首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study is to investigate the nitrogen removal performance of the anaerobic ammonium oxidation (Anammox) process and the microbial community that enables the Anammox system to function well at ambient temperatures. A reactor with a novel spiral structure was used as the gas-solid separator. The reactor was fed with synthetic inorganic wastewater composed mainly of NH4+-N and NO2-N, and operated for 92 days. Stable nitrogen removal rates (NRR) of 16.3 and 17.5 kg-N m−3 d−1 were obtained at operating temperatures of 33 ± 1 and 23 ± 2 °C, respectively. To our knowledge, such a high NRR at ambient temperatures has not been reported previously. In addition, the experiments presented herein confirm that high influent NO2-N concentration of 460 mg L−1 did not noticeably inhibit the Anammox activity. Furthermore, the freshwater Anammox bacterium KU2, which was identified as the dominant bacterial species in the consortium by 16S rRNA gene analysis, is considered to be responsible for the stable nitrogen removal performance at ambient temperatures.  相似文献   

2.
The heavy use of fertilizers in agricultural lands can result in significant nitrate (NO3) loadings to the aquatic environment. We hypothesized that biological denitrification in agricultural ditches and streams could be enhanced by adding elemental sulfur (So) to the sediment layer, where it could act as a biofilm support and electron donor. Using a bench-scale stream mesocosm with a bed of So granules, we explored NO3 removal fluxes as a function of the effluent NO3 concentrations. With effluent NO3 ranging from 0.5 mg N L−1 to 4.1 mg N L−1, NO3 removal fluxes ranged from 228 mg N m−2 d−1 to 708 mg N m−2 d−1. This is as much as 100 times higher than for agricultural drainage streams. Sulfate (SO42−) production was high due to aerobic sulfur oxidation. Molecular studies demonstrated that the So amendment selected for Thiobacillus species, and that no special inoculum was required for establishing a So-based autotrophic denitrifying community. Modeling studies suggested that denitrification was diffusion limited, and advective flow through the bed would greatly enhance NO3 removal fluxes. Our results indicate that amendment with So is an effective means to stimulate denitrification in a stream environment. To minimize SO42− production, it may be better to place So deeper in the sediment layer.  相似文献   

3.
The subsurface wastewater infiltration (SWI) system proved to be an effective and low-cost technique for decentralized sewage treatment in areas without adequate domestic treatment facilities. Field-scale experiments were conducted through a deep SWI system, with effective depth of 1.5 m, under hydraulic loading rates of 0.040, 0.065, 0.081 and 0.10 m3/m2 d. Taking the hydraulic and treatment efficiencies into consideration, the hydraulic loading rate of 0.081 m3/m2 d was recommended. Under this condition, NH3-N, TN, and COD removal efficiencies were 86.2 ± 3.0, 80.7 ± 1.9 and 84.8 ± 2.1%, respectively. In the effluent, NH3-N concentration declined to 2.3-4.4 mg/L, accounting for 63.2-65.6% of TN. NO3-N concentration increased from 0.2 to 0.3 mg/L in the influent to 2.0-2.5 mg/L in the effluent. The nitrifying bacteria number declined with increased depth, while the amount of denitrifying bacteria increased. The analysis of results about the nitrifying and denitrifying bacteria distribution indicated that the most effective ranges for nitrification and denitrification process were 0.3-0.7 m and 0.7-1.5 m, respectively.  相似文献   

4.
Short-rotation energy forestry is one of the potential ways for management of abandoned agricultural areas. It helps sequestrate carbon and mitigate human-induced climate changes. Owing to symbiotic dinitrogen (N2) fixation by actinomycetes and the soil fertilizing capacity and fast biomass growth of grey alders, the latter can be suitable species for short-rotation forestry. In our study of a young grey alder stand (Alnus incana (L.) Moench) on abandoned arable land in Estonia we tested the following hypotheses: (1) afforestation of abandoned agricultural land by grey alder significantly affects the soil nitrogen (N) status already during the first rotation period; (2) input of symbiotic fixation covers an essential part of the plant annual N demand of the stand; (3) despite a considerable N input into the ecosystem of a young alder stand, there will occur no significant environmental hazards (N leaching or N2O emissions). The first two hypotheses can be accepted: there was a significant increase in N and C content in the topsoil (from 0.11 to 0.14%, and from 1.4 to 1.7%, respectively), and N fixation (151.5 kg N ha−1 yr−1) covered about 74% of the annual N demand of the stand. The third hypothesis met support as well: N2O emissions (0.5 kg N ha−1 yr−1) were low, while most of the annual gaseous N losses were in the form of N2 (73.8 kg N ha−1 yr−1). Annual average NO3-N leaching was 15 kg N ha−1 yr−1 but the N that leached from topsoil accumulated in deeper soil layers. The soil acidifying effect of alders was clearly evident; during the 14-year period soil acidity increased 1.3 units in the upper 0-10 cm topsoil layer.  相似文献   

5.
The ability to cope with NH4+-N was studied in the littoral helophytes Phragmites australis and Glyceria maxima, species commonly occupying fertile habitats rich in NH4+ and often used in artificial wetlands. In the present study, Glyceria growth rate was reduced by 16% at 179 μM NH4+-N, and the biomass production was reduced by 47% at 3700 μM NH4+-N compared to NO3-N. Similar responses were not found in Phragmites. The amounts (mg g−1 dry wt) of starch and total non-structural carbohydrates (TNC) in rhizomes were significantly lower in NH4+ (8.9; 12.2 starch; 20.1; 41.9 TNC) compared to NO3 treated plants (28.0; 15.6 starch; 58.5; 56.3 TNC) in Phragmites and Glyceria, respectively. In addition, Glyceria showed lower amounts (mg g−1 dry wt) of soluble sugars, TNC, K+, and Mg2+ in roots under NH4+ (5.6; 14.3; 20.6; 1.9) compared to NO3 nutrition (11.6; 19.9; 37.9; 2.9, for soluble sugars, TNC, K+, and Mg2+, respectively), while root internal levels of NH4+ and Ca2+ (0.29; 4.6 mg g−1 dry wt, mean of both treatments) were only slightly affected. In Phragmites, no changes in soluble sugars, TNC, Ca2+, K+, and Mg2+ contents of roots (7.3; 14.9; 5.1; 17.3; 2.6 mg g−1 dry wt, means of both treatments) were found in response to treatments. The results, therefore, indicate a more pronounced tolerance towards high NH4+ supply in Phragmites compared to Glyceria, although the former may be susceptible to starch exhaustion in NH4+-N nutrition. In contrast, Glyceria's ability to colonize fertile habitats rich in NH4+ is probably related to the avoidance strategy due to shallow rooting or to the previously described ability to cope with high NH4+ levels when P availability is high and NO3 is also provided.  相似文献   

6.
The aim of this study was to explore the potential for reducing soluble N load in fishpond wastewater using naturally occurring denitrifying bacteria. Twenty-seven isolates were selected from in wastewater (liquid/solid) of catfish-ponds located along the Tien river, in the Mekong Delta, Vietnam in SW-LB medium (artificial seawater Luria-Britani medium) supplemented with 10 mM NH4 and NO3 and twenty-five isolates were identified as Pseudomonas stutzeri based on similarity of PCR-16S rRNA using universal primers and specific primers. Four isolates were effective in lowering soluble N (NH4, NO2 and NO3) levels in fishpond water from 10 mg/L to negligible amounts after four days. Further experiments are underway to determine the fate of N lost from solution and the relative activity of ammonia oxidation, and nitrite and nitrate reduction by P. stutzeri isolates.  相似文献   

7.
The effects of inorganic nitrogen (N) source (NH4+, NO3 or both) on growth, biomass allocation, photosynthesis, N uptake rate, nitrate reductase activity and mineral composition of Canna indica were studied in hydroponic culture. The relative growth rates (0.05-0.06 g g−1 d−1), biomass allocation and plant morphology of C. indica were indifferent to N nutrition. However, NH4+ fed plants had higher concentrations of N in the tissues, lower concentrations of mineral cations and higher contents of chlorophylls in the leaves compared to NO3 fed plants suggesting a slight advantage of NH4+ nutrition. The NO3 fed plants had lower light-saturated rates of photosynthesis (22.5 μmol m−2 s−1) than NH4+ and NH4+/NO3 fed plants (24.4-25.6 μmol m−2 s−1) when expressed per unit leaf area, but similar rates when expressed on a chlorophyll basis. Maximum uptake rates (Vmax) of NO3 did not differ between treatments (24-35 μmol N g−1 root DW h−1), but Vmax for NH4+ was highest in NH4+ fed plants (81 μmol N g−1 root DW h−1), intermediate in the NH4NO3 fed plants (52 μmol N g−1 root DW h−1), and lowest in the NO3 fed plants (28 μmol N g−1 root DW h−1). Nitrate reductase activity (NRA) was highest in leaves and was induced by NO3 in the culture solutions corresponding to the pattern seen in fast growing terrestrial species. Plants fed with only NO3 had high NRA (22 and 8 μmol NO2 g−1 DW h−1 in leaves and roots, respectively) whereas NRA in NH4+ fed plants was close to zero. Plants supplied with both forms of N had intermediate NRA suggesting that C. indica takes up and assimilate NO3 in the presence of NH4+. Our results show that C. indica is relatively indifferent to inorganic N source, which together with its high growth rate contributes to explain the occurrence of this species in flooded wetland soils as well as on terrestrial soils. Furthermore, it is concluded that C. indica is suitable for use in different types of constructed wetlands.  相似文献   

8.
Denitrification beds are a simple approach for removing nitrate (NO3) from a range of point sources prior to discharge into receiving waters. These beds are large containers filled with woodchips that act as an energy source for microorganisms to convert NO3 to nitrogen (N) gases (N2O, N2) through denitrification. This study investigated the biological mechanism of NO3 removal, its controlling factors and its adverse effects in a large denitrification bed (176 m × 5 m × 1.5 m) receiving effluent with a high NO3 concentration (>100 g N m−3) from a hydroponic glasshouse (Karaka, Auckland, New Zealand). Samples of woodchips and water were collected from 12 sites along the bed every two months for one year, along with measurements of gas fluxes from the bed surface. Denitrifying enzyme activity (DEA), factors limiting denitrification (availability of carbon, dissolved organic carbon (DOC), dissolved oxygen (DO), temperature, pH, and concentrations of NO3, nitrite (NO2) and sulfide (S2−)), greenhouse gas (GHG) production - as nitrous oxide (N2O), methane (CH4), carbon dioxide (CO2) - and carbon (C) loss were determined. NO3-N concentration declined along the bed with total NO3-N removal rates of 10.1 kg N d−1 for the whole bed or 7.6 g N m−3 d−1. NO3-N removal rates increased with temperature (Q10 = 2.0). In laboratory incubations, denitrification was always limited by C availability rather than by NO3. DO levels were above 0.5 mg L−1 at the inlet but did not limit NO3-N removal. pH increased steadily from about 6 to 7 along the length of the bed. Dissolved inorganic carbon (C-CO2) increased in average about 27.8 mg L−1, whereas DOC decreased slightly by about 0.2 mg L−1 along the length of the bed. The bed surface emitted on average 78.58 μg m−2 min−1 N2O-N (reflecting 1% of the removed NO3-N), 0.238 μg m−2 min−1 CH4 and 12.6 mg m−2 min−1 CO2. Dissolved N2O-N increased along the length of the bed and the bed released on average 362 g dissolved N2O-N per day coupled with N2O emission at the surface about 4.3% of the removed NO3-N as N2O. Mechanisms to reduce the production of this GHG need to be investigated if denitrification beds are commonly used. Dissolved CH4 concentrations showed no trends along the length of the bed, ranging from 5.28 μg L−1 to 34.24 μg L−1. Sulfate (SO42−) concentrations declined along the length of the bed on three of six samplings; however, declines in SO42− did not appear to be due to SO42− reduction because S2− concentrations were generally undetectable. Ammonium (NH4+) (range: <0.0007 mg L−1 to 2.12 mg L−1) and NO2 concentrations (range: 0.0018 mg L−1 to 0.95 mg L−1) were always very low suggesting that anammox was an unlikely mechanism for NO3 removal in the bed. C longevity was calculated from surface emission rates of CO2 and release of dissolved carbon (DC) and suggested that there would be ample C available to support denitrification for up to 39 years.This study showed that denitrification beds can be an efficient tool for reducing high NO3 concentrations in effluents but did produce some GHGs. Over the course of a year NO3 removal rates were always limited by C and temperature and not by NO3 or DO concentration.  相似文献   

9.
This study focused on effects from Monoporeia affinis reworking and ventilation activities on benthic fluxes and mineralization processes during a simulated bloom event. The importance of M. affinis density for benthic solute (O2, ΣNO2 + NO3, NH4+ and HPO42−) fluxes and sediment reactivity (mobilization of NH4+ and HPO42−) following additions of organic material to the sediment surface was experimentally investigated using sediment-water and closed sediment (jar) incubations. Three different densities of M. affinis were used to resemble a low, medium and high density situation (1300, 2500 and 6400 ind. m− 2, respectively) of a natural amphipod community. The degradation of phytodetritus (Tetraselmis sp., 5 g C m− 2) added to the sediment surface was followed over a period of 20 days. Benthic solute fluxes of O2, ΣNO2 + NO3 and NH4+ were generally progressively stimulated with increasing number of M. affinis, while no such correlation was found for HPO42−. Solute fluxes were initially enhanced 1 to 2 days after the addition of phytodetritius, caused by mineralization of the most labile organic material and a food-stimulated irrigation by the amphipods. There was no effect from the activity of M. affinis on total denitrification (Dtot = Dn + Dw) or denitrification utilizing nitrate from coupled nitrification/denitrification (Dn) for any of the densities examined. Denitrification utilizing overlying water nitrate (Dw) was only about 10% of Dtot. Dw was significantly enhanced for the highest M. affinis density investigated. The reactivity of the sediment decreased progressively with increasing density of M. affinis and with time of the experiment. However, enhanced ammonium production at least 6 days after the organic addition indicated excretion of N-containing organic compounds by M. affinis. In conclusion, large spatial and temporal variations in density of M. affinis may be of significant importance for benthic solute fluxes and overall mineralization of organic material in Baltic Sea sediments.  相似文献   

10.
We investigated the anaerobic ammonium oxidation (anammox) reaction in a labscale upflow anaerobic sludge blanket (UASB) reactor. Our aim was to detect and enrich the organisms responsible for the anammox reaction using a synthetic medium that contained low concentrations of substrates (ammonium and nitrite). The reactor was inoculated with granular sludge collected from a full-scale anaerobic digestor used for treating brewery wastewater. The experiment was performed during 260 days under conditions of constant ammonium concentration (50 mg NH4/+-N/L) and different nitrite concentrations (50∼150 mg NO2-N/L). After 200 days, anammox activity was observed in the system. The microorganisms involved in this anammox reaction were identified as CandidatusB. Anammoxidans andK. Stuttgartiensis using fluorescencein situ hybridization (FISH) method.  相似文献   

11.
Nitrate (NO3) loss from agriculture to shallow groundwater and transferral to sensitive aquatic ecosystems is of global concern. Denitrifying bioreactor technology, where a solid carbon (C) reactive media intercepts contaminated groundwater, has been successfully used to convert NO3 to di-nitrogen (N2) gas. One of the challenges of groundwater remediation research is how to track denitrification potential spatially and temporally within reactive media and subsoil. First, using δ15N/δ18O isotopes, eight wells were divided into indicative transformational processes of ‘nitrification’ or ‘denitrification’ wells. Then, using N2/argon (Ar) ratios these wells were divided into ‘low denitrification potential’ or high denitrification potential’ categories. Secondly, using falling head tests, the saturated hydraulic conductivity (Ksat) in each well was estimated, creating two groups of ‘slow’ (0.06 m day−1) and ‘fast’ (0.13 m day−1) wells, respectively. Thirdly, two ‘low denitrification potential’ wells (one fast and one slow) with high NO3 concentration were amended with woodchip to enhance denitrification. Water samples were retrieved from all wells using a low flow syringe to avoid de-gassing and analysed for N2/Ar ratio using membrane inlet mass spectrometry. Results showed that there was good agreement between isotope and chemical (N2/Ar ratio and dissolved organic C (DOC)) and physio-chemical (dissolved oxygen, temperature, conductivity and pH) parameters. To explain the spatial and temporal distribution of NO3 and other parameters on site, the development of predictive models using the available datasets for this field site was examined for NO3, Cl, N2/Ar and DOC. Initial statistical analysis was directed towards the testing of the effect of woodchip amendment. The analysis was formulated as a repeated measures analysis of the factorial structure for treatment and time. Nitrate concentrations were related to Ksat and water level (p < 0.0001 and p = 0.02, respectively), but did not respond to woodchip addition (p = 0.09). This non-destructive technique allows elucidation of denitrification potential over time and could be used in denitrifying bioreactor technology to assess denitrification hotspots in reactive media, while developing a NO3 spatial and temporal predictive model for bioreactor site specific conditions.  相似文献   

12.
A family of complexes containing the {VO(OMe)}2+ motif with the O,N,S-donor Schiff bases (H2tbhsR) derived from thiobenzhydrazide and 5-substituted salicylaldehydes has been reported. Reactions of [VO(acac)2] with H2tbhsR in methanol provide the complexes having the general formula [VO(OMe)(tbhsR)] (R = H, OMe, Cl, Br and NO2) in 40-53% yields. Microanalytical, various spectroscopic (IR, UV-Vis and NMR) and electrochemical measurements have been used for the characterization of the complexes. All the complexes are redox active and display a near reversible metal centred reduction in the potential range 0.20-0.47 V (versus Ag/AgCl). The trend in these potential values reflects the polar effect of the substituent on the salicylidene fragment of tbhsR2−. The X-ray crystal structures of all the complexes have been determined. In each of the complexes where R = H, OMe, Cl and Br, the metal ion is in a distorted square-pyramidal O3NS coordination sphere assembled by the O,N,S-donor tbhsR2−, the methoxo and the oxo groups. The complex where R = NO2, crystallizes as a hexacoordinated species due to coordination of a methanol O-atom at the vacant sixth site. The bond parameters associated with the metal ions and the physical properties of the complexes are consistent with the +5 oxidation state of the metal ion in all the complexes. Scrutiny of crystal packing reveals dimeric, one-dimensional and two-dimensional self-assembled structures via intermolecular C-H?O and O-H?O interactions. The two-dimensional network contains the cyclic tetramer of methanol.  相似文献   

13.
In this study we assessed the growth, morphological responses, and N uptake kinetics of Salvinia natans when supplied with nitrogen as NO3, NH4+, or both at equimolar concentrations (500 μM). Plants supplied with only NO3 had lower growth rates (0.17 ± 0.01 g g−1 d−1), shorter roots, smaller leaves with less chlorophyll than plants supplied with NH4+ alone or in combination with NO3 (RGR = 0.28 ± 0.01 g g−1 d−1). Ammonium was the preferred form of N taken up. The maximal rate of NH4+ uptake (Vmax) was 6–14 times higher than the maximal uptake rate of NO3 and the minimum concentration for uptake (Cmin) was lower for NH4+ than for NO3. Plants supplied with NO3 had elevated nitrate reductase activity (NRA) particularly in the roots showing that NO3 was primarily reduced in the roots, but NRA levels were generally low (<4 μmol NO2 g−1 DW h−1). Under natural growth conditions NH4+ is probably the main N source for S. natans, but plants probably also exploit NO3 when NH4+ concentrations are low. This is suggested based on the observation that the plants maintain high NRA in the roots at relatively high NH4+ levels in the water, even though the uptake capacity for NO3 is reduced under these conditions.  相似文献   

14.
The biogeochemical processes that drive nutrient transformations and recycling in organic marine sediment-water environments were studied for 17 months in a zero-effluent intensive recirculating culture system. The system consisted of a 10 m3 gilthead seabream (Sparus aurata) tank coupled to aerobic and anaerobic water treatment elements. Nutrients and alkalinity were measured in the system to quantify the main biogeochemical processes. Fractions of the carbon fed in feed were found in fish (18.3%) and in sludge (11%); the missing carbon was respired by fish (45%) and by aerobic (8.4%) and anaerobic (7.7%) microorganisms. Fractions of the nitrogen fed in feed were found in fish (15.4%) and in sludge (14.3%); the missing nitrogen was eliminated by nitrification-denitrification. Most of the phosphorus and ash fed in feed and not found in fish accumulated within the sludge in the system. The rates of nitrification, denitrification and sulphate reduction increased with time, reaching 0.3 g N m− 2 d− 1, 53 g N m− 2 d− 1 and 145 g S m− 2 d− 1, respectively. Nitrification developed more rapidly than denitrification, leading at first to nitrate accumulation (to 20 mmol NO3 l− 1 by day 200) and a decrease in alkalinity. Once denitrification surpassed nitrification, nitrate concentrations decreased, eventually being reduced to < 0.3 mmol NO3 l− 1 by day 510, and alkalinity stabilized. Toxic hydrogen sulphide, generated within the anaerobic sludge, was oxidized by oxygen and nitrate as it diffused through the anaerobic-aerobic sediment-water interface. When nitrate levels in the water above the sludge dropped below 2 mmol l− 1, sulphide was also oxidized in the fluidized bed reactor. Denitrification reduced nitrate in the water, respired (jointly with sulphate reduction) carbon in the sludge, oxidized the hydrogen sulphide, and contributed to stabilization of alkalinity and accumulation of polyphosphate in bacteria as a major sink of labile P.  相似文献   

15.
Static experiments were conducted to investigate the effects of environmental factors on nitrate (NO3?-N)-removal efficiency, such as NO3?-N loading, pH value, C/N ratio and temperature in activated sludge using Fe (II) as electron donor. The results demonstrated that the average denitrification rate increased from 1.25 to 2.23 mg NO3?-N/(L·h) with NO3?-N loading increased from 30 to 60 mg/L. When pH increased from 7 to 8, the concentration of NO3?-N and nitrite (NO2?-N) in effluent were all maintained at quite low levels. C/N ratio had little impact on denitrification process, i.e., inorganic carbon (C) source could still be enough for denitrification process with C/N ratio as low as 5. Temperature had a significant effect on the denitrification efficiency, and NO3?-N removal efficiency of 92.03%, 96.77%, 97.67% and 98.23% could be obtained with temperature of 25°C, 30°C, 35°C and 40°C, respectively. SEM, XRD and XRF analysis was used to investigate microscopic surface morphology and chemical composition of the denitrifying activated sludge, and mechanism of the nitrate-dependent anaerobic ferrous oxidation (NAFO) bacterias could be explored with this research.  相似文献   

16.
The effects of short term hypoxia on bioturbation activity and inherent solute fluxes are scarcely investigated even if increasing number of coastal areas are subjected to transient oxygen deficits. In this work dark fluxes of oxygen (O2), dissolved inorganic carbon (TCO2) and nutrients across the sediment-water interface, as well as rates of denitrification (isotope pairing), were measured in intact sediment cores collected from the dystrophic pond of Sali e Pauli (Sardinia, Italy). Sediments were incubated at 100, 70, 40 and 10% of O2 saturation in the overlying water, with both natural benthic communities, dominated by the polychaete Polydora ciliata (11.100 ± 2.500  ind. m− 2), and after the addition of individuals of the deep-burrower polychaete Hediste diversicolor. Below an uppermost oxic layer of ~ 1 mm, sediments were highly reduced, with up to 6 mM of S2− in the 5 mm layer. Flux of S2− and O2 calculated from pore water gradients were 8.61 ± 1.12 and − 2.27 ± 0.56 mmol m− 2 h− 1, respectively. However, sediment oxygen demand (SOD) calculated from core incubation was − 10.52 ± 0.33 mmol m− 2 h− 1, suggesting a major contribution of P. ciliata to O2-mediated sulphide oxidation. P. ciliata also strongly stimulated NH4+ and PO43− fluxes, with rates ~ 15 and ~ 30 folds higher, respectively, than those estimated from pore water gradients. P. ciliata activity was significantly reduced at 10% O2 saturation, coupled to decreased rates of solutes transfer. The addition of H. diversicolor further stimulated SOD, NH4+ efflux and SiO2 mobilisation. Similarly to P. ciliata, the degree of stimulation of SOD and NH4+ flux by H. diversicolor depended on the level of oxygen saturation. TCO2 regeneration, respiratory quotients, PO43− fluxes and denitrification of added 15NO3 were not affected by the addition of H. diversicolor, but depended upon the O2 levels in the water column. Denitrification rates supported by water column 14NO3 and sedimentary nitrification were both negligible (< 0.5 µmol m− 2 h− 1). They were not significantly affected by oxygen saturation nor by bioturbation, probably due to the limited availability of NO3 in the water column (< 3 µM) and O2 in the sediments. This study demonstrates for the first time the integrated short term effect of transient hypoxia and bioturbation on solute fluxes across the sediment-water interface within a simplified lagoonal benthic community.  相似文献   

17.
The aim of this study was to evaluate the capacity of a denitrifying consortium to achieve the simultaneous removal of nitrate, sulfide and p-cresol and elucidate the rate-limiting steps in the mixotrophic process. Nitrite reduction appeared as the most evident rate-limiting step in the denitrifying respiratory process. The nitrite reduction rate achieved was up to 57 times lower than the nitrate reduction rate during the simultaneous removal of sulfide and p-cresol. Negligible accumulation of N2O occurred in the denitrifying cultures corroborating that nitrite reduction was the main rate-limiting step of the respiratory process. A synergistic effect of nitrate and sulfide is proposed to explain the accumulation of nitrite. The study also points at the oxidation of S0 as another rate-limiting step in the denitrifying process. Different respiratory rates were achieved with the distinct electron donors provided (p-cresol and sulfide). The oxidation rate of p-cresol (qCRES) was generally higher (up to 2.6-fold in terms of reducing equivalents) than the sulfide oxidation rate (qS2−), except for the experiments performed at 100 mg S2− L−1 in which qS2− was slightly (~1.4-fold in terms of reducing equivalents) higher than qCRES. The present study provides kinetic information, which should be considered when designing and operating denitrifying reactors to treat industrial wastewaters containing large amounts of sulfurous, nitrogenous and phenolic contaminants such as those generated from petrochemical refineries.  相似文献   

18.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

19.
The physiological and kinetic behavior of a denitrifying granular sludge exposed to different sulfide loading rates (55-295 mg/L d) were evaluated in a UASB reactor fed with acetate, ammonium and nitrate. At any sulfide loading rates, the consumption efficiencies of sulfide, acetate and ammonium were above 95%, while nitrate consumption efficiencies were around 62-72%. At the highest sulfide loading rate the ammonium was used as electron donor for N2 production. The increase of sulfide loading rate also affected the fate of sulfide oxidation, since elemental sulfur was the main end product instead of sulfate. However, the lithotrophic denitrifying kinetic was not affected. FISH oligonucleotide probes for Thiobacillus denitrificans, Thiomiscropira denitrificans, genus Paracoccus and Pseudomonas spp. were used to follow the microbial ecology. The results of this work have shown that four pollutants could simultaneously be removed, namely, sulfide, ammonium, acetate and nitrate under well defined denitrifying conditions.  相似文献   

20.
The degradation of an Ulva lactuca mat (0.2 kg dw m−2) was studied in a controlled flow-through mesocosm for 31 d. Sediment chambers without U. lactuca served as controls. Fluxes of ∑CO2, O2, inorganic nitrogen, and urea were determined during the incubation period in addition to sulfate reduction rates, POC and PON content, enumeration of specific bacterial populations and evaluation of the physiological state of the added U. lactuca thalli. After U. lactuca addition to the chambers, there was an immediate increase in the efflux of ∑CO2 from 11 to 27 mmol-C m−2 d−1 and a concomitant increase in O2 uptake from 11 to 23 mmol m−2 d−1. These effluxes remained elevated throughout the incubation period. In contrast, the NH4+ efflux increased from 0.1 to 1.8 mmol NH4+ m−2 d−1 during the first 3 d of incubation, followed by 6 d with a constant efflux rate, after which time it decreased gradually to 0.3 mmol NH4+ m−2 d−1 by the end of the experiment. In total, NH4+accounted for 83% of the total nitrogen efflux after addition of U. lactuca. During the 31 d incubation period there was a continuous colonization of the thalli by bacteria. Sulfate reducers associated with the thalli accounted for 3% of the carbon oxidation on day 31. The molar C:N ratio in mineralization products (the ratio between the efflux of ∑CO2 and NH4+ + NO2 + NO3) increased from 15 mol mol−1 at day 11 after U. lactuca addition to >80 mol mol−1 by the end of the incubation. Since the C:N ratio in the mineralization products was much higher than the original thallus material (8.9 mol mol−1) it is probable that a preferential incorporation of NH4+ into the increasing bacterial biomass occurred. The nitrogen for bacterial growth was most likely obtained from degradation of U. lactuca thalli as there was no stimulation of urea-N turnover in the sediment during incubation. The net increase in bacteria cell number in the 18-mm thick thallus layer was estimated to be 7.6 × 109 to 2.4 × 1010 bacterial cells cm−3. In contrast, the bacterial cell number remained constant in the −Ulva incubations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号