首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neres J  Wilson DJ  Celia L  Beck BJ  Aldrich CC 《Biochemistry》2008,47(45):11735-11749
The design and synthesis of a fluorescent probe Fl-Sal-AMS 6 based on the tight-binding inhibitor 5'- O-[ N-(salicyl)sulfamoyl]adenosine (Sal-AMS) is described for the aryl acid adenylating enzymes (AAAEs) known as MbtA, YbtE, EntE, VibE, DhbE, and BasE involved in siderophore biosynthesis from Mycobacterium tuberculosis, Yersinia pestis, Escherichia coli, Vibrio cholerae, Bacillus subtilis, and Acinetobacter baumannii, respectively. The probe was successfully used to develop a fluorescence polarization assay for these six AAAEs, and equilibrium dissociation constants were determined in direct binding experiments. Fl-Sal-AMS was effective for AAAEs that utilize salicylic acid or 2,3-dihydroxybenzoic acid as native substrates, with dissociation constants ranging from 9-369 nM, but was ineffective for AsbC, the AAAE from Bacillus anthracis, which activates 3,4-dihydroxybenzoic acid. Competitive binding experiments using a series of ligands including substrates, reaction products, and inhibitors provided the first comparative structure-activity relationships for AAAEs. The fluorescence polarization assay was then miniaturized to a 384-well plate format, and high-throughput screening was performed at the National Screening Laboratory for the Regional Centers of Excellence in Biodefense and Emerging Infectious Diseases (NSRB) against BasE, an AAAE from Acinetobacter baumannii involved in production of the siderophore acinetobactin. Several small molecule inhibitors with new chemotypes were identified, and compound 23 containing a pyrazolo[5,4- a]pyridine scaffold emerged as the most promising ligand with a K D of 78 nM, which was independently confirmed by isothermal calorimetry, and inhibition was also verified in an ATP-[ (32)P]-pyrophosphate exchange steady-state kinetic assay.  相似文献   

2.
Bacillus subtilis was reported to produce the catecholic siderophore itoic acid (2,3-dihydroxybenzoate (DHB)-glycine) in response to iron deprivation. However, by inspecting the DNA sequences of the genes dhbE, dhbB, and dhbF as annotated by the B. subtilis genome project to encode the synthetase complex for the siderophore assembly, various sequence errors within the dhbF gene were predicted and confirmed by re-sequencing. According to the corrected sequence, dhbF encodes a dimodular instead of a monomodular nonribosomal peptide synthetase. We have heterologously expressed, purified, and assayed the substrate selectivity of the recombinant proteins DhbB, DhbE, and DhbF. DhbE, a stand-alone adenylation domain of 59.9 kDa, activates, in an ATP-dependent reaction, DHB, which is subsequently transferred to the free thiol group of the cofactor phosphopantetheine of the bifunctional isochorismate lyase/aryl carrier protein DhbB. The third synthetase, DhbF, is a dimodular nonribosomal peptide synthetase of 264 kDa that specifically adenylates threonine and, to a lesser extent, glycine and that covalently loads both amino acids onto their corresponding peptidyl carrier domains. To functionally link the dhb gene cluster to siderophore synthesis, we have disrupted the dhbF gene. Comparative mass spectrometric analysis of culture extracts from both the wild type and the dhbF mutant led to the identification of a mass peak at m/z 881 ([M-H](1-)) that corresponds to a cyclic trimeric ester of DHB-glycine-threonine.  相似文献   

3.
Fu H  Han B  Zhao YF  Tu GZ  Xu L  Lu Q  Wang JZ  Xiao HZ 《Bioorganic chemistry》2003,31(2):122-128
Amino acid-nucleotide conjugates have important biological functions and therapeutic applications. For example, aminoacyl adenylates are key intermediates in aminoacyl tRNA synthetase reactions. They may also be involved in the prebiotic synthesis of polypeptides. Finally, various amino acid carbomethoxy aryl phosphoramidates of nucleotide prodrugs may be activated through a mechanism involving a pentacoordinated phosphorane intermediates. In order to understand better the chemistry of these compounds, a phenylalanyl adenylate pentacoodinated phosphorane has been synthesized in 72% yield and its decomposition in aqueous solution studied. Hydrolysis gave 2('),3(')-O-isopropylidene adenosine 5(')-monophosphate, 2('),3(')-O-isopropylidene adenosine, and phenylalanine. The results provide model chemistry for the enzymatic degradation mechanism of antiviral aryl amino acid phosphodiester amidates in cells, which leads to their activation.  相似文献   

4.
The biosynthesis of fatty acids from [l-14C]-acetate in the chicken liver slicesin vitro was inhibited by cAMP, adenosine, 5′-AMP, 3′-AMP, ATP, NAD and FAD but not by adenine, guanine or inosine. The minimum structural requirement for inhibition appears to be adenosine. The inhibitory action of adenosine, 5′-AMP and NAD on fatty acid synthesis is likely to be mediated by adenosine or its metabolites since adenosine deaminase reverses the inhibition while it has no effect on the inhibition by cAMP; thus, the inhibitory effect of cAMP is probably not mediated through its hydrolysis products, 5′-AMP, or adenosine.  相似文献   

5.
The synthesis of platelet activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) was studied in rabbit peritoneal polymorphonuclear neutrophils. Upon stimulation with ionophore A23187 and Ca2+, these cells are able to incorporate [3H]acetate or 1-O-[3H]alkyl-2-lyso-sn-glycero-3-phosphocholine into platelet activating factor. Under the same incubation conditions, however, the cells do not synthesize platelet activating factor from [14C]hexadecanol, which is an immediate precursor of O-alkyl chains in the de novo pathway. In the absence of ionophore, [14C] hexadecanol is incorporated into 1-O-alkyl-2-acyl-sn-glycerol-3-phosphate and subsequently into the 1-O-alkyl-linked choline and ethanolamine phosphoglyceride pools. However, in the presence of ionophore, [14C] hexadecanol incorporation is limited to phosphatidic acid, perhaps due to the inhibition of choline phosphotransferase. These findings provide strong evidence that platelet activating factor is synthesized by a deacylation-reacylation mechanism. Upon stimulation, these cells can utilize both plausible substrates of this pathway to make the final product, while under the same conditions it appears that a key step of the de novo pathway is inhibited.  相似文献   

6.
The cellular mechanisms responsible for the lipoprotein-mediated stimulation of bile acid synthesis in cultured rat hepatocytes were investigated. Adding 280 micrograms/ml of cholesterol in the form of human or rat low density lipoprotein (LDL) to the culture medium increased bile acid synthesis by 1.8- and 1.6-fold, respectively. As a result of the uptake of LDL, the synthesis of [14C]cholesterol from [2-14C]acetate was decreased and cellular cholesteryl ester mass was increased. Further studies demonstrated that rat apoE-free LDL and apoE-rich high density lipoprotein (HDL) both stimulated bile acid synthesis 1.5-fold, as well as inhibited the formation of [14C]cholesterol from [2-14C]acetate. Reductive methylation of LDL blocked the inhibition of cholesterol synthesis, as well as the stimulation of bile acid synthesis, suggesting that these processes require receptor-mediated uptake. To identify the receptors responsible, competitive binding studies using 125I-labeled apoE-free LDL and 125I-labeled apoE-rich HDL were performed. Both apoE-free LDL and apoE-rich HDL displayed an equal ability to compete for binding of the other, suggesting that a receptor or a group of receptors that recognizes both apolipoproteins is involved. Additional studies show that hepatocytes from cholestyramine-treated rats displayed 2.2- and 3.4-fold increases in the binding of apoE-free LDL and apoE-rich HDL, respectively. These data show for the first time that receptor-mediated uptake of LDL by the liver is intimately linked to processes activating bile acid synthesis.  相似文献   

7.
A variety of arachidonic acid metabolites possess the ability to modulate immune cell function. Various inhibitors of arachidonic acid metabolism were compared with regard to their effects on T-suppressor (Ts) cell function. Using staphylococcal enterotoxin B (SEB) to activate Lyt-2+ Ts cells, it was shown that indomethacin and 5,8,11,14-eicosatetraynoic acid (ETYA) inhibit the induction phase, but not the expression phase, of suppressor cell activity. Agents which inhibit thromboxane synthetase or lipoxygenase activities (imidazole, nordihydroguaiaretic acid, and pyrogallol) were not found to affect Ts cell induction. Since inhibitors of prostaglandin synthesis are thought to induce lower levels of cyclic adenosine monophosphate, an attempt to overcome the indomethacin inhibition of Ts cell induction by modulating cyclic adenosine monophosphate levels was made. It was found that theophylline and isoproterenol are not able to overcome the inhibition by indomethacin of Ts cell activity. These results strongly suggest that induction of Ts cells by SEB is dependent on the synthesis of products of the prostaglandin synthetase pathway.  相似文献   

8.
Effects of octanoate and acetate upon hepatic glycolysis and lipogenesis   总被引:1,自引:0,他引:1  
Octanoate and N6,O2'-dibutyryl adenosine 3',5'-monophosphate (dibutyryl cyclic AMP) cause a marked inhibition of net glucose utilization and lactate and pyruvate accumulation by hepatocytes isolated from meal-fed rats. Acetate is much less effective as an inhibitor of glycolysis. Fatty acid synthesis, as measured by tritiated water incorporation, is inhibited by dibutyryl cyclic AMP, whereas it is stimulated by 10 mM acetate and 1 mM octanoate. Stimulation of fatty acid synthesis by 1 mM octanoate, however, is lost paradoxically at higher concentrations of octanoate. Rates of fatty acid synthesis estimated by [1-14C]octanoate incorporation were consistently higher than rates calculated on the basis of tritiated water incorporation, raising the question as to which is the better index of the rate of de novo fatty acid synthesis. The effects of octanoate were studied because it was reasoned that this fatty acid should not inhibit acetyl-CoA carboxylase but should inhibit glycolysis and supply acetyl-CoA for lipogenesis. This was found to be the case, proving that glycolytic activity is not necessary for rapid rates of de novo fatty acid synthesis by liver.  相似文献   

9.
The synthesis and structure-activity relationship of a series of 6,7-disubstituted 4-aminopyrido[2,3-d]pyrimidines as novel non-nucleoside adenosine kinase inhibitors is described. A variety of substituents, primarily aryl, at the C6 and C7 positions of the pyridopyrimidine core were found to yield analogues that are potent inhibitors of adenosine kinase. In contrast to the 5,7-disubstituted and 5,6,7-trisubstituted pyridopyrimidine series, these analogues exhibited only modest potency to inhibit AK in intact cells.  相似文献   

10.
Goat mammary-gland microsomal fraction by itself induces synthesis of medium-chain-length fatty acids by goat mammary fatty acid synthetase and incorporates short- and medium-chain fatty acids into triacylglycerol. Addition of ATP in the absence or presence of Mg2+ totally inhibits triacylglycerol synthesis from short- and medium-chain fatty acids, and severely inhibits synthesis de novo of medium-chain fatty acids. The inhibition by ATP of fatty acid synthesis and triacylglycerol synthesis de novo can be relieved by glycerol 3-phosphate. The effect of ATP could not be mimicked by the non-hydrolysable ATP analogue, adenosine 5'-[beta,gamma-methylene]triphosphate and could not be shown to be caused by inhibition of the diacylglycerol acyltransferase by a phosphorylation reaction. Possible explanations for the mechanism of the inhibition by ATP are discussed, and a hypothetical model for its action is outlined.  相似文献   

11.
Glucagon and N,(6)O(2)-dibutyryl cyclic adenosine 3',5'-cyclic monophosphate (Bt(2)cAMP) inhibit fatty acid synthesis from acetate by more than 90% and prevent citrate formation in chick hepatocytes metabolizing glucose. With substrates that enter glycolysis at or below triose-phosphates, e.g., fructose, lactate, or pyruvate, Bt(2)cAMP has no effect on the citrate level and its inhibitory effect on fatty acid synthesis is substantially reversed. Because acetyl-CoA carboxylase requires a tricarboxylic acid activator for activity, it is proposed that regulation of fatty acid synthesis by Bt(2)cAMP is due, in part, to changes in the citrate level. Reduced citrate formation appears to result from a cAMP-induced inhibition of glycolysis. Bt(2)cAMP inhibits (14)CO(2) production from [1-(14)C]-, [6-(14)C]-, and [U-(14)C]glucose and has little effect on (14)CO(2) formation from [1-(14)C]- or [2-(14)C]pyruvate or from [1-(14)C]fructose. [(14)C]Lactate formation from glucose is depressed 50% by Bt(2)cAMP. In the presence of an inhibitor of mitochondrial pyruvate transport lactate accumulation is enhanced, but continues to be lowered 50% by Bt(2)cAMP. The activity of phosphofructokinase is greatly decreased in Bt(2)cAMP-treated cells while the activities of pyruvate kinase and acetyl-CoA carboxylase are unaffected. It appears that decreased glycolytic flux and decreased citrate formation result from depressed phosphofructokinase activity. Fatty acid synthesis from [(14)C]acetate is partially inhibited by Bt(2)cAMP in the presence of fructose, lactate, and pyruvate despite a high citrate level. Incorporation of [(14)C]fructose, [(14)C]pyruvate, or [(14)C]lactate into fatty acids is similarly depressed by Bt(2)cAMP. Synthesis of cholesterol from [(14)C]acetate or [2-(14)C]pyruvate is unaffected by Bt(2)cAMP. These results implicate a second site of inhibition of fatty acid synthesis by Bt(2)cAMP that involves the utilization, but not the production, of cytoplasmic acetyl-CoA.-Clarke, S. D., P. A. Watkins, and M. D. Lane. Acute control of fatty acid synthesis by cyclic AMP in the chick liver cell: possible site of inhibition of citrate formation.  相似文献   

12.
Transient inhibition of catabolic enzyme synthesis in Escherichia coli occurred when a low concentration of 2,4-dinitrophenol (DNP) was simultaneously added with inducer. Using mutant strains defective for gamma-gene product or constitutive for lac enzymes, it was found that the inhibition is not due to the exclusion of inducer by uncoupling. The addition of cyclic adenosine 3',5'-monophosphate overcame repression. The components of the lac operon coordinately responded to DNP inhibition. From deoxyribonucleic acid-ribonucleic acid hybridization experiments, it was found that the inhibition of beta-galactosidase induction occurred at the level of messenger ribonucleic acid synthesis specific for the lac operon. It seems probable that DNP represses induction in a similar manner to that of transient repression observed upon the addition of glucose. Furthermore, it was found that transient repression disappeared if cells were preincubated with DNP before induction. This indicates that new contact of cells with DNP is obligatory for transient repression. From these results, it is suggested that the cell membrane may be responsible for regulation of catabolite-sensitive enzyme synthesis.  相似文献   

13.
We have previously shown that extracellular ATP acts as a mitogen via protein kinase C (PKC)-dependent and independent pathways (Wang, D., Huang, N., Gonzalez, F.A., and Heppel, L.A. Multiple signal transduction pathways lead to extracellular ATP-stimulated mitogenesis in mammalian cells. I. Involvement of protein kinase C-dependent and independent pathways in the mitogenic response of mammalian cells to extracellular ATP. J. Cell. Physiol., 1991). The present aim was to determine if metabolism of arachidonic acid, resulting in prostaglandin E2 (PGE2) synthesis and elevation of cAMP levels, plays a role in mitogenesis mediated by extracellular ATP. Addition of ATP caused a marked enhancement of cyclic AMP accumulation in 3T3, 3T6, and A431 cells. Aminophylline, an antagonist of the adenosine A2 receptor, had no effect on the accumulation of cyclic AMP elicited by ATP, while it inhibited the action of adenosine. The accumulation of cyclic AMP was concentration dependent, which corresponds to the stimulation of DNA synthesis by ATP. The maximal accumulation was achieved after 45 min, with an initial delay period of about 15 min. That the activation of arachidonic acid metabolism contributed to cyclic AMP accumulation and mitogenesis stimulated by ATP in 3T3, 3T6, and A431 cells was supported by the following observations: (a) extracellular ATP stimulated the release of [3H]arachidonic acid and PGE2 into the medium; (b) inhibition of arachidonic acid release by inhibitors of phospholipase A2 blocked PGE2 production, cyclic AMP accumulation, and DNA synthesis activated by ATP, and this inhibition could be reversed by adding exogenous arachidonic acid; (c) cyclooxygenase inhibitors, such as indomethacin and aspirin, diminished the release of PGE2 and blocked cyclic AMP accumulation as well as [3H]thymidine incorporation in response to ATP; (d) PGE2 was able to restore [3H]thymidine incorporation when added together with ATP in the presence of cyclooxygenase inhibitors; (e) pertussis toxin inhibited ATP-stimulated DNA synthesis in a time- and dose-dependent fashion as well as arachidonic acid release and PGE2 formation. Other evidence for involvement of a pertussis toxin-sensitive G protein(s) in ATP-stimulated DNA synthesis as well as in arachidonic acid release is presented. In A431 cells, the enhancement of arachidonic acid and cyclic AMP accumulation by ATP was partially blocked by PKC down-regulation, implying that the activation of PKC may represent an additional pathway in ATP-stimulated metabolism of arachidonic acid. In all of these studies, ADP and AMP-PNP, but not adenosine, were as active as ATP.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
The biosynthesis of phosphatidylcholine in rat liver microsomal preparations catalysed by CDP-choline-1,2-diacylglycerol cholinephosphotransferase (EC 2.7.8.2) was inhibited by a combination of ATP and CoA or ATP and pantetheine. ATP alone at high concentrations (20 mM) inhibits phosphatidylcholine formation to the extent of 70%. In the presence of 0.1 mM-CoA, ATP (2 mM) inhibits to the extent of 80% and in the presence of 1 mM-pantetheine to the extent of 90%. ADP and other nucleotide triphosphates in combination with either CoA or pantetheine are only 10-30% as effective in inhibiting phosphatidylcholine synthesis. AMP(CH2)PP [adenosine 5'-(alphabeta-methylene)triphosphate] together with CoA inhibits to the extent of 59% and with pantetheine by 48%. AMP-P(CH2)P [adenosine 5'-(betagamma-methylene)triphosphate] together with either CoA or pantetheine had no significant effect on phosphatidylcholine formation. Other closely related derivatives of pantothenic acid were without effect either alone or in the presence of ATP, as were thiol compounds such as cysteine, homocysteine, cysteamine, dithiothreitol and glutathione. Several mechanisms by which this inhibition might take place were ruled out and it is concluded that ATP together with either CoA or pantetheine interacts reversibly with phosphatidylcholine synthetase to cause temporarily the inhibition of phosphatidylcholine formation.  相似文献   

15.
Z Suo  C T Walsh  D A Miller 《Biochemistry》1999,38(42):14023-14035
The six-domain, 2035-amino acid subunit high-molecular weight protein 2 (HMWP2) activates salicylate and two cysteines and loads them covalently on its three carrier protein domains during assembly of the iron-chelating virulence factor, yersiniabactin of the plague bacterium Yersinia pestis. The 1-1382 fragment of HMWP2 (ArCP-Cy1-A), overproduced in Escherichia coli, contains the first three domains: the aryl carrier protein (ArCP) domain, the cysteine specific adenylation domain (A), and the first condensation/cyclization domain (Cy1). The ArCP can be posttranslationally phosphopantetheinylated on Ser52 and then loaded with a salicyl group on the phosphopantetheine (Ppant) thiol by action of the YbtE, a salicyl-AMP ligase. The HMWP2 1-1382 fragment can activate L-cysteine as Cys-AMP. The HMWP2 1383-2035 fragment contains the remaining three domains: two peptidyl carrier proteins (PCP1 and PCP2) separated by a second condensation/cyclization domain (Cy2). Phosphopantetheinylation of the HMWP2 1383-2035 fragment at Ser1439 (PCP1) and Ser1977 (PCP2) facilitates cysteinylation of both thiols by HMWP2 1-1382. When the holo 1-1382 and bis-holo 1383-2035 protein fragments are mixed with ATP, salicylate, and cysteine, four products are slowly released [salicylcysteine (Sal-Cys), (hydroxyphenylthiazolinyl)cysteine (HPT-Cys), HPT-Cys-Cys, and the bisheterocyclic HPTT-Cys], reflecting thiolytic rerouting by cysteine in solution of elongating acyl-S-enzyme intermediates tethered at ArCP, PCP1, and PCP2 carrier protein domains, respectively. Conducting the in trans reconstitution with the S1439A mutant of HMWP2 1383-2035 releases only Sal-Cys, while the S1977A mutant leads to HPT-Cys formation but not HPT-Cys-Cys or HPTT-Cys. These results suggest localization of particular acyl-S-enzyme intermediates to each of the three carrier protein regions and also establish the sequential action of Cy1 and Cy2, with the latter producing the tandem 4,2-bisheterocyclic hydroxyphenylthiazolinylthiazolinyl (HPTT) moiety characteristic of this class of siderophores.  相似文献   

16.
Adenosine is a renal vasoconstrictor that plays an important role in mediating renal adaptive responses to decreases in renal perfusion pressure. It is known that adenosine acts on the metabolism of arachidonic acid, but the direct repercussions of adenosine in the production of renal prostaglandins and leukotrienes have not been studied. This study was undertaken to evaluate the effect of the intrarenal infusion of adenosine upon the urinary elimination of arachidonic acid derivatives. Samples of urine were collected with lysine acetylsalicylate and determination of prostaglandins (PGs) and leukotrienes (LTs) was performed by radioimmunoassay of samples previously separated by HPLC. The infusion of adenosine decreases the urinary excretion of 6-keto-PGF1 alpha and TxB2 significantly. There was no significant change in urinary excretion of PGE2 while LTB4 and LTC4 showed a tendency to increase. These results suggest that a fall in the synthesis of PGI2 along with an increase in LTC4, which is a constrictor of mesangial cells, could be responsible for the renal vasoconstriction phase of adenosine. Therefore, it was concluded that adenosine vasoconstriction is mediated through the inhibition of the cyclo-oxygenase pathway, diminishing the synthesis of PG vasodilators.  相似文献   

17.
At a concentration of 9.6 x 10(-5)M, 2,6-diaminopurine (DAP) completely inhibited cell enlargement, cell division, and DNA synthesis (determined by microphotometric measurement of Feulgen dye) in Vicia faba roots. Inhibition of cell enlargement was partially reversed by adenine, guanine, xanthine, adenosine, and desoxyadenosine. Guanine and the nucleosides gave the greatest reversal, suggesting that one point of DAP action upon cell enlargement is a disruption of nucleoside or nucleotide metabolism, possibly during pentosenucleic acid synthesis. DAP inhibited cell division by preventing onset of prophase. At the concentrations used it had no significant effect on the rate or appearance of mitoses in progress. Inhibition of entrance into prophase was not directly due to inhibition of DNA synthesis since approximately half of the inhibited nuclei had the doubled (4C) amount of DNA. Adenine competitively reversed DAP inhibition of cell division, giving an inhibition index of about 0.5. Guanine gave a slight reversal while xanthine, hypoxanthine, adenosine, and desoxyadenosine were inactive. A basic need for free adenine for the onset of mitosis was suggested by this reversal pattern. Meristems treated with DAP contained almost no nuclei with intermediate amounts of DNA, indicating that DAP prevented the onset of DNA synthesis while allowing that underway to reach completion. The inhibition of DNA synthesis was reversed by adenine, adenosine, and desoxyadenosine although synthesis appeared to proceed at a slower rate in reversals than in controls. Inhibition of DNA synthesis by DAP is probably through nucleoside or nucleotide metabolism. A small general depression of DNA content of nuclei in the reversal treatments was observed. This deviation from DNA "constancy" cannot be adequately explained at present although it may be a result of direct incorporation of DAP into DNA. The possible purine precursor, 4-amino-5-imidazolecarboxamide gave no reversal of DAP inhibition of cell elongation and cell division and only a slight possible reversal of inhibition of DNA synthesis.  相似文献   

18.
The nucleolar precursor bodies (NPBs) are electrondense, homogeneous, and finely filamentous intranuclear structures occurring in mammalian zygotes during the early postfertilization development and subsequently transforming into nucleoli. In this study we addressed the question if the assembly of the NPBs is correlated with adenosine incorporation into the pro-nuclear chromatin, an event previously reported to precede the beginning of the pronuclear DNA synthetic phase and suggested to reflect an early pronuclear RNA synthesis. The degree of polyspermy was manipulated artificially, and the effects of the resulting changes in the nucleocytoplasmic ratio on adenosine incorporation and the NPB assembly were analyzed using a quantitative autoradiographic examination. The NPB assembly occurred only in pronuclei which incorporated [3H]-adenosine. This [3H]adenosine labeling of pronuclei was not due to DNA replication, but it could be removed by treatment of egg sections with hot trichloracetic acid before autoradiography, a method which quantitatively extracts nucleic acids. With increasing nucleocytoplasmic ratio, the capacity of developing pronuclei to incorporate adenosine was lost progressively and this phenomenon was closely correlated with impairment of the NPB assembly. These findings suggest that an early pronuclear RNA synthesis is required for the development of the NPBs.  相似文献   

19.
J Toner-Webb  S S Taylor 《Biochemistry》1987,26(23):7371-7378
The hydrophobic carbodiimide dicyclohexylcarbodiimide (DCCD) has been shown to inhibit the catalytic (C) subunit of adenosine cyclic 3',5'-phosphate dependent protein kinase (EC 2.7.1.3) in a time-dependent, irreversible manner. The rate of inactivation was first order and showed saturation kinetics with an apparent Ki of 60 microM. Magnesium adenosine 5'-triphosphate (MgATP) was capable of protecting against this inhibition, whereas neither a synthetic peptide substrate nor histone afforded protection. Mg alone afforded some protection. When the catalytic subunit was aggregated with the regulatory subunit in the holoenzyme complex, no inhibition was observed. The inhibition was enhanced at low pH, suggesting that a carboxylic acid group was the target for interaction with DCCD. On the basis of the protection studies, it is most likely that this carboxylic acid group is associated with the MgATP binding site, perhaps serving as a ligand for the metal. Efforts to identify the site that was modified by DCCD included (1) modification with [14C]DCCD, (2) modification by DCCD in the presence of [3H]aniline, and (3) modification with DCCD and [14C]glycine ethyl ester. In no case was radioactivity incorporated into the protein, suggesting that the irreversible inhibition was due to an intramolecular cross-link between a reactive carboxylic acid group and a nearby amino group. Differential peptide mapping identified a single peptide that was consistently lost as a consequence of DCCD inhibition. This peptide (residues 166-189) contained four carboxylic acid residues as well as an internal Lys.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Abstract: We have investigated the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultured chick amacrine-like neurons. The release of [3H]ACh evoked by 50 m M KCl was mostly Ca2+ dependent, and it was increased in the presence of adenosine deaminase and in the presence of 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), an adenosine A1 receptor antagonist. The effect of adenosine on [3H]ACh release was sensitive to pertussis toxin (PTX) and was due to a selective inhibition of N-type Ca2+ channels. Ligand binding studies using [3H]DPCPX confirmed the presence of adenosine A1 receptors in the preparation. Using specific inhibitors of the plasma membrane adenosine carriers and of the ectonucleotidases, we found that the extracellular accumulation of adenosine in response to KCl depolarization was due to the release of endogenous adenosine per se and to the extracellular conversion of released nucleotides into adenosine. Activation of adenosine A1 receptors was without effect on the intracellular levels of cyclic AMP under depolarizing conditions, but it inhibited the accumulation of inositol phosphates. Our results indicate that in cultured amacrine-like neurons, the Ca2+-dependent release of [3H]ACh evoked by KCl is under tonic inhibition by adenosine, which activates A1 receptors. The effect of adenosine on the [3H]ACh release may be due to a direct inhibition of N-type Ca2+ channels and/or secondary to the inhibition of phospholipase C and involves the activation of PTX-sensitive G proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号