首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Through its interactions with proteins and proteoglycans, thrombospondin-1 (TSP-1) functions at the interface of the cell membrane and the extracellular matrix to regulate matrix structure and cellular phenotype. We have previously determined the structure of the high affinity heparin-binding domain of TSP-1, designated TSPN-1, in association with the synthetic heparin, Arixtra. To establish that the binding of TSPN-1 to Arixtra is representative of the association with naturally occurring heparins, we have determined the structures of TSPN-1 in complex with heparin oligosaccharides containing eight (dp8) and ten (dp10) subunits, by x-ray crystallography. We have found that dp8 and dp10 bind to TSPN-1 in a manner similar to Arixtra and that dp8 and dp10 induce the formation of trans and cis TSPN-1 dimers, respectively. In silico docking calculations partnered with our crystal structures support the importance of arginine residues in positions 29, 42, and 77 in binding sulfate groups of the dp8 and dp10 forms of heparin. The ability of several TSPN-1 domains to bind to glycosaminoglycans simultaneously probably increases the affinity of binding through multivalent interactions. The formation of cis and trans dimers of the TSPN-1 domain with relatively short segments of heparin further enhances the ability of TSP-1 to participate in high affinity binding to glycosaminoglycans. Dimer formation may also involve TSPN-1 domains from two separate TSP-1 molecules. This association would enable glycosaminoglycans to cluster TSP-1.  相似文献   

2.
3.
We recently found that leukocytes from thrombospondin-1 (TSP1)-deficient mice exhibit significant reductions in cell surface CD44 relative to those from wild type mice. Because TSG-6 modulates CD44-mediated cellular interactions with hyaluronan, we examined the possibility that TSP1 interacts with TSG-6. We showed that recombinant full-length human TSG-6 (TSG-6Q) and the Link module of TSG-6 (Link_TSG6) bind 125I-TSP1 with comparable affinities. Trimeric recombinant constructs containing the N-modules of TSP1 or TSP2 inhibit binding of TSP1 to TSG-6Q and Link_TSG6, but other recombinant regions of TSP1 do not. Therefore, the N-modules of both TSP1 and TSP2 specifically recognize the Link module of TSG-6. Heparin, which binds to these domains of both proteins, strongly inhibits binding of TSP1 to Link_TSG6 and TSG-6Q, but hyaluronan does not. Inhibition by heparin results from its binding to TSP1, because heparin also inhibits TSP1 binding to Link_TSG6 mutants deficient in heparin binding. Removal of bound Ca2+ from TSP1 reduces its binding to full-length TSG-6. Binding of TSP1 to Link_TSG6, however, is enhanced by chelating divalent cations. In contrast, divalent cations do not influence binding of the N-terminal region of TSP1 to TSG-6Q. This implies that divalent cation dependence is due to conformational effects of calcium-binding to the C-terminal domains of TSP1. TSP1 enhances covalent modification of the inter-alpha-trypsin inhibitor by TSG-6 and transfer of its heavy chains to hyaluronan, suggesting a physiological function of TSP1 binding to TSG-6 in regulation of hyaluronan metabolism at sites of inflammation.  相似文献   

4.
5.
Apolipoprotein E (apoE) is an important lipid-transport protein in human plasma and brain. It has three common isoforms (apoE2, apoE3, and apoE4). ApoE is a major genetic risk factor in heart disease and in neurodegenerative disease, including Alzheimer's disease. The interaction of apoE with heparan sulfate proteoglycans plays an important role in lipoprotein remnant uptake and likely in atherogenesis and Alzheimer's disease. Here we report our studies of the interaction of the N-terminal domain of apoE4 (residues 1-191), which contains the major heparin-binding site, with an enzymatically prepared heparin oligosaccharide. Identified by its high affinity for the N-terminal domain of apoE4, this oligosaccharide was determined to be an octasaccharide of the structure DeltaUAp2S(1-->[4)-alpha-D-GlcNpS6S(1-->4)-alpha-L-IdoAp2S(1-->](3)4)-alpha-D-GlcNpS6S by nuclear magnetic resonance spectroscopy, capillary electrophoresis, and polyacrylamide gel electrophoresis. Kinetic analysis of the interaction between the N-terminal apoE4 fragment and immobilized heparin by surface plasmon resonance yielded a K(d) of 150 nM. A similar binding constant (K(d) = 140 nM) was observed for the interaction between immobilized N-terminal apoE4 and the octasaccharide. Isothermal titration calorimetry revealed a K(d) of 75 nM for the interaction of the N-terminal apoE fragment and the octasaccharide with a binding stoichiometry of approximately 1:1. Using previous studies and molecular modeling, we propose a binding site for this octasaccharide in a basic residue-rich region of helix 4 of the N-terminal fragment. From the X-ray crystal structure of the N-terminal apoE4, we predicted that binding of the octasaccharide at this site would result in a change in intrinsic fluorescence. This prediction was confirmed experimentally by an observed increase in fluorescence intensity with octasaccharide binding corresponding to a K(d) of approximately 1 microM.  相似文献   

6.
In addition to its recognition by alpha3beta1 and alpha4beta1 integrins, the N-terminal pentraxin module of thrombospondin-1 is a ligand for alpha6beta1 integrin. alpha6beta1 integrin mediates adhesion of human microvascular endothelial and HT-1080 fibrosarcoma cells to immobilized thrombospondin-1 and recombinant N-terminal regions of thrombospondin-1 and thrombospondin-2. alpha6beta1 also mediates chemotaxis of microvascular cells to thrombospondin-1 and thrombospondin-2. Using synthetic peptides, LALERKDHSG was identified as an alpha6beta1-binding sequence in thrombospondin-1. This peptide inhibited alpha6beta1-dependent cell adhesion to thrombospondin-1, thrombospondin-2, and the E8 fragment of murine laminin-1. The Glu residue in this peptide was required for activity, and the corresponding residue (Glu90) in the N-terminal module of thrombospondin-1 was required for its recognition by alpha6beta1, but not by alpha4beta1. alpha6beta1 was also expressed in human umbilical vein endothelial cells; but in these cells, only certain agonists could activate the integrin to recognize thrombospondins. Selective activation of alpha6beta1 integrin in microvascular endothelial cells by the anti-beta1 antibody TS2/16 therefore accounts for their adhesion responses to thrombospondins and explains the distinct functions of alpha4beta1 and alpha6beta1 integrins as thrombospondin receptors in microvascular and large vessel endothelial cells.  相似文献   

7.
Thrombospondin-1 (TSP-1) is an extracellular matrix protein that modulates focal adhesion in mammalian cells and exhibits dual roles in angiogenesis. In a previous work, we showed that a recombinant 18 kDa protein encompassing the N-terminal residues 1-174 of human TSP-1 (TSP18) induced tubulogenesis of human umbilical vein endothelial cells and protected them from apoptosis. Our results indicated that these effects were possibly mediated by syndecan-4 proteoglycan, since binding of TSP18 to endothelial extracts was inhibited by anti-syndecan-4 antibody. Syndecan-4 is a heparan-sulfate proteoglycan that regulates cell-matrix interactions and is the only member of its family present in focal adhesions. In this report, we demonstrate that a monoclonal antibody against syndecan-4 blocks TSP18-induced tubulogenesis. Furthermore, through 2D adhesion and 3D angiogenic assays, we demonstrate that two sequences, TSP Hep I and II, retain the major pro-angiogenic activity of TSP18. These TSP-1 motifs also compete with the fibronectin Hep II domain for binding to syndecan-4 on endothelial cell surface, indicating that they may exert their effects by interfering with the recognition of fibronectin by syndecan-4. Additionally, TSP18 and its derived peptides activate the PKC-dependent Akt-PKB signaling pathway. Blockage of PKC activation prevented HUVEC spreading when seeded on TSP18 fragment, and on TSP Hep I and TSP Hep II peptides, but not on gelatin-coated substrates. Our results identify syndecan-4 as a novel receptor for the N-terminus of TSP-1 and suggest that TSP-1 N-terminal pro-angiogenic activity is linked to its capacity of interfering with syndecan-4 functions in the course of cell adhesion.  相似文献   

8.
The COP9 signalosome is a conserved protein complex composed of eight subunits. Individual subunits of the complex have been linked to various signal transduction pathways leading to gene expression and cell cycle control. However, it is not understood how each subunit executes these activities as part of a large protein complex. In this study, we dissected structure and function of the subunit 1 (CSN1 or GPS1) of the COP9 signalosome relative to the complex. We demonstrated that the C-terminal half of CSN1 encompassing the PCI domain is responsible for interaction with CSN2, CSN3, and CSN4 subunits and is required for incorporation of the subunit into the complex. The N-terminal fragment of CSN1 cannot stably associate with the complex but can translocate to the nucleus on its own. We further show that CSN1 or the N-terminal fragment of CSN1 (CSN1-N) can inhibit c-fos expression from either a transfected template or a chromosomal transgene ( fos-lacZ). Moreover, CSN1 as well as CSN1-N can potently suppress signal activation of a AP-1 promoter and moderately suppress serum activation of a SRE promoter, but is unable to inhibit PKA-induced CRE promoter activity. We conclude that the N-terminal half of CSN1 harbors the activity domain that confers most of the repression functions of CSN1 while the C-terminal half allows integration of the protein into the COP9 signalosome.  相似文献   

9.
Two secretases are involved in the generation of amyloid beta-peptide, the principal component of amyloid plaques in the brains of Alzheimer's disease patients. While beta-secretase is a classical aspartyl protease, gamma-secretase activity is associated with a high molecular weight complex. One of the complex components, which is critically required for gamma-secretase activity is nicastrin (NCT). Here we investigate the assembly of NCT into the gamma-secretase complex. NCT mutants either lacking the entire cytoplasmic tail, the cytoplasmic tail, and the transmembrane domain (TMD), or containing a set of heterologous TMDs were expressed in cells with strongly reduced levels of endogenous NCT. Maturation of exogenous NCT, gamma-secretase complex formation and proteolytic function was then investigated. This revealed that the cytoplasmic tail of NCT is dispensable for gamma-secretase complex assembly and function. In contrast, the authentic TMD of NCT is critically required for the interaction with gamma-secretase complex components and for formation of an active gamma-secretase complex. Neither soluble NCT lacking any membrane anchor nor NCT containing a heterologous TMD were inserted into the gamma-secretase complex. We identified the N-terminal region of the NCT TMD as a functionally important entity of NCT. These data thus demonstrate that NCT interacts with other gamma-secretase complex components via its TMD.  相似文献   

10.
Isoleucyl-tRNA synthetase (IleRS) links tRNA(Ile) with not only its cognate isoleucine but also the nearly cognate valine. The CP1 domain of IleRS deacylates, or edits, the mischarged Val-tRNA(Ile). We determined the crystal structures of the Thermus thermophilus IleRS CP1 domain alone, and in its complex with valine at 1.8- and 2.0-A resolutions, respectively. In the complex structure, the Asp(328) residue, which was shown to be critical for the editing reaction against Val-tRNA(Ile) by a previous mutational analysis, recognizes the valine NH(3)(+) group. The valine side chain binding pocket is only large enough to accommodate valine, and the placement of an isoleucine model in this location revealed that the additional methylene group of isoleucine would clash with His(319). The H319A mutant of Escherichia coli IleRS reportedly deacylates the cognate Ile-tRNA(Ile) in addition to Val-tRNA(Ile), indicating that the valine-binding mode found in this study represents that in the Val-tRNA(Ile) editing reaction. Analyses of the Val-tRNA(Ile) editing activities of T. thermophilus IleRS mutants revealed the importance of Thr(228), Thr(229), Thr(230), and Asp(328), which are coordinated with water molecules in the present structure. The structural model for the Val-adenosine moiety of Val-tRNA(Ile) bound in the IleRS editing site revealed some interesting differences in the substrate binding and recognizing mechanisms between IleRS and T. thermophilus leucyl-tRNA synthetase. For example, the carbonyl oxygens of the amino acids are located opposite to each other, relative to the adenosine ribose ring, and are differently recognized.  相似文献   

11.
The synthetic pentadecapeptide FN-C/H II (KNNQKSEPLIGRKKT-NH(2)) has the sequence of the carboxy-terminal heparin-binding domain of module III(14) of fibronectin. Interaction of FN-C/H II with bovine lung heparin has been studied by (1)H and (23)Na NMR spectroscopy and by heparin affinity chromatography. FN-C/H II binds to heparin from pD <2 up to pD approximately 10; at higher pD, the binding decreases as the lysine side-chain ammonium groups are titrated. Na(+) counterions are displaced from the counterion condensation volume that surrounds sodium heparinate by FN-C/H II, which provides direct evidence that the binding involves electrostatic interactions. The pK(A) values for each of the five ammonium groups of FN-C/H II increase upon binding to heparin which, together with chemical shift data, indicates that the binding involves both delocalized and direct electrostatic interactions between ammonium groups of FN-C/H II and carboxylate and/or sulfate groups of heparin. NMR data also provide evidence for the direct interaction of the guanidinium group of the arginine side chain with anionic sites on heparin. The affinity of heparin for FN-C/H II and for 13 analogue peptides in which lysine and arginine residues were systematically substituted with alanine increases as the number of basic residues increases. The relative contribution of each lysine and arginine to the affinity of heparin for FN-C/H II is R(12) > K(13) > K(14) > K(1) > K(5). Nuclear Overhauser enhancement (NOE) data indicate that, while FN-C/H II is largely unstructured in aqueous solution, the bound peptide interconverts among overlapping, turn-like conformations over the L(9) - T(15) segment of the peptide. NOE data for the interaction of FN-C/H II with a heparin-derived hexasaccharide, together with the number of Na(+) ions displaced from heparin by FN-C/H II as determined by (23)Na NMR, indicates that the peptide binds to a hexasaccharide segment of heparin. Identical NMR and heparin affinity chromatography results were obtained for the interaction of FN-C/H II and its D-amino acid analogue peptide with heparin, which is of interest for the potential use of peptides as therapeutic agents for diseases in which cell adhesion plays a critical role.  相似文献   

12.
The ability of protein kinase C and casein kinase 2 substrate in neurons (PACSIN)/syndapin proteins to self-polymerize is crucial for the simultaneous interactions with more than one Src homology 3 domain-binding partner or with lipid membranes. The assembly of this network has profound effects on the neural Wiskott-Aldrich syndrome protein-mediated attachment of the actin polymerization machinery to vesicle membranes as well as on the movement of the corresponding vesicles. Also, the sensing of vesicle membranes and/or the induction of membrane curvature are more easily facilitated in the presence of larger PACSIN complexes. The N-terminal Fes-CIP homology and Bin-Amphiphysin-Rvs (F-BAR) domains of several PACSIN-related proteins have been shown to mediate self-interactions, whereas studies using deletion mutants derived from closely related proteins led to the view that oligomerization depends on the formation of a trimeric complex via a coiled-coil region present in these molecules. To address whether the model of trimeric complex formation is applicable to PACSIN 1, the protein was recombinantly expressed and tested in four different assays for homologous interactions. The results showed that PACSIN 1 forms tetramers of about 240 kDa, with the self-interaction having a K(D) of 6.4 x 10(-8) M. Ultrastructural analysis of these oligomers after negative staining showed that laterally arranged PACSIN molecules bind to each other via a large globular domain and form a barrel-like structure. Together, these results demonstrate that the N-terminal F-BAR domain of PACSIN 1 forms the contact site for a tetrameric structure, which is able to simultaneously interact with multiple Src homology 3 binding partners.  相似文献   

13.
Thrombospondin-1 (TSP-1) interacts specifically with heparin and fibronectin in vitro and colocalizes with fibronectin and heparan sulfate in the extracellular matrix (ECM). Its conformation is strongly dependent on Ca2+ concentration. We have previously shown that both heparin and fibronectin have two binding sites on the TSP-1 subunit which may require conformational change for their occupancy (R. Dardik and J. Lahav, 1987, Eur. J. Biochem. 168, 347; ibid 1989, 185, 581). To investigate the effect of TSP-1 binding to fibronectin and heparin on its functional conformation, TSP-1 was subjected to proteolysis in the presence and absence of ligands and of Ca2+. We found that while trypsin cleavage of free TSP-1 resulted in the inactivation of ligand binding, TSP-1 bound to either fibronectin or heparin remained stably associated with these ligands. Cleavage by thrombin or tissue plasminogen activator (tPA) showed that Ca2+-depleted TSP-1, when bound to fibronectin or to heparin, yielded proteolytic cleavage patterns typical of the Ca2+-containing form. Cleavage by chymotrypsin was not affected by binding to fibronectin or heparin; hence loss of proteolytic susceptibility was not due to steric hindrance by the ligands. Taken together, these results indicate that: (A) binding of TSP-1 to fibronectin or heparin is a two-step mechanism where binding to one site leads to conformational changes that enable binding to the second site; (B) TSP-1 in complex with fibronectin or heparin adopts the Ca2+-containing conformation in the absence of Ca2+; and (C) such complexes are highly resistant to cleavage by tPA and, if cleaved by other enzymes, the TSP-1 fragments remain bound to other ECM components. These characteristics have profound significance for platelet adhesion and cell migration into wounds where Ca2+ concentrations are reduced.  相似文献   

14.
The hordeiviral movement protein encoded by the first gene of the triple gene block (TGBp1) of Poa semilatent virus (PSLV), interacts with viral genomic RNAs to form RNP particles which are considered to be a form of viral genome capable of cell-to-cell and long-distance transport in infected plants. The PSLV TGBp1 contains a C-terminal NTPase/helicase domain (HELD) and an N-terminal extension region consisting of two structurally and functionally distinct domains: an extreme N-terminal domain (NTD) and an internal domain (ID). This study demonstrates that transient expression of TGBp1 fused to GFP in Nicotiana benthamiana leaves results in faint but obvious fluorescence in the nucleolus in addition to cytosolic distribution. Mutagenesis of the basic amino acids inside the NTD clusters A 116KSKRKKKNKK125 and B 175KKATKKESKKQTK187 reveals that these clusters are indispensable for nuclear and nucleolar targeting of PSLV TGBp1 and may contain nuclear and nucleolar localization signals or their elements. The PSLV TGBp1 is able to bind to fibrillarin, the major nucleolar protein (AtFib2 from Arabidopsis thaliana) in vitro. This protein–protein interaction occurs between the glycine-arginine-rich (GAR) domain of fibrillarin and the first 82 amino acid residues of TGBp1. The interaction of TGBp1 with fibrillarin is also visualized in vivo by bimolecular fluorescence complementation (BiFC) during co-expression of TGBp1 or its deletion mutants, and fibrillarin as fusions to different halves of YFP in N. benthamiana plants. The sites responsible for nuclear/nucleolar localization and fibrillarin binding, have been located within the intrinsically disordered TGBp1 NTD. These data could suggest that specific functions of hordeivirus TGBp1 may depend on its interaction with nucleolar components.  相似文献   

15.
The structure of the NPC1L1 N-terminal domain in a closed conformation   总被引:1,自引:0,他引:1  

Background

NPC1L1 is the molecular target of the cholesterol lowering drug Ezetimibe and mediates the intestinal absorption of cholesterol. Inhibition or deletion of NPC1L1 reduces intestinal cholesterol absorption, resulting in reduction of plasma cholesterol levels.

Principal Findings

Here we present the 2.8 Å crystal structure of the N-terminal domain (NTD) of NPC1L1 in the absence of cholesterol. The structure, combined with biochemical data, reveals the mechanism of cholesterol selectivity of NPC1L1. Comparison to the cholesterol free and bound structures of NPC1(NTD) reveals that NPC1L1(NTD) is in a closed conformation and the sterol binding pocket is occluded from solvent.

Conclusion

The structure of NPC1L1(NTD) reveals a degree of flexibility surrounding the entrance to the sterol binding pocket, suggesting a gating mechanism that relies on multiple movements around the entrance to the sterol binding pocket.  相似文献   

16.
Changes in the conformational state of human plasma fibronectin and several of its fragments were studied by fluorescence emission, intrinsic fluorescence polarization and c.d. spectroscopy under conditions of guanidinium chloride-and temperature-induced unfolding. Fragments were chosen to represent all three types of internal structural homology in the protein. Low concentration (less than 2 M) of guanidinium chloride induced a gradual transition in the intact protein that was not characteristic of any of the isolated domains, suggesting the presence of interdomain interactions within the protein. Intermediate concentrations of guanidinium chloride (2-3 M) and moderately elevated temperatures (55-60 degrees C) induced a highly co-operative structural transition in intact fibronectin that was attributable to the central 110 kDa cell-binding domain. High temperatures (greater than 60 degrees C) produced a gradual unfolding in the intact protein attributable to the 29 kDa N-terminal heparin-binding and 40 kDa collagen-binding domains. Binding of heparin to intact fibronectin and to its N-terminal fragment stabilized the proteins against thermal unfolding. This was reflected in increased delta H for the unfolding transitions of the heparin-bound N-terminal fragment, as well as decreased accessibility to solvent perturbants of internal chromophores in this fragment when bound to heparin. These results help to account for the biological efficacy of the interaction between the fibronectin N-terminal domain and heparin, despite its relatively low affinity.  相似文献   

17.
Adenomatous polyposis coli (APC) is a tumor suppressor protein commonly mutated in colorectal tumors. APC plays important roles in Wnt signaling and other cellular processes. Here, we present the crystal structure of the armadillo repeat (Arm) domain of APC, which facilitates the binding of APC to various proteins. APC-Arm forms a superhelix with a positively charged groove. We also determined the structure of the complex of APC-Arm with the tyrosine-rich (YY) domain of the Src-associated in mitosis, 68?kDa protein (Sam68), which regulates TCF-1 alternative splicing. Sam68-YY forms numerous interactions with the residues on the groove and is thereby fixed in a bent conformation. We assessed the effects of mutations and phosphorylation on complex formation between APC-Arm and?Sam68-YY. Structural comparisons revealed different modes of ligand recognition between the Arm domains of APC and other Arm-containing proteins.  相似文献   

18.

Background

Although protamine is effective as an antidote of heparin, there is a need to replace protamine due to its side effects. HIP peptide has been reported to neutralize the anticoagulant activity of heparin. The interaction of HIP analog peptides with heparin and heparin-derived oligosaccharides is investigated in this paper.

Methods

Seven analogues of the heparin-binding domain of heparin/heparan sulfate-interacting protein (HIP) were synthesized, and their interaction with heparin was characterized by heparin affinity chromatography, isothermal titration calorimetry, and NMR.

Results

NMR results indicate the imidazolium groups of the His side chains of histidine-containing Hip analog peptide interact site-specifically with heparin at pH 5.5. Heparin has identical affinities for HIP analog peptides of opposite chirality. Analysis by counterion condensation theory indicates the peptide AC-SRPKAKAKAKAKDQTK-NH2 makes on average ∼ 3 ionic interactions with heparin that result in displacement of ∼ 2 Na+ ions, and ionic interactions account for ∼ 46% of the binding free energy at a Na+ concentration of 0.15 M.

Conclusions

The affinity of heparin for the peptides is strongly dependent on the nature of the cationic side chains and pH. The thermodynamic parameters measured for the interaction of HIP peptide analogs with heparin are strongly dependent on the peptide sequence and pH.

General significance

The information obtained in this research will be of use in the design of new agents for neutralization of the anticoagulant activity of heparin. The site-specific binding of protonated histidine side chains to heparin provides a molecular-level explanation for the pH-dependent binding of β-amyloid peptides by heparin and heparan sulfate proteoglycan and may have implications for amyloid formation.  相似文献   

19.
Unlike most other mucins described to date, two intestinal mucins, rat MLP (rat Muc2) and human MUC2 have a C-terminal tail that is enriched in cationic amino acids. The distribution of charge in each case resembles that of several well known heparin binding proteins. Peptides designated E20-14 and F13-15, corresponding to the C-terminal 14 amino acids of the two mucins, were synthesized and shown to bind3H-labelled heparin by a process that was saturable and mediated by strong electrostatic interactions, givingK d values of 10–7 to 10–8 m. Using turbidometric analyses and native gel electrophoresis, we observed that peptide-heparin mixtures formed polydisperse aggregates that dissociated with a progressive increase in the concentration of heparin. Under certain conditions heparin protected the peptide from proteolysis by trypsin. Both heparin and dextran sulfate, the latter a highly sulfated synthetic polysaccharide, were potent inhibitors of3H-heparin binding to peptide E20-14, while less sulfated glycosaminoglycans were poorly- or non-inhibitory. Mucin in tissue dispersions and homogenates, or purified from rat intestine, did not bind to heparin, and failed to interact with an antibody specific for the peptide E20-14. Both mucin samples however, reacted with antibodies that recognize regions upstream of the C-terminal 14 amino acids. Immunofluorescent localization of E20-14 was confined to the basal perinuclear regions of goblet cells, whereas localization of an antibody to a flanking sequence on the N-terminal side of the C-tail, localized to mature mucin storage granules. These findings suggest that the heparin-binding C-tail of the mucin may be removed at an early stage of biosynthesis. Heparin-mucin complexes, if they formin vivo, are thus likely to be confined to the ER and/or Golgi compartments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号