首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nontoxic peptide with bradykinin-potentiating activity was isolated from the dialyzed venom of the scorpion Buthus occitanus by reverse-phase high performance liquid chromatography (RP-HPLC). The pharmacological activity of the peptide was bioassayed by its ability to potentiate added bradykinin (BK) on the isolated guinea pig ileum as well as the isolated rat uterus for contraction. Moreover, the peptide potentiates in vivo the depressor effect of BK on arterial blood pressure in the normotensive anesthetized rat. Chemical characterization of the peptide was also performed. The amino acid composition of the peptide showed 21 amino acid residues per molecule including three proline residues. The amino acid sequence of the purified peptide was confirmed by mass spectrometry. Either N- or C-terminal ends were free. The sequence does not show a homology with bradykinin-potentiating peptides isolated from either scorpion or snake venoms. Furthermore, we did not find a significant sequence homology between the sequence of the isolated peptide and any of proteins or peptides in GenPro or NBRF data banks. The peptide also inhibited angiotensin-converting enzyme (ACE), and could not serve as substrate for the enzyme. It could be concluded that the mechanism of bradykinin-potentiating peptide (BPP) activity may be due to ACE inhibition.  相似文献   

2.
Endopeptidase 24.15 (EC; ep24.15), neurolysin (EC; ep24.16), and angiotensin-converting enzyme (EC; ACE) are metallopeptidases involved in neuropeptide metabolism in vertebrates. Using catalytically inactive forms of ep24.15 and ep24.16, we have identified new peptide substrates for these enzymes. The enzymatic activity of ep24.15 and ep24.16 was inactivated by site-directed mutagenesis of amino acid residues within their conserved HEXXH motifs, without disturbing their secondary structure or peptide binding ability, as shown by circular dichroism and binding assays. Fifteen of the peptides isolated were sequenced by electrospray ionization tandem mass spectrometry and shared homology with fragments of intracellular proteins such as hemoglobin. Three of these peptides (PVNFKFLSH, VVYPWTQRY, and LVVYPWTQRY) were synthesized and shown to interact with ep24.15, ep24.16, and ACE, with K(i) values ranging from 1.86 to 27.76 microm. The hemoglobin alpha-chain fragment PVNFKFLSH, which we have named hemopressin, produced dose-dependent hypotension in anesthetized rats, starting at 0.001 microg/kg. The hypotensive effect of the peptide was potentiated by enalapril only at the lowest peptide dose. These results suggest a role for hemopressin as a vasoactive substance in vivo. The identification of these putative intracellular substrates for ep24.15 and ep24.16 is an important step toward the elucidation of the role of these enzymes within cells.  相似文献   

3.
Because bradykinin (BK) appears to have cardioprotective effects ranging from improved hemodynamics to antiproliferative effects, inhibition of BK-degrading enzymes should potentiate such actions. The purpose of this study was to find out which enzymes are responsible for the degradation of BK in human plasma. Human plasma from healthy donors (n = 10) was incubated with BK in the presence or absence of specific enzyme inhibitors. At high (micromolar) concentrations, BK was mostly (>90%) degraded by carboxypeptidase N (CPN)-like activity. In contrast, at low (nanomolar) substrate concentrations, at which the velocity of the catalytic reaction is equivalent to that under physiological conditions, BK was mostly (>90%) converted into an inactive metabolite, BK-(1-7), by angiotensin-converting enzyme (ACE). BK-(1-7) was further converted by ACE into BK-(1-5), with accumulation of this active peptide. A minor fraction (<10%) of the BK was converted into another active metabolite, BK-(1-8), by CPN-like activity. The present study shows that the most critical step in plasma kinin metabolism, i.e., inactivation of BK, is mediated by ACE. Thus inhibition of plasma ACE activity would be cardioprotective by elevating the concentration of BK in the circulation.  相似文献   

4.
A model of the ACE2 structure and function as a SARS-CoV receptor   总被引:19,自引:0,他引:19  
The angiotensin-converting enzyme 2 (ACE2) is an important regulator of the renin-angiotensin system and was very recently identified as a functional receptor for the SARS virus. The ACE2 sequence is similar (sequence identities 43% and 35%, and similarities 61% and 55%, respectively) to those of the testis-specific form of ACE (tACE) and the Drosophila homolog of ACE (AnCE). The high level of sequence similarity allowed us to build a robust homology model of the ACE2 structure with a root-mean-square deviation from the aligned crystal structures of tACE and AnCE less than 0.5A. A prominent feature of the model is a deep channel on the top of the molecule that contains the catalytic site. Negatively charged ridges surrounding the channel may provide a possible binding site for the positively charged receptor-binding domain (RBD) of the S-glycoprotein, which we recently identified [Biochem. Biophys. Res. Commun. 312 (2003) 1159]. Several distinct patches of hydrophobic residues at the ACE2 surface were noted at close proximity to the charged ridges that could contribute to binding. These results suggest a possible binding region for the SARS-CoV S-glycoprotein on ACE2 and could help in the design of experiments to further elucidate the structure and function of ACE2.  相似文献   

5.
A novel process for the production of peptide mixtures is proposed. Biologically active peptides were synthesized using a thermolysin-catalyzed hydrolysis of a corn protein (zein) in an aqueous two-phase system. The mixture of peptides which was selectively recovered from the dextran-rich bottom phase had a higher angiotensin-converting enzyme (ACE) inhibitory activity than native zein.  相似文献   

6.
Hemopressin is a novel vasoactive nonapeptide derived from hemoglobin's alpha-chain as recently reported by Rioli et al. [Rioli V, Gozzo FC, Heimann AS, Linardi A, Krieger JE, Shida CS, et al. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme. J Biol Chem 2003;278(10):8547-55]. In anesthetized male Wistar rats, this peptide exhibited hypotensive actions similar to those of bradykinin (BK) when administered intravenously (i.v.), and was found to be metabolized both in vitro and in vivo by several peptidases, including the angiotensin-converting enzyme (ACE). In this study, these findings were expanded upon by examining: (i) the degradation kinetics following incubation with ACE purified from rabbit lung and (ii) the blood pressure lowering effects of HP and BK injected i.v. or intra-arterially (i.a.) in male rabbits, rats, and mice. Our findings demonstrate that, in vitro, HP and BK are both degraded by ACE, but at different velocity rates. Furthermore, both HP and BK induced transient hypotension in all animals tested, although the responses to HP relative to the administration sites were significantly lower (by 10-100-fold) on an equimolar basis compared to those of BK. In rabbits, the decrease of blood pressure induced by HP (10-100 nmol/kg) did not differ whether it was administered i.v. or i.a., suggesting an absence of pulmonary/cardiac inactivation in contrast to BK (0.1-1 nmol/kg). The in vivo effect of HP was significantly potentiated in rabbits immunostimulated with bacterial lipopolysaccharide (LPS), but was unaffected by both the B2 receptor antagonist HOE 140 (0.1 micromol/kg) and captopril (100 microg/kg), contrary to BK. Therefore, HP acts as a weak hypotensive mediator, which does not activate kinin B2 receptors, but uses a functional site and/or signaling paths appearing to be up-regulated by LPS.  相似文献   

7.
A protocol to follow the processing of angiotensin I into angiotensin II by rabbit angiotensin-converting enzyme (ACE) and its inhibition by a novel natural antagonist, the leech osmoregulator factor (LORF) using capillary zonal electrophoresis is described. The experiment was carried out using the Beckman PACE system and steps were taken to determine (a) the migration profiles of angiotensin and its yielded peptides, (b) the minimal amount of angiotensin II detected, (c) the use of different electrolytes and (d) the concentration of inhibitor. We demonstrated that LORF (IPEPYVWD), a neuropeptide previously found in leech brain, is able to inhibit rabbit ACE with an IC(50) of 19.8 micro m. Interestingly, its cleavage product, IPEP exhibits an IC(50) of 11.5 micro m. A competition assay using p-benzoylglycylglycylglycine and insect ACE established that LORF and IPEP fragments are natural inhibitors for invertebrate ACE. Fifty-four percent of insect ACE activity is inhibited with 50 micro m IPEP and 35% inhibition with LORF (25 mm). Extending the peptide at both N- and C-terminus (GWEIPEPYVWDES) and the cleavage of IPEP in IP abolished the inhibitory activity of both peptides. Immunocytochemical data obtained with antisera raised against LORF and leech ACE showed a colocalization between the enzyme and its inhibitor in the same neurons. These results showed that capillary zonal electrophoresis is a useful technique for following enzymatic processes with small amounts of products and constitutes the first evidence of a natural ACE inhibitor in invertebrates.  相似文献   

8.
Just the beginning: novel functions for angiotensin-converting enzymes   总被引:14,自引:0,他引:14  
Cardiovascular disease is predicted to be the commonest cause of death worldwide by the year 2020. Diabetes, smoking and hypertension are the main risk factors. The renin-angiotensin system plays a key role in regulating blood pressure and fluid and electrolyte homeostasis in mammals. The discovery of specific drugs that block either the key enzyme of the renin-angiotensin system, angiotensin-converting enzyme (ACE), or the receptor for its main effector angiotensin II, was a major step forward in the treatment of hypertension and heart failure. In recent years, however, the renin-angiotensin system has been shown to be a far more complex system than initially thought. It has become clear that additional peptide mediators are involved. Furthermore, a new ACE, angiotensin-converting enzyme 2 (ACE2), has been discovered which appears to negatively regulate the renin-angiotensin system. In the heart, ACE2 deficiency results in severe impairment of cardiac contractility and upregulation of hypoxia-induced genes. We shall discuss the interplay of the various effector peptides generated by angiotensin-converting enzymes ACE and ACE2, highlighting the role of ACE2 as a negative regulator of the renin-angiotensin system.  相似文献   

9.
Iberiotoxin (IbTx) is a scorpion venom peptide that inhibits BK Ca2+-activated K+ channels with high affinity and specificity. Automated solid-phase synthesis was used to prepare a biotin-labeled derivative (IbTx-LC-biotin) of IbTx by substitution of Asp19 of the native 37-residue peptide with N--(D-biotin-6-amidocaproate)-L-lysine. Both IbTx-LC-biotin and its complex with streptavidin (StrAv) block single BK channels from rat skeletal muscle with nanomolar affinity, indicating that the biotin-labeled residue, either alone or in complex with StrAv, does not obstruct the toxin binding interaction with the BK channel. IbTx-LC-biotin exhibits high affinity (KD = 26 nM) and a slow dissociation rate (koff = 5.4 x 10(-4) s(-1)) in a macroscopic blocking assay of whole-cell current of the cloned human BK channel. Titration of IbTx-LC-biotin with StrAv monitored by high performance size exclusion chromatography is consistent with a stoichiometry of two binding sites for IbTx-LC-biotin per StrAv tetramer, indicating that steric interference hinders simultaneous binding of two toxin molecules on each of the two biotin-binding faces of StrAv. In combination with fluorescent conjugates of StrAv or anti-biotin antibody, IbTx-LC-biotin was used to image the surface distribution of BK channels on a transfected cell line. Fluorescence microscopy revealed a patch-like surface distribution of BK channel protein. The results support the feasibility of using IbTx-LC-biotin and similar biotin-tagged K+ channel toxins for diverse applications in cellular neurobiology. .  相似文献   

10.
Angiotensin-(1-7) (Ang-(1-7)), a bioactive peptide in the renin-angiotensin system, has counterregulatory actions to angiotensin II (Ang II). However, the mechanism by which Ang-(1-7) enhances vasodepressor responses to bradykinin (BK) is not well understood. In the present study, the effects of Ang-(1-7) on responses to BK, BK analogs, angiotensin I (Ang I), and Ang II were investigated in the anesthetized rat. The infusion of Ang-(1-7) (55 pmol/min i.v.) enhanced decreases in systemic arterial pressure in response to i.v. injections of BK and the BK analogs [Hyp3, Tyr(Me)8]-bradykinin (HT-BK) and [Phe8psi (CH2-NH) Arg9]-bradykinin (PA-BK) without altering pressor responses to Ang I or II, or depressor responses to acetylcholine and sodium nitroprusside. The angiotensin-converting enzyme (ACE) inhibitor enalaprilat enhanced responses to BK and the BK analog HT-BK without altering responses to PA-BK and inhibited responses to Ang I. The potentiating effects of Ang-(1-7) and enalaprilat on responses to BK were not attenuated by the Ang-(1-7) receptor antagonist A-779. Ang-(1-7)- and ACE inhibitor-potentiated responses to BK were attenuated by the BK B2 receptor antagonist Hoe 140. The cyclooxygenase inhibitor sodium meclofenamate had no significant effect on responses to BK or Ang-(1-7)-potentiated BK responses. These results suggest that Ang-(1-7) potentiates responses to BK by a selective B2 receptor mechanism that is independent of an effect on Ang-(1-7) receptors, ACE, or cyclooxygenase product formation. These data suggest that ACE inhibitor-potentiated responses to BK are not mediated by an A-779-sensitive mechanism and are consistent with the hypothesis that enalaprilat-induced BK potentiation is due to decreased BK inactivation.  相似文献   

11.
Effects of angiotensin-converting enzyme (ACE) inhibitors, enalaprilat and imidaprilat, on bradykinin (BK) metabolizing enzymes, aminopeptidase P (APP), neutral endopeptidase (NEP) and carboxypeptidase N (CPN), were examined. APP activity in the mouse lung was inhibited by enalaprilat in a concentration-dependent manner while imidaprilat did not influence the enzyme activity. The inhibitory effects of these ACE inhibitors on the NEP activity in the mouse lung and the CPN activity in the mouse serum were negligible. These data suggested that the influence of enalaprilat on the APP activity and subsequent BK metabolism are different from those of imidaprilat.  相似文献   

12.
Human angiotensin-converting enzyme-related carboxypeptidase (ACE2) is a zinc metalloprotease whose closest homolog is angiotensin I-converting enzyme. To begin to elucidate the physiological role of ACE2, ACE2 was purified, and its catalytic activity was characterized. ACE2 proteolytic activity has a pH optimum of 6.5 and is enhanced by monovalent anions, which is consistent with the activity of ACE. ACE2 activity is increased approximately 10-fold by Cl(-) and F(-) but is unaffected by Br(-). ACE2 was screened for hydrolytic activity against a panel of 126 biological peptides, using liquid chromatography-mass spectrometry detection. Eleven of the peptides were hydrolyzed by ACE2, and in each case, the proteolytic activity resulted in removal of the C-terminal residue only. ACE2 hydrolyzes three of the peptides with high catalytic efficiency: angiotensin II () (k(cat)/K(m) = 1.9 x 10(6) m(-1) s(-1)), apelin-13 (k(cat)/K(m) = 2.1 x 10(6) m(-1) s(-1)), and dynorphin A 1-13 (k(cat)/K(m) = 3.1 x 10(6) m(-1) s(-1)). The ACE2 catalytic efficiency is 400-fold higher with angiotensin II () as a substrate than with angiotensin I (). ACE2 also efficiently hydrolyzes des-Arg(9)-bradykinin (k(cat)/K(m) = 1.3 x 10(5) m(-1) s(-1)), but it does not hydrolyze bradykinin. An alignment of the ACE2 peptide substrates reveals a consensus sequence of: Pro-X((1-3 residues))-Pro-Hydrophobic, where hydrolysis occurs between proline and the hydrophobic amino acid.  相似文献   

13.
The influence of alpha s1-casein proteolysis products of cow milk on the activity of angiotensin-converting enzyme (ACE) has been investigated. The peptide fraction has been obtained after incubation of alpha s1-casein with different strains Lactococcus lactis ssp. lactis and pepsin. The peptides with low molecular weight has been obtained with the help of a gel filtration. It is shown, that such peptides received with the help of some strains of Lactococcus lactis ssp. lactis and pepsin are capable to inhibit the activity of ACE. A conclusion about possibility of appearing antihypertensive peptides as a result of proteolitic processes in milk products has been made.  相似文献   

14.
We recently reported a mouse model called ACE 10/10 in which macrophages overexpress the carboxypeptidase angiotensin-converting enzyme (ACE). These mice have an enhanced inflammatory response to tumors that markedly inhibits tumor growth. Here, we show that ACE modifies the C termini of peptides for presentation by major histocompatibility complex (MHC) class I molecules. The peptide-processing activity of ACE applies to antigens from either the extracellular environment (cross-presentation) or antigens produced endogenously. Consistent with its role in MHC class I antigen processing, ACE localizes to the endoplasmic reticulum. ACE overexpression does not appear to change the overall supply of peptides available to MHC class I molecules. The immunization of wild type mice previously given ACE 10/10 macrophages enhances the efficiency of antigen-specific CD8+ T cell priming. These data reveal that ACE is a dynamic participant in fashioning the peptide repertoire for MHC class I molecules by modifying the C termini of peptide precursors. Manipulation of peptidase expression by antigen-presenting cells may ultimately prove a useful strategy to enhance the immune response.  相似文献   

15.
We find that expression of the membrane dipeptidyl carboxypeptidase angiotensin-converting enzyme (ACE) enhances presentation of certain endogenously synthesized peptides to major histocompatibility complex (MHC) class I-restricted cytotoxic T lymphocytes. ACE appears to function only in an intracellular secretory compartment of antigen-presenting cells. ACE-enhanced antigen presentation requires the expression of the putative antigenic peptide transporters, TAP1 and TAP2. These findings demonstrate that a protease can influence the processing of endogenously synthesized antigens and strongly suggest that longer peptides can be transported from the cytosol to a secretory compartment where trimming of antigenic peptides to the lengths preferred by MHC class I molecules can occur if the appropriate protease is present.  相似文献   

16.
Many kinds of bioactive peptides which might prevent lifestyle-related diseases are released from food proteins after enzymatic digestion. Inhibitory peptides for angiotensin I-converting enzyme (ACE) having anti-hypertensive effect have been isolated from enzymatic digests of various food proteins. LKPNM, which was isolated from the thermolysin digest of dried bonito was activated 8-fold by ACE itself and showed a prolonged effect after oral administration. Two vasorelaxing peptides, ovokinin and ovokinin(2-7), showing antihypertensive effect after oral administration were obtained from ovalbumin digests. We found that low molecular weight peptides derived from food proteins lowered serum cholesterol without increasing excretion of cholesterol and bile acids. An immunostimulating peptide isolated from an enzymatic digest of soybean protein prevented alopecia induced by cancer chemotherapy.  相似文献   

17.
The testis-specific isozyme of angiotensin-converting enzyme (ACE) is identical, from residue 68 to the C terminus, to the second half or C-terminal domain of somatic ACE. However, the first 67 residues, comprising the signal peptide and a Ser-/Thr-rich 36-residue sequence that constitutes the N terminus of mature testis ACE, are unique. We have expressed a mutant human testis ACE lacking this 36-residue N-terminal sequence and find that compared to the wild-type protein the mutant is 15 kDa smaller due to the loss of greater than 90% of all O-linked sugars, but that it retains full enzymatic activity and is stable in culture. Heavy O-glycosylation is a property of testis ACE that is not shared by the somatic enzyme and is attributable to this unique sequence.  相似文献   

18.
Angiotensin I-converting enzyme plays an important role in hypertension and therefore its inhibition is considered to be a useful procedure in the prevention of hypertension. Two novel ACE inhibitory peptides were purified and identified from the papain-trypsin hydrolysate of hen egg white lysozyme using reverse phase-high performance liquid chromatography. The sequences of identified peptides were NTDGSTDYGILQINSR (MW: 1,753.98?±?0.5?Da) and VFGR (MW: 459.26?±?0.5?Da), which were named F2 and F9 peptide, respectively. Analyses of the far-UV CD spectra of ACE in the absence and presence of the F2 peptide revealed ACE secondary structural changes. In the presence of the F2 peptide, a loss of helical content of ACE was observed, which can lead to decrease of the enzymatic activity. Lineweaver?CBurk plots show that the identified peptides both act as non-competitive ACE inhibitors. These findings would be helpful on the understanding of interaction between ACE and its inhibitory peptides.  相似文献   

19.
The present study determined the participation of PGI2 in the angiotensin-(1-7) [Ang-(1-7)]/bradykinin (BK) interaction, in the presence and absence of Angiotensin Converting Enzyme (ACE) inhibition, trying to correlate it with tissue levels of both peptides. The isolated mesenteric arteriolar bed of Spontaneously Hypertensive Rats (SHR) was perfused with Krebs or Krebs plus enalaprilat (10 nM), and drugs were injected alone or in association. BK (10 ng)-induced relaxation was potentiated by Ang-(1-7) (2.2 microg) in the presence or absence of enalaprilat. Ang-(1-7) receptor blockade [A-779 (4.8 microg)] did not interfere with the BK effect in preparations perfused with normal Krebs, but reversed the increased BK relaxation observed after ACE inhibition. PGI2 release by mesenteric vessels was not altered by BK or Ang-(1-7) alone, but was increased when both peptides were injected in association, in the absence or in the presence of enalaprilat. ACE inhibition caused a 2-fold increase in the BK tissue levels, and a significant decrease in the Ang-(1-7) values. We conclude that endogenous Ang-(1-7) has an important contribution to the effect of ACE inhibitors participating in the enhancement of BK response. The mechanism of Ang-(1-7) potentiating effect probably involves an increased production of PGI2. Our results suggest that a different enzymatic pathway (non-related to ACE) is involved in the local Ang-(1-7) metabolism.  相似文献   

20.
Schmidt JJ  Stafford RG 《FEBS letters》2002,532(3):423-426
The peptide N-acetyl-CRATKML-amide is an effective inhibitor of type A botulinum neurotoxin (BoNT A) protease activity [Schmidt et al., FEBS Lett. 435 (1998) 61-64]. To improve inhibitor binding, the peptide was modified by replacing cysteine with other sulfhydryl-containing compounds. Ten peptides were synthesized. One peptide adapted the structure of captopril to the binding requirements of BoNT A, but it was a weak inhibitor, suggesting that angiotensin-converting enzyme is not a good model for BoNT A inhibitor development. However, replacing cysteine with 2-mercapto-3-phenylpropionyl yielded a peptide with K(i) of 330 nM, the best inhibitor of BoNT A protease activity reported to date. Additional modifications of the inhibitor revealed structural elements important for binding and supported our earlier findings that, with the exception of P1' arginine, subsites on BoNT A are not highly specific for particular amino acid side chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号