首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glucose metabolism in free-swimming fasted and fed seabass was studied using deuterated water ((2)H(2)O). After transfer to seawater enriched with 4.9% (2)H(2)O for 6-h or for 72-h, positional and mole percent enrichment (MPE) of plasma glucose and water were quantified by (2)H NMR and ESI-MS/MS. Plasma water (2)H-enrichment reached that of seawater within 6h. In both fasted and fed fish, plasma glucose MPE increased asymptotically attaining ~55% of plasma water enrichment by 72 h. The distribution of (2)H-enrichment between the different glucose positions was relatively uniform. The gluconeogenic contribution to glucose that was synthesized during (2)H(2)O administration was estimated from the ratio of position 5 and 2 glucose enrichments. For both fed and fasted fish, gluconeogenesis accounted for 98±1% of the glucose that was produced during the 72-h (2)H(2)O administration period. For fasted fish, gluconeogenic contributions measured after 6h were identical to 72-h values (94±3%). For fed fish, the apparent gluconeogenic contribution at 6-h was significantly lower compared to 72-h (79±5% versus 98±1%, p<0.05). This may reflect a brief augmentation of gluconeogenic flux by glycogenolysis after feeding and/or selective enrichment of plasma glucose position 2 via futile glucose-glucose-6-phosphate cycling.  相似文献   

2.
We present a simple (2)H NMR assay of the fractional contribution of gluconeogenesis to hepatic glucose output following ingestion of (2)H(2)O. The assay is based on the measurement of relative deuterium enrichment in hydrogens 2 and 3 of plasma glucose. Plasma glucose was enzymatically converted to gluconate, which displays fully resolved deuterium 2 and 3 resonances in its (2)H NMR spectrum at 14.1 T. The signal intensity of deuterium 3 relative to deuterium 2 in the gluconate derivative as quantitated by (2)H NMR was shown to provide a precise and accurate measurement of glucose enrichment in hydrogen 3 relative to hydrogen 2. This measurement was used to estimate the fractional contribution of gluconeogenesis to hepatic glucose output for two groups of rats; one group was fasted for 7 h and the other was fasted for 29 h. Rats were administered (2)H(2)O to enrich total body water to 5% over the last 4-5 h of each fasting period. For the 7-h fasted group, the hydrogen 3/hydrogen 2 enrichment ratio of plasma glucose was 0.32 +/- 0.09 (n = 7). This indicates that gluconeogenesis contributed 32 +/- 9% of total hepatic glucose output with glycogenolysis contributing the remainder. For the 29-h fasted group, the hydrogen 3/hydrogen 2 enrichment ratio of plasma glucose was 0.81 +/- 0.10 (n = 6), indicating that gluconeogenesis supplied the bulk of hepatic glucose output (81 +/- 10%).  相似文献   

3.
We tested the generally accepted concept that increased gluconeogenesis (GNG) and endogenous glucose production (EGP) are the main reasons for postabsorptive hyperglycemia in patients with type 2 diabetes mellitus (T2DM). GNG was measured with the (2)H(2)O method by use of both the C5-to-C2 ratio (C5/C2, with gas chromatography-mass spectrometry) and the C5-to-(2)H(2)O ratio (C5/(2)H(2)O, with isotope ratio mass spectrometry), and EGP was measured with 3-[(3)H]glucose in 27 patients with T2DM [13 with fasting plasma glucose (FPG) >10 mM and 14 with FPG <10 mM] and in 7 weight- and age-matched nondiabetic controls. The results showed 1) that GNG could be determined accurately with (2)H(2)O by using either C5/C2 or C5/(2)H(2)O; 2) that whereas after an overnight fast of 16 h, GNG was higher in the entire group of patients with T2DM than in controls (6.4 vs. 5.0 micromol. kg(-1). min(-1) or 60.4 vs. 51.4% of EGP, P < 0.02), GNG was within normal limits (less than the mean +/- 2 SD of controls or <65.3%) in 11/14 (79%) patients with mild to moderate hyperglycemia (FPG <10 mM) and in 5/13 (38%) of patients with severe hyperglycemia (FPG 10-20 mM); 3) that elevated GNG in T2DM was associated with a 43% decrease in prehepatic insulin secretion, i.e., with hepatic insulin deficiency; and 4) that FPG correlated significantly with glucose clearance (insulin resistance) (r = 0.70) and with GNG (r = 0.50) or EGP (r = 0.45). We conclude 1) that peripheral insulin resistance is at least as important as GNG (and EGP) as a cause of postabsorptive hyperglycemia in T2DM and 2) that GNG and EGP in T2DM are increased under conditions of significant hepatic insulin deficiency and thus probably represent a late event in the course of T2DM.  相似文献   

4.
The generally accepted metabolic concept that fructose 2,6-bisphosphate (Fru-2,6-P2) inhibits gluconeogenesis by directly inhibiting fructose 1,6-bisphosphatase is based entirely on in vitro observations. To establish whether gluconeogenesis is indeed inhibited by Fru-2,6-P2 in intact animals, a novel NMR method was developed using [U-13C]glucose and 2H2O as tracers. The method was used to estimate the sources of plasma glucose from gastric absorption of oral [U-13C]glucose, from gluconeogenesis, and from glycogen in 24-h fasted rats. Liver Fru-2,6-P2 increased approximately 10-fold shortly after the glucose load, reached a maximum at 60 min, and then dropped to base-line levels by 150 min. The gastric contribution to plasma glucose reached approximately 50% at 30 min after the glucose load and gradually decreased thereafter. Although the contribution of glycogen to plasma glucose was small, glucose formed from gluconeogenesis was substantial throughout the study period even when liver Fru-2,6-P2 was high. Liver glycogen repletion was also brisk throughout the study period, reaching approximately 30 micromol/g at 3 h. These data demonstrate that Fru-2,6-P2 does not inhibit gluconeogenesis significantly in vivo.  相似文献   

5.
The purpose of this study was to compare the assessment of gluconeogenesis (GNG) in the overnight- and prolonged-fasted states and during chronic hypercortisolemia using the arteriovenous difference and [14C]phosphoenolpyruvate-liver biopsy techniques as well as a combination of the two. Two weeks before a study, catheters and flow probes were implanted in the hepatic and portal veins and femoral artery of dogs. Animals were studied after an 18-h fast (n = 8), a 42- or 66-h fast (n = 7), and an 18-h fast plus a continuous infusion of cortisol (3.0 microg. kg(-1). min(-1)) for 72 h (n = 7). Each experiment consisted of an 80-min tracer ([3-(3)H]glucose and [U-(14)C]alanine) and dye equilibration period (-80 to 0 min) and a 45-min sampling period. In the cortisol-treated group, plasma cortisol increased fivefold. In the overnight-fasted group, total GNG flux rate (GNG(flux)), conversion of glucose 6-phosphate to glucose (GNG(G-6-P-->Glc)), glucose cycling, and maximal GNG flux rate (GNG(max)) were 0.95 +/- 0.14, 0.65 +/- 0.06, 0.62 +/- 0.06, and 0.70 +/- 0.09 mg. kg(-1). min(-1), respectively. In the prolonged-fasted group, they were 1.50 +/- 0.18, 1.18 +/- 0.13, 0.40 +/- 0.07, and 1.28 +/- 0.10 mg. kg(-1). min(-1), whereas in the cortisol-treated group they were 1.64 +/- 0.33, 0.99 +/- 0.29, 1.32 +/- 0.24, and 0.91 +/- 0.13 mg. kg(-1). min(-1). These results demonstrate that GNG(G-6-P-->Glc) and GNG(max) were almost identical. However, these rates were 15-38% lower than GNG(flux) generated by a combination of the two methods. This difference was most apparent in the steroid-treated group, where the combination of the two methods (GNG(flux)) detected a significant increase in gluconeogenic flux.  相似文献   

6.
The deuterated water method is used extensively to measure gluconeogenesis in humans. This method assumes negligible exchange of the lower three carbons of fructose 6-phsophate via transaldolase exchange since this exchange will result in enrichment of carbon 5 of glucose in the absence of net gluconeogenesis. The present studies tested this assumption. 2H?O and acetaminophen were ingested and [1-13C]acetate infused in 11 nondiabetic subjects after a 16-h fast. Plasma and urinary glucuronide enrichments were measured using nuclear magnetic resonance spectroscopy before and during a 0.35 mU·kg FFM?1·min?1 insulin infusion. Rates of endogenous glucose production measured with [3-3H]- and [6,6-2H?]glucose did not differ either before (14.0 ± 0.7 vs. 13.8 ± 0.7 μmol·kg?1·min?1) or during the clamp (10.4 ± 0.9 vs. 10.9 ± 0.7 μmol·kg?1·min?1), consistent with equilibration and quantitative removal of tritium during triose isomerase exchange. Plasma [3-13C] glucose-to-[4-13C]glucose and urinary [3-13C] glucuronide-to-[4-13C]glucuronide ratios were <1.0 (P < 0.001) in all subjects both before (0.66 ± 0.04 and 0.60 ± 0.04) and during (059 ± 0.05 and 0.56 ± 0.06) the insulin infusion, respectively, indicating that ~35-45% of the labeling of the 5th carbon of glucose by deuterium was due to transaldolase exchange rather than gluconeogenesis. When corrected for transaldolase exchange, rates of gluconeogenesis were lower (P < 0.001) and glycogenolysis higher (P < 0.001) than uncorrected rates both before and during the insulin infusion. In conclusion, assuming negligible dilution by glycerol and near-complete triose isomerase equilibration, these data provide strong experimental evidence that transaldolase exchange occurs in humans, resulting in an overestimate of gluconeogenesis and an underestimate of glycogenolysis when measured with the 2H?O method. Use of appropriate 13C tracers provides a means of correcting for transaldolase exchange.  相似文献   

7.
The diabetogenic effect of excess growth hormone (GH) such as that in acromegaly is well known. However, the contribution of the various components to hepatic glucose production (HGP) is not completely understood. In this study we evaluated insulin resistance, HGP, gluconeogenesis (GNG), and glycogenolysis (GLY) in five patients with acromegaly before and after pituitary microsurgery. Insulin resistance was estimated by the HOMA index. HGP was measured using a primed continuous (6,6- 2H2) glucose infusion, and GNG was measured from 2 H enrichment at carbons 2 and 5 of blood glucose on ingestion of 2H2O. The ratio of these enrichments equals the fractional contribution of GNG to HGP, and GLY was calculated as the difference between HGP and GNG. All measurements were performed after 12 hours of fasting. Levels of GH and IGF-I decreased, as did the HOMA index (p<0.05). HGP was reduced from 11.4 micromol/kg/min to 9.7 micromol/kg/min (p=0.032). GNG contributed most to HGP. GNG was unchanged, whereas GLY's fraction decreased 29% (p=0.056) postoperatively. This pilot study indicates that GNG is the main contributor to HGP and that GLY is more sensitive than is GNG to the insulin resistance existing in acromegaly.  相似文献   

8.
Deka BC  Rao AR 《Theriogenology》1986,26(2):231-238
Twenty ejaculates, 4 from each of 5 native goats, were collected using an artificial vagina, and the effects of glycerol level (4, 6.4 and 9 %) and the equilibration period (1, 3 and 5 h) were studied by split-sample technique. The extender used was Tris egg yolk citric acid fructose glycerol extender. The semen was frozen in 0.5-ml French straws by exposure for 10 min to liquid nitrogen vapor, 5 cm above the liquid nitrogen level. After 14 h of storage in liquid nitrogen, the straws were thawed in water at 37 degrees C for 12 - 15 sec. The percentage of progressively motile sperm (PPM) and the percentage of damaged acrosomes (PDA) were studied after equilibration and after thawing. The mean PPM after thawing was found to be 64.0 +/- 0.90, 66.92 +/- 0.54 and 63.65 +/- 1.07 when semen was frozen with 4, 6.4 and 9 % glycerol and 61.48 +/- 0.81, 65.05 +/- 0.78 and 68.03 +/- 0.87 in 1-, 3- and 5-h equilibrated semen, respectively. The mean PDA after thawing was 7.12 +/- 0.88, 8.23 +/- 0.76 and 10.58 +/- 0.84 when semen was frozen with 4, 6.4 and 9 % glycerol and 7.0 +/- 0.74, 9.0 +/- 0.95 and 9.93 +/- 0.81 in 1-, 3- and 5-h equilibrated semen, respectively. Both PPM and PDA differed significantly (P<0.01) between glycerol levels, between equilibration periods and between stages (after equilibration and after thawing). The PPM also differed significantly due to equilibration period x stage interaction (P<0.01) and glycerol level x stage interaction (P<0.05). The PDA did not differ significantly due to interactions. When the differences between pairs of means were tested by least significant difference, it was found that after equilibration PPM was not significantly affected by either glycerol level or equilibration period, while after thawing, it was significantly higher (P<0.05) for 6.4 % glycerol and 5-h equilibrated semen than for 4 or 9 % glycerol and 1- or 3-h equilibrated semen, respectively. The PDA was lower with 4 % glycerol and 1-h equilibrated semen.  相似文献   

9.
The rate of glucose turnover (R(a)) and gluconeogenesis (GNG) via pyruvate were quantified in seven full-term healthy babies between 24 and 48 h after birth and in twelve low-birth-weight infants on days 3 and 4 by use of [(13)C(6)]glucose and (2)H(2)O. The preterm babies were receiving parenteral alimentation of either glucose or glucose plus amino acid with or without lipids. The contribution of GNG to glucose production was measured by the appearance of (2)H on C-6 of glucose. Glucose R(a) in full-term babies was 30 +/- 1.7 (SD) micromol. kg(-1). min(-1). GNG via pyruvate contributed approximately 31% to glucose R(a). In preterm babies, the contribution of GNG to endogenous glucose R(a) was variable (range 6-60%). The highest contribution was in infants receiving low rates of exogenous glucose infusion. In an additional group of infants of normal and diabetic mothers, lactate turnover and its incorporation into glucose were measured within 4-24 h of birth by use of [(13)C(3)]lactate tracer. The rate of lactate turnover was 38 micromol. kg(-1). min(-1), and lactate C, not corrected for loss of tracer in the tricarboxylic acid cycle, contributed approximately 18% to glucose C. Lactate and glucose kinetics were similar in infants that were small for their gestational age and in normal infants or infants of diabetic mothers. These data show that gluconeogenesis is evident soon after birth in the newborn infant and that, even after a brief fast (5 h), GNG via pyruvate makes a significant contribution to glucose production in healthy full-term infants. These data may have important implications for the nutritional support of the healthy and sick newborn infant.  相似文献   

10.
The effect of increased glycogenolysis, simulated by galactose's conversion to glucose, on the contribution of gluconeogenesis (GNG) to hepatic glucose production (GP) was determined. The conversion of galactose to glucose is by the same pathway as glycogen's conversion to glucose, i.e., glucose 1-phosphate --> glucose 6-phosphate --> glucose. Healthy men (n = 7) were fasted for 44 h. At 40 h, hepatic glycogen stores were depleted. GNG then contributed approximately 90% to a GP of approximately 8 micromol.kg(-1).min(-1). Galactose, 9 g/h, was infused over the next 4 h. The contribution of GNG to GP declined from approximately 90% to 65%, i.e., by approximately 2 micromol.kg(-1).min(-1). The rate of galactose conversion to blood glucose, measured by labeling the infused galactose with [1-(2)H]galactose (n = 4), was also approximately 2 micromol.kg(-1).min(-1). The 41st h GP rose by approximately 1.5 micromol.kg(-1).min(-1) and then returned to approximately 9 micromol.kg(-1).min(-1), while plasma glucose concentration increased from approximately 4.5 to 5.3 mM, accompanied by a rise in plasma insulin concentration. Over 50% of the galactose infused was accounted for in blood glucose and hepatic glycogen formation. Thus an increase in the rate of GP via the glycogenolytic pathway resulted in a concomitant decrease in the rate of GP via GNG. While the compensatory response to the galactose administration was not complete, since GP increased, hepatic autoregulation is operative in healthy humans during prolonged fasting.  相似文献   

11.
Using isolated rat hepatocytes, we studied the effect of epidermal growth factor (urogastrone) (EGF-URO) on the incorporation of [3-14C]pyruvate into glucose and glycogen, on the incorporation of [U-14C]glucose into glycogen, and on the oxidation of [U-14C]glucose to 14CO2. The effects of EGF-URO were compared with those of glucagon and insulin. EGF-URO, with an EC50 of 0.2 nM, enhanced by 34% (maximal stimulation) the conversion of [3-14C]pyruvate into glucose; no effect was observed on the oxidation of glucose to CO2 and on the incorporation of either pyruvate or glucose into glycogen. The effect of EGF-URO on pyruvate conversion to glucose was observed only when hepatocytes were preincubated with EGF-URO for 40 min prior to the addition of substrate. Glucagon (10 nM) increased the incorporation of [3-14C]pyruvate into glucose (44% above control); however, unlike EGF-URO, glucagon stimulated gluconeogenesis better without than with a preincubation period. Neither insulin nor EGF-URO (both 10 nM) affected the incorporation of [U-14C]glucose into glycogen during a 20-min incubation period. However, at longer time periods of incubation with the substrate (60 instead 20 min), insulin (but not EGF-URO) increased the incorporation of [14C]glucose into glycogen; EGF-URO counteracted this stimulatory effect of insulin. In contrast with previous data, our work indicates that EGF-URO can, under certain conditions, counteract the effects of insulin and, like glucagon, promote gluconeogenesis in isolated rat hepatocytes.  相似文献   

12.
Glucogen synthesis in rat liver in vivo was measured by the incorporation of 3H from 3H2O into glycogen. In meal-fed rats incorporation and the incorporation of 3H into glycogen was linear up to 100 min. Before feeding glycogen concentration and the incorporation of 3H were both low; and both rose on feeding to give maximal values after 2-3h. The glycogen concentration was maintained for a further 5h but the incorporation of 3H rapidly declined to pre-feeding values. This shows that glycogen turnover was low in the post-prandial rat. Streptozotocin diabetes decreased the rise in glycogen concentration on feeding and had a similar effect on 3H2O incorporation. Both effects were reversed by insulin administration. The number of 3H atoms incorporated per glycogen glucose moiety formed in biosynthetic experiments (2.84 +/- 0.47) was relatively constant and allowed absolute biosynthetic rates to be calculated. Degradation of glucose from glycogen labelled by 3H2O showed that most of the 3H was located at C-2 and C-5. The incorporation would arise by rapid equilibration of hexose phosphates through phosphoglucose isomerase, transaldolase and triose phosphate isomerase.  相似文献   

13.
Hepatocytes isolated from the livers of fed rats were used for a comparative study of the effects of phenylephrine, vasopressin and glucagon on gluconeogenesis and on enzymes of glycogen metabolism. When hepatocytes were incubated in the presence of Ca2+, phenylephrine stimulated gluconeogenesis from pyruvate less than did glucagon, but, in contrast with this hormone, it did not affect the activities of protein kinase and pyruvate kinase, nor the concentration of phosphoenolpyruvate, and it did not decrease the release of 3H2O from [6-3H]glucose. The effects of vasopressin were similar to those of phenylephrine. Gluconeogenesis from fructose was also stimulated by phenylephrine and, more markedly, by glucagon at the expense of the conversion of fructose into lactate. Insulin was able to antagonize the stimulatory effect of phenylephrine on gluconeogenesis from pyruvate. When Ca2+ was removed from the incubation medium, phenylephrine still stimulated gluconeogenesis from pyruvate, but it also caused an activation of protein kinase and an inactivation of pyruvate kinase; accordingly, the concentration of phosphoenolpyruvate was increased, and, in contrast, vasopressin had no effect on all these parameters. The property of phenylephrine to cause the activation of glycogen phosphorylase was decreased by glucose or by the absence of Ca2+; it was abolished when these two conditions were combined. Glycogen synthase was inactivated by phenylephrine in the presence or the absence of Ca2+, although presumably by different mechanisms.  相似文献   

14.
Glucose metabolism in the newborn rat. Hormonal effects in vivo   总被引:3,自引:1,他引:2       下载免费PDF全文
1. The concentrations of liver glycogen and plasma d-glucose were measured in caesarian-delivered newborn rats at time-intervals up to 3h after delivery after treatment of the neonatal rats with glucagon, dibutyryl cyclic AMP, cortisol or cortisol+dibutyryl cyclic AMP. Glycogenolysis was promoted by glucagon or dibutyryl cyclic AMP in the third hour after birth but not at earlier times. Cortisol and dibutyryl cyclic AMP together (but neither agent alone) promoted glycogenolysis in the second hour after birth, but no hormone combination was effective in the first postnatal hour. 2. The specific radioactivity of plasma d-glucose was measured as a function of time for up to 75 min after the intraperitoneal injection of d-[6-(14)C]glucose and d-[6-(3)H]glucose into newborn rats at delivery and after treatment with glucagon or actinomycin D. Glucagon-mediated hyperglycaemia at this time was due to an increased rate of glucose formation and a decreased rate of glucose utilization. Actinomycin D prevented glucose formation and accelerated the rate of postnatal hypoglycaemia. 3. The specific radioactivity of plasma l-lactate and the incorporation of (14)C into plasma d-glucose was measured as a function of time after the intraperitoneal injection of l-[U-(14)C]lactate into glucagon- or actinomycin D-treated rats immediately after delivery. The calculated rates of lactate formation were unchanged by either treatment, but lactate utilization was stimulated by glucagon administration. Glucagon stimulated and actinomycin D diminished (14)C incorporation into plasma d-glucose. 4. The factors involved in the initiation of glycogenolysis and gluconeogenesis in the rat immediately after birth are discussed.  相似文献   

15.
We tested the protective action of seminal plasma on epididymal spermatozoa from Iberian red deer, especially considering cryopreservation, as a means for germplasm banking improvement. We obtained seminal plasma by centrifuging electroejaculated semen, and part of it was thermically inactivated (denatured plasma; 55 degrees C 30 min). Epididymal samples (always at 5 degrees C) were obtained from genitalia harvested after regulated hunting, and pooled for each assay (five in total). We tested three seminal plasma treatments (mixing seminal plasma with samples 2:1): no plasma, untreated plasma and denatured plasma; and four incubation treatments: 32 degrees C 15 min, 5 degrees C 15 min, 5 degrees C 2h and 5 degrees C 6h. After each incubation, samples were diluted 1:1 with extender: Tes-Tris-Fructose, 10% egg yolk, 4% glycerol; equilibrated for 2h at 5 degrees C, extended down to 10(8) spz./mL and frozen. Sperm quality was evaluated before 1:1 dilution, before freezing and after thawing the samples, assessing motility (CASA) and viability (percentage of viable and acrosome-intact spermatozoa; PI/PNA-FITC and fluorescent microscopy). Plasma treatment, both untreated and denatured, rendered higher viability before freezing and higher results for most parameters after thawing. The improvement was irrespective of incubation treatment, except for viability, which rendered slightly different results for untreated and denatured plasma. This may be due to the presence of thermolabile components. We still have to determine the underlying mechanisms involved in this protection. These results might help to improve the design of cryopreservation extenders for red deer epididymal sperm.  相似文献   

16.
1. Administration of glucagon to foetal rats produced a 10-15-fold increase in hepatic phosphoenolpyruvate carboxykinase activity together with a similar increase in the overall pathway of pyruvate conversion into glycogen in liver slices. 2. Glucagon was without effect on gluconeogenesis in vivo, which remained at approx. 0.1% of the incorporation as measured in newborn animals. 3. The apparent discrepancy between these results was due to the ether anaesthesia that was required for experimentation in vivo. Under conditions when minimal ether was used, the rates of labelling of glycogen from [3-(14)C]pyruvate in vivo were increased 10-20-fold and there was an additional stimulus by glucagon. 4. Ether anaesthesia produced a more reduced redox state of the foetal liver cytosol and lowered the ATP/ADP concentration ratio. 5. It is proposed that these effects are significant in the limitation of gluconeogenesis in the foetal rat liver, so that only with high phosphoenolpyruvate carboxykinase activity, high ATP concentration and a relatively oxidized cytosol redox state will a functional gluconeogenic pathway be present.  相似文献   

17.
We studied the role of lactate in gluconeogenesis (GNG) during exercise in untrained fasting humans. During the final hour of a 4-h cycle exercise at 33-34% maximal O(2) uptake, seven subjects received, in random order, either a sodium lactate infusion (60 micromol x kg(-1) x min(-1)) or an isomolar sodium bicarbonate infusion. The contribution of lactate to gluconeogenic glucose was quantified by measuring (2)H incorporation into glucose after body water was labeled with deuterium oxide, and glucose rate of appearance (R(a)) was measured by [6,6-(2)H(2)]glucose dilution. Infusion of lactate increased lactate concentration to 4.4 +/- 0.6 mM (mean +/- SE). Exercise induced a decrease in blood glucose concentration from 5.0 +/- 0.2 to 4.2 +/- 0.3 mM (P < 0.05); lactate infusion abolished this decrease (5.0 +/- 0.3 mM; P < 0.001) and increased glucose R(a) compared with bicarbonate infusion (P < 0.05). Lactate infusion increased both GNG from lactate (29 +/- 4 to 46 +/- 4% of glucose R(a), P < 0.001) and total GNG. We conclude that lactate infusion during low-intensity exercise in fasting humans 1). increased GNG from lactate and 2). increased glucose production, thus increasing the blood glucose concentration. These results indicate that GNG capacity is available in humans after an overnight fast and can be used to sustain blood glucose levels during low-intensity exercise when lactate, a known precursor of GNG, is available at elevated plasma levels.  相似文献   

18.
In normal subjects, elevation of plasma free fatty acid (FFA) levels stimulates gluconeogenesis (GNG) and inhibits glycogenolysis (GLY). In adults with uncomplicated Plasmodium falciparum malaria, GNG is increased and GLY decreased. To test the hypothesis that FFAs are regulators of GNG and GLY in uncomplicated falciparum malaria, we investigated the effect of inhibition of lipolysis by acipimox in 12 patients with uncomplicated falciparum malaria. Six of them were given acipimox, and six served as controls. Also as controls, six matched healthy subjects were studied on two occasions with and without acipimox. After 16 h of fasting, glucose production and GNG were significantly higher in the malaria patients compared with the healthy controls (P = 0.003 and < 0.0001, respectively), whereas GLY was significantly lower (P < 0.001), together with elevated plasma concentrations of cortisol and glucagon. During the study, glucose production in patients declined over time (P < 0.0001), without a statistically significant difference between the acipimox-treated and untreated patients. In controls, however, with acipimox the decline was less outspoken compared with nontreated controls (P = 0.005). GNG was unchanged over time in patients as well as in healthy controls, and no influence of acipimox was found. In patients, GLY declined over time (P < 0.001), without a difference between acipimox-treated and untreated patients. In contrast, in controls treated with acipimox, no change over time was found, which was statistically different from the decline in untreated controls (P = 0.002). In conclusion, in falciparum malaria, FFAs are not involved in regulation of glucose production, nor of GNG or GLY.  相似文献   

19.
The metabolic mechanism of hepatic glucose overproduction was investigated in 3,3'-5-triiodo-l-thyronine (T3)-treated rats and Zucker diabetic fatty (ZDF) rats (fa/fa) after a 24-h fast. 2H2O and [U-13C3]propionate were administered intraperitoneally, and [3,4-13C2]glucose was administered as a primed infusion for 90 min under ketamine-xylazine anesthesia. 13C NMR analysis of monoacetone glucose derived from plasma glucose indicated that hepatic glucose production was twofold higher in both T3-treated rats and ZDF rats compared with controls, yet the sources of glucose overproduction differed significantly in the two models by 2H NMR analysis. In T3-treated rats, the hepatic glycogen content and hence the contribution of glycogenolysis to glucose production was essentially zero; in this case, excess glucose production was due to a dramatic increase in gluconeogenesis from TCA cycle intermediates. 13C NMR analysis also revealed increased phosphoenolpyruvate carboxykinase flux (4x), increased pyruvate cycling flux (4x), and increased TCA flux (5x) in T3-treated animals. ZDF rats had substantial glycogen stores after a 24-h fast, and consequently nearly 50% of plasma glucose originated from glycogenolysis; other fluxes related to the TCA cycle were not different from controls. The differing mechanisms of excess glucose production in these models were easily distinguished by integrated 2H and 13C NMR analysis of plasma glucose.  相似文献   

20.
Environmental conditions during the perinatal period influence metabolic and developmental processes in mammals and avian species, which could impact pre- and postnatal survival and development. The current study investigated the effect of eggshell temperature (EST) on glucose metabolism in broiler chicken embryos. Broiler eggs were incubated at a high (38.9°C) or normal (37.8°C) EST from day 10.5 of incubation onward and were injected with a bolus of [U-13C]glucose in the chorio-allantoic fluid at day 17.5 of incubation. After [U-13C]glucose administration, 13C enrichment was determined in intermediate pools and end-products of glucose metabolism. Oxidation of labeled glucose occurred for approximately 3 days after injection. Glucose oxidation was higher in the high than in the normal EST treatment from day 17.6 until 17.8 of incubation. The overall recovery of 13CO2 tended to be 4.7% higher in the high than in the normal EST treatment. An increase in EST (38.9°C vs 37.8°C) increased 13C enrichment in plasma lactate at day 17.8 of incubation and 13C in hepatic glycogen at day 18.8 of incubation. Furthermore, high compared to normal EST resulted in a lower yolk-free body mass at day 20.9 (−2.74 g) and 21.7 (−3.81 g) of incubation, a lower hepatic glycogen concentration at day 18.2 (−4.37 mg/g) and 18.8 (−4.59 mg/g) of incubation, and a higher plasma uric acid concentration (+2.8 mg/mL/+43%) at day 21.6 of incubation. These results indicate that the glucose oxidation pattern is relatively slow, but the intensity increased consistently with an increase in developmental stage of the embryo. High environmental temperatures in the perinatal period of chicken embryos increased glucose oxidation and decreased hepatic glycogen prior to the hatching process. This may limit glucose availability for successful hatching and could impact body development, probably by increased gluconeogenesis from glucogenic amino acids to allow anaerobic glycolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号