalized opsin, followed by rapid cell death. Here, we have analyzed the nature of protein mislocalization and the requirements for the death of kinesin-2-mutant rod photoreceptors. Quantitative immuno EM showed that opsin accumulates initially within the inner segment, and then in the plasma membrane. The light-activated movement of arrestin to the outer segment is also impaired, but this defect likely results secondarily from binding to mislocalized opsin. Unlike some other retinal degenerations, neither opsin–arrestin complexes nor photoactivation were necessary for cell loss. In contrast, reduced rod opsin expression provided enhanced rod and cone photoreceptor survival and function, as measured by photoreceptor cell counts, apoptosis assays, and ERG analysis. The cell death incurred by loss of kinesin-2 function was almost completely negated by Rho−/−. Our results indicate that mislocalization of opsin is a major cause of photoreceptor cell death from kinesin-2 dysfunction and demonstrate the importance of accumulating mislocalized protein per se, rather than specific signaling properties of opsin, stemming from photoactivation or arrestin binding.  相似文献   

16.
The morphogenesis of the outer segments of retinal rods was studied mainly in the kitten before the opening of the eye, and the probable sequence of the morphogenetic stages is deduced. Since the development of retinal rods is not synchronous, the deductions were based on observations of many single and serial sections. One centriole extends ciliary tubules of about 0.5 µ long, in the growing primitive cilium. Beyond this length, each ciliary tubule becomes a row of small vesicles (called "ciliary vesicles" in this paper), which penetrate into the distal region of the cilium. Where the ciliary vesicles establish contact with the plasma membrane of the distal region of the cilium, more or less deep infoldings of the plasma membrane are observed. In the distal region can be seen rows of tubular or vesicular structures. A few of these membranous structures are continuous with the bottoms of the infoldings. At the following stage, the infoldings disappear and the ciliary vesicles lose contact with the distal plasma membrane. Nonetheless, the formation of the tubular structures continues in the distal region of the primitive outer segment. The tubular structures appear to be transformed into the primitive rod sacs by sidewise enlargement. At a subsequent time, presumably, these primitive rod sacs flatten and are rearranged into a position perpendicular to the long axis of the outer segment. The detailed structure of the basal body of the connecting cilium was also studied by means of serial sections.  相似文献   

17.
Photoreceptors of cubozoan jellyfish   总被引:8,自引:2,他引:6  
Martin  Vicki J. 《Hydrobiologia》2004,530(1-3):135-144
The anatomically sophisticated visual system of the cubozoan jellyfish Carybdea marsupialis is described. Individual cubomedusae have eight complex eyes, each with a cornea, lens, and retina of ciliated photoreceptor cells, eight slit ocelli, and eight dimple ocelli. The photoreceptor cells of the complex eyes are bipolar and resemble vertebrate rod cells. Each photoreceptor has an outer cylindrical light-receptive segment that projects into a vitreous space that separates the lens and the retina, an inner segment rich in pigment granules, and a basal region housing the nucleus. The outer segment is a modified cilium with a 9 + 2 arrangement of microtubules plus stacks of membrane. These stacks of membrane form numerous discs that are oriented transversely to the long axis of the cell. The outer segment is connected to the inner segment by a slender stalk. The basal end of each photoreceptor forms an axon that projects into an underlying layer of interneurons. Each ocellus is composed of ciliated photoreceptor cells containing pigment granules. Rhodopsin-like and opsin-like proteins are found in the membrane stacks of the outer segments of the photoreceptors of the complex eyes. An ultraviolet-sensing opsin-like protein is present in the inner segments and basal regions of some of the photoreceptors of the complex eyes. Rhodopsin-like proteins are also detected in the photoreceptors of the slit ocelli. The cellular lens, composed of crystallin proteins, shows a paucity of organelles and a high concentration of homogeneous cytoplasm. Neurons expressing RFamide (Arg-Phe-amide) comprise a subset of interneurons found beneath the retinas of the complex eyes. RFamide-positive fibers extend from these neurons into the stalks of the rhopalia, eventually entering into the subumbrellar nerve ring. Vision may play a role in the navigation, feeding, and reproduction of the cubomedusae.  相似文献   

18.
The outer segments of vertebrate rod photoreceptor cells consist of an ordered stack of membrane disks, which, except for a few nascent disks at the base of the outer segment, is surrounded by a separate plasma membrane. Previous studies indicate that the protein, peripherin or peripherin/rds, is localized along the rim of mature disks of rod outer segments. A mutation in the gene for this protein has been reported to be responsible for retinal degeneration in the rds mouse. In the present study, we have shown by immunogold labeling of rat and ground squirrel retinas that peripherin/rds is present in the disk rims of cone outer segments as well as rod outer segments. Additionally, in the basal regions of rod and cone outer segments, where disk morphogenesis occurs, we have found that the distribution of peripherin/rds is restricted to a region that is adjacent to the cilium. Extension of its distribution from the cilium coincides with the formation of the disk rim. These results support the model of disk membrane morphogenesis that predicts rim formation to be a second stage of growth, after the first stage in which the ciliary plasma membrane evaginates to form open nascent disks. The results also indicate how the proteins of the outer segment plasma membrane and the disk membranes are sorted into their separate domains: different sets of proteins may be incorporated into membrane outgrowths during different growth stages of disk morphogenesis. Finally, the presence of peripherin/rds protein in both cone and rod outer segment disks, together with the phenotype of the rds mouse, which is characterized by the failure of both rod and cone outer segment formation, suggest that the same rds gene is expressed in both types of photoreceptor cells.  相似文献   

19.
The organization, morphological characteristics, and synaptic structure of photoreceptors in the adult zebrafish retina were studied using light and electron microscopy. Adult photoreceptors show a typical ordered tier arrangement with rods easily distinguished from cones based on outer segment (OS) morphology. Both rods and cones contain mitochondria within the inner segments (IS), including the large, electron-dense megamitochondria previously described (Kim et al.) Four major ultrastructural differences were observed between zebrafish rods and cones: (1) the membranes of cone lamellar disks showed a wider variety of relationships to the plasma membrane than those of rods, (2) cone pedicles typically had multiple synaptic ribbons, while rod spherules had 1-2 ribbons, (3) synaptic ribbons in rod spherules were ∼2 times longer than ribbons in cone pedicles, and (4) rod spherules had a more electron-dense cytoplasm than cone pedicles. Examination of photoreceptor terminals identified four synaptic relationships at cone pedicles: (1) invaginating contacts postsynaptic to cone ribbons forming dyad, triad, and quadrad synapses, (2) presumed gap junctions connecting adjacent postsynaptic processes invaginating into cone terminals, (3) basal junctions away from synaptic ribbons, and (4) gap junctions between adjacent photoreceptor terminals. More vitread and slightly farther removed from photoreceptor terminals, extracellular microtubule-like structures were identified in association with presumed horizontal cell processes in the OPL. These findings, the first to document the ultrastructure of the distal retina in adult zebrafish, indicate that zebrafish photoreceptors have many characteristics similar to other species, further supporting the use of zebrafish as a model for the vertebrate visual system.  相似文献   

20.
The morphogenesis of the visual cells in the retina of DBA normal mice and in C3H mice having a genetic distrophy has been studied with the electron microscope. The stages of development previously described (3) have been confirmed. Two basal centrioles have been observed and an asymmetrical process of invagination of the surface membrane is recognized as the main source of the rod sacs in the outer segment. In the C3H mice the differentiation of the photoreceptors starts and reaches a certain stage but very early some alterations in the morphogenesis are observed. In the outer segment there appears a disorganized growth of membranous material that may invade the inner segment with disappearance of the normal connecting cilium. In the inner segment there is an increase of vesicular material and in the number of dense particles. In later stages the entire inner segment is filled with dense particles and the mitochondria degenerate. The synaptic junction with the bipolar cell, which reaches a certain degree of development, also shows early signs of degeneration. The observations reported have confirmed and extended the concept that the hereditary visual alterations of C3H mice are not the result of a primary arrested development but of a secondary alteration of the differentiating photoreceptor. In C3H mice the entire process of morphogenesis is disordered and leads to final involution and death. These findings are correlated with recent biochemical findings and are discussed with relation to the genetic mechanisms that may control normal morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号