首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 313 毫秒
1.
From the rhizomes of Smilax corbularia Kunth. (Smilacaceae), 11 compounds, (2R,3R)-2″-acetyl astilbin, (2R,3R)-3″-acetyl astilbin, (2R,3R)-4″-acetyl astilbin, (2R,3R)-3″-acetyl engeletin, (2R,3S)-4″-acetyl isoastilbin, 2-(4-hydroxyphenyl)-3,4,9,10-tetrahydro-3,5-dihydroxy-10-(3,4-dihydroxyphenyl)-(2R,3R,10R)-2H,8H-benzo [1,2-b:3,4-b′] dipyran-8-one, 2-(4-hydroxyphenyl)-3,4,9,10-tetrahydro-3,5-dihydroxy-10-(3,4-dihydroxyphenyl)-(2R,3R,10S)-2H, 8H-benzo [1,2-b:3,4-b′] dipyran-8-one, 3,4-dihydro-7-hydroxy-4-(3,4-dihydroxyphenyl)-5-[(1E)-2-(4-hydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, 3,4-dihydro-7-hydroxy-4-(3,4-dihydroxy-phenyl)-5-[(1E)-2-(3,4-dihydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, 3,4-dihydro-7-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-5-[(1E)-2-(4-hydroxyphenyl) ethenyl]-2H-1-benzopyran-2-one, and 5,7,3′,4′-tetrahydroxy-3-phenylcoumarin along with 34 known compounds were isolated and characterized as 19 flavonoids, 14 catechin derivatives, 6 stilbene derivatives, and 6 miscellaneous substances. All isolates had their estrogenic and anti-estrogenic activities determined using the estrogen-responsive human breast cancer cell lines MCF-7 and T47D. The major constituents were recognized as flavanonol rhamnosides by the suppressive effect on estradiol induced cell proliferation at a concentration of 1 μM. Meanwhile, flavanonol rhamnoside acetates demonstrated estrogenic activity in both MCF-7 and T47D cells at a concentration of 100 μM, and they enhanced the effects of co-treated E2 on T47D cell proliferation at concentrations of more than 0.1 μM.  相似文献   

2.
Terbium-sensitized luminescence and its applicability towards the detection of Bacillus spores such as anthrax are of significant interest to research in biodefense and medical diagnostics. Accordingly, we have measured the effects of terbium chelation upon the parameters associated with dipicolinate ligation and spore detection. Namely, the dissociation constants, intrinsic brightness, luminescent lifetimes, and biological stabilities for several Tb(chelate)(dipicolinate)x complexes were determined using linear, cyclic, and aromatic chelators of differing structure and coordination number. This included the chelator array of NTA, BisTris, EGTA, EDTA, BAPTA, DO2A, DTPA, DO3A, and DOTA (respectively, 2,2′,2″-nitrilotriacetic acid; 2,2-bis(hydroxymethyl)-2,2′,2″-nitrilotriethanol; ethylene glycol-bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid; ethylenediamine-N,N,N′,N′-tetraacetic acid; 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid; 1,4,7,10-tetraazacyclododecane-1,7-diacetic acid; diethylenetriamine-N,N,N′,N″,N″-pentaacetic acid; 1,4,7,10-tetraazacyclododecane-1,4,7-triacetic acid; and 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid). Our study has revealed that the thermodynamic and temporal emission stabilities of the Tb(chelate)(dipicolinate)x complexes are directly related to chelate rigidity and a ligand stoichiometry of x = 1, and that chelators possessing either aromaticity or low coordination numbers are destabilizing to the complexes when in extracts of an extremotolerant Bacillus spore. Together, our results demonstrate that both Tb(EDTA) and Tb(DO2A) are chemically and biochemically stable and thus applicable as respectively low and high-cost luminescent reporters for spore detection, and thereby of significance to institutions with developing biodefense programs.  相似文献   

3.
4.
Ethyl (R)-2-hydroxy-4-phenylbutanoate [(R)-HPBE] is a versatile and important chiral intermediate for the synthesis of angiotensin-converting enzyme (ACE) inhibitors. Recombinant E. coli strain coexpressing a novel NADPH-dependent carbonyl reductase gene iolS and glucose dehydrogenase gene gdh from Bacillus subtilis showed excellent catalytic activity in (R)-HPBE production by asymmetric reduction. IolS exhibited high stereoselectivity (>98.5% ee) toward α-ketoesters substrates, whereas fluctuant ee values (53.2–99.5%) for β-ketoesters with different halogen substitution groups. Strategies including aqueous/organic biphasic system and substrate fed-batch were adopted to improve the biocatalytic process. In a 1-L aqueous/octanol biphasic reaction system, (R)-HPBE was produced in 99.5% ee with an exceptional catalyst yield (gproduct/gcatalyst) of 31.7 via bioreduction of ethyl 2-oxo-4-phenylbutyrate (OPBE) at 330 g/L.  相似文献   

5.
【背景】醇脱氢酶AdhS能催化不对称还原反应制备(R)-2-氯-1-苯乙醇,但由于自身再生辅酶NADH的能力不足,需要辅酶再生酶协助其再生NADH。谷氨酸脱氢酶能以谷氨酸为底物,再生辅酶NAD(P)H,具有辅酶再生酶的潜力。【目的】克隆表达谷氨酸脱氢酶基因gdhA,构建谷氨酸脱氢酶GdhA与醇脱氢酶AdhS的大肠杆菌共表达体系,提高AdhS制备(R)-2-氯-1-苯乙醇的转化效率。【方法】从枯草芽孢杆菌(Bacillus subtilis) 168中克隆基因gdhA,并在大肠杆菌(Escherichia coli) BL21(DE3)中表达,分析辅酶再生活力;再与醇脱氢酶AdhS共表达,优化表达条件;分析不同辅酶再生方案对制备(R)-2-氯-1-苯乙醇的转化效率的影响。【结果】谷氨酸脱氢酶GdhA再生NADH的比活力为694 U/g。经GdhA与AdhS的共表达及表达条件优化后,制备(R)-2-氯-1-苯乙醇的转化效率达465 U/L。经比较,GdhA协助再生辅酶NADH,可使AdhS制备(R)-2-氯-1-苯乙醇的转化效率提高到约3倍。【结论】谷氨酸脱氢酶GdhA为NADH高效再生酶,与醇脱氢酶AdhS共表达可显著提高AdhS制备(R)-2-氯-1-苯乙醇的转化效率。  相似文献   

6.
Homodimeric thymidine phosphorylase from Escherichia coli (TP, E.C. 2.4.2.4) was immobilized on solid support with the aim to have a stable and recyclable biocatalyst for nucleoside synthesis. Immobilization by ionic adsorption on amine-functionalized agarose and Sepabeads® resulted in a very high activity recovery (>85%). To prevent undesirable leakage of immobilized enzyme away from the support, the ionic preparations were cross-linked with aldehyde dextran (MW 20 kDa) and the influence of the dextran oxidation degree on the resulting biocatalyst activity was evaluated. Although in all cases the percentage of expressed activity after immobilization drastically decreased (≤25%), this procedure allowed to obtain an active catalyst which resulted up to 6-fold and 3-fold more stable than the soluble (non immobilized) enzyme and the just adsorbed (non cross-linked) counterpart, respectively, at pH 10 and 37 °C. No release of the enzyme from the support could be observed. Covalent immobilization on aldehyde or epoxy supports was generally detrimental for enzyme activity. Optimal TP preparation, achieved by immobilization onto Sepabeads® coated with polyethyleneimine and cross-linked, was successfully used for the one-pot synthesis of 5-fluoro-2′-deoxyuridine starting from 2′-deoxyuridine or thymidine (20 mM) and 5-fluorouracil (10 mM). In both cases, the reaction proceeded at the same rate (3 μmol min−1) affording 62% conversion in 1 h.  相似文献   

7.
Two novel Zn(II) coordination polymers, [Zn(2-pytpy)(fum)]n·nH2O (1) and [Zn6(4-pytpy)3(mal)4]n·5n(H2O) (2), (2-pytpy = 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine, 4-pytpy = 4′-(4-pyridyl)-4,2′:6′,4″-terpyridine, H2fum = fumaric acid and H2mal = malic acid) have been hydrothermally synthesized and structurally characterized. Notably, in situ ligand reactions occur in the formation of complexes 1 and 2, in which maleic acid is converted into fumaric acid and malic acid, respectively. Complex 1 is a 1D infinite chain structure, which is extended into a supramolecular layer by intermolecular π…π stacking interactions. Complex 2 is a 3D network structure, in which the bidentate-bridging 4-pytpy ligands link the layers based on the tetranuclear Zn(II) subunits to form the (4,10)-connected network. The luminescent properties of 1 and 2 have been investigated with emission spectra and UV-Vis diffuse reflectance spectra in the solid state. Additionally, these two complexes possess great thermal stabilities.  相似文献   

8.
The new ligand 4′-(4?-pyridyl-N-oxide)-2,2′:6′,2″-terpyridine (pyNoxterpy) and its homoleptic iron(II) complex have been synthesised, and structural and spectroscopic studies have been carried out. The obtained results have been compared with the reported data for the parent ligand 4′-(4?-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy) and its homoleptic iron(II) complex. Significant differences between the spectral and electrochemical properties of the metal complexes have been found, derived from the changes in the electronic properties of the coordinated ligands.  相似文献   

9.
The preparation and characterization of mono and binuclear complexes of Ru(II) with a newly synthesized derivate of the terpyridine ligand, 4-(5-bromothiophene)-2,2,6,2″-terpyridine, are communicated. In the binuclear complex, 2,5-bis(2,2,6,2″-terpyridine-4yl)thiophene was used as a bridge between two Ru(II) centers. The new compounds were characterized by H NMR, UV-Vis and IR spectroscopies. Bands at ∼500 nm for the Ru(II) to terpyridine charge transfer transition and absorption bands at λ<400 nm assigned to intraligand transitions, π*←π, centered in the tpy moiety were observed in the UV-Vis spectra of the complexes. Irradiation of the complexes in CH3CN at 337 or 500 nm induced luminescence with maxima at ∼670 nm and lifetimes τ?102 ns. Time-resolved absorption spectroscopy revealed the formation of long-lived species during the decay of the metal to ligand charge transfer excited states. The intermediates were tentatively assigned as unstable products of ligand-substitution or orthometalation excited state reactions.  相似文献   

10.
Shikimate dehydrogenase (EC 1.1.1.25) catalyses the fourth step of the shikimate pathway which is required for the synthesis of the aromatic amino acids and other aromatic compounds in bacteria, microbial eukaryotes, and plants. The crystal structures of the shikimate dehydrogenase AroE from Thermus thermophilus HB8 in its ligand-free form, binary complexes with cofactor NADP+ or substrate shikimate, and the ternary complex with both NADP(H) and shikimate were determined by X-ray diffraction method at atomic resolutions. The crystals are nearly isomorphous with the asymmetric unit containing a dimer, each subunit of which has a bi-domain structure of compact alpha/beta sandwich folds. The two subunits of the enzyme display asymmetry in the crystals due to different relative orientations between the N- and C-terminal domains resulting in a slightly different closure of the interdomain clefts. NADP(H) is bound to the more closed form only. This closed conformation with apparent higher affinity to the cofactor is also observed in the unliganded crystal form, indicating that the NADP(H) binding to TtAroE may follow the selection mode where the cofactor binds to the subunit that happens to be in the closed conformation in solution. Crystal structures of the closed subunits with and without NADP(H) show no significant structural difference, suggesting that the cofactor binding to the closed subunit corresponds to the lock-and-key model in TtAroE. On the other hand, shikimate binds to both open and closed subunit conformers of both apo and NADP(H)-liganded holo enzyme forms. The ternary complex TtAroE:NADP(H):shikimate allows unambiguous visualization of the SDH permitting elucidation of the roles of conserved residues Lys64 and Asp100 in the hydride ion transfer between NADP(H) and shikimate.  相似文献   

11.
Lipase from Geobacillus thermocatenulatus (BTL2) was immobilized in two different matrixes. In one derivative, the enzyme was immobilized on agarose activated with cyanogen bromide (CNBr-BTL2) via its most reactive superficial amino group, whereas the other derivative was covalently immobilized on glyoxyl agarose supports (Gx-BTL2). The latter immobilization protocol leads to intense multipoint covalent attachment between the lysine richest region of enzyme and the glyoxyl groups on the support surface. The resulted solid derivatives were unfolded by incubation under high concentrations of guanidine and then resuspended in aqueous media under different experimental conditions. In both CNBr-BTL2 and Gx-BTL2 derivatives, the oxidation of Cys residues during the unfolding/refolding processes led to inefficient folding for the enzyme because only 25-30% of its initial activity was recovered after 3 h in refolding conditions. Dithiothreitol (DTT), a very mild reducing agent, prevented Cys oxidation during the unfolding/refolding process, greatly improving activity recovery in the refolded forms. In parallel, other variables such as pH, buffer composition and the presence of polymers and other additives, had different effects on refolding efficiencies and refolding rates for both derivatives. In the case of solid derivatives of BTL2 immobilized on CNBr-agarose, the surface's chemistry was crucial to guarantee an optimal protein refolding. In this way, uncharged protein vicinities resulted in better refolding efficiencies than those charged ones.  相似文献   

12.
13.
14.
A benzil, calophione A, 1-(6′-Hydroxy-1′,3′-benzodioxol-5′-yl)-2-(6″-hydroxy-2″-isopropenyl-2″,3″-dihydro-benzofuran-5″-yl)-ethane-1,2-dione and three coumestan derivatives, tephcalostan B, C and D were isolated from the roots of Tephrosia calophylla. Their structures were deduced from spectroscopic data, including 2D NMR 1H-1H COSY and 13C-1H COSY experiments. Compounds were evaluated for cytotoxicity against RAW (mouse macrophage cells) and HT-29 (colon cancer cells) cancer cell lines and antiprotozoal activity against various parasitic protozoa. Calophione A exhibited significant cytotoxicity with IC50 of 5.00 (RAW) and 2.90 μM (HT-29), respectively.  相似文献   

15.
Fluorescence techniques have been used to study the structural characteristics of many proteins. The thermophilic enzyme NAD-glutamate dehydrogenase from Thermus thermophilus HB8 is found to be a hexameric enzyme. Fluorescence spectra of native and denatured protein and effect of denaturants as urea and guanidine hydrochloride on enzyme activity of thermophilic glutamate dehydrogenase (t-GDH) have been analyzed. Native t-GDH presents the maximum emission at 338 nm. The denaturation process is accompanied by an exposure to the solvent of the tryptophan residues, as manifested by the red shift of the emission maximum. Fluorescence quenching by external quenchers, KI and acrylamide, has also been carried out.  相似文献   

16.
Biosynthesis of the lilac alcohols and alcohol epoxides from linalool in ‘Hortgem Tahi’ kiwifruit (Actinidiaarguta) flowers was investigated by incubating flowers with rac-linalool, rac-[4,4,10,10,10-2H5]linalool, (R)-8-hydroxylinalool and (R)-8-oxolinalool. All substrates were incorporated into the lilac alcohols although the (R)-configured compounds are not normally present in flowers. Biosynthesis of the lilac alcohol epoxides from rac-1,2-epoxy[4,4,10,10,10-2H5]linalool and rac-[4′,4′, 8′, 8′,8′-2H5]lilac aldehyde epoxide, rather than the lilac alcohols, was examined. Both substrates were non-enantioselectively converted to the lilac alcohol epoxides, suggesting two biosynthetic pathways for these compounds, contrary to previous reports. Their ability to process unnatural substrates indicates that A.arguta flowers have a greater biosynthetic capability than is suggested by their phytochemical composition. Linalool, the lilac compounds, and their biosynthetic intermediates were measured in the pistils, stamen, petals and sepals to determine if localisation in different organs contributed to only (S)-linalool being processed to the lilac compounds. Both linalool enantiomers were present in all organs, while most (97%) of the lilac compounds, and their precursors, were found in the petals. (S)-Linalool was not depleted from the flower petals, with respect to (R)-linalool, during the time of maximum production of the metabolites of (S)-linalool.  相似文献   

17.
18.
Two new lead(II) complexes with the ligand 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy), [Pb(pyterpy)(MeOH)I2] · MeOH and [Pb(pyterpy)(μ-AcO)]2(ClO4)2, have been synthesized and characterized by CHN elemental analysis, 1H NMR-, 13C NMR-, IR spectroscopy and structurally analyzed by X-ray single-crystal diffraction. The thermal stabilities of these compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The single crystal X-ray analyses show that the coordination number in these complexes is six with three “pyterpy” N-donor atoms and two or three of the anionic ligands. The arrangement of donor atoms in these complexes suggest a gap or hole in the coordination geometry of the lead atoms, possibly occupied by a stereoactive lone pair of electrons on lead(II) and the coordination sphere is hemidirected. The potentially tetradentate ligand 4′-(4-pyridyl)-2,2′:6′,2″-terpyridine (pyterpy) acts as a tridentate donor to Pb(II). The noncoordinated pyridyl group interacts with hydrogen atoms of adjacent molecules and forms normal hydrogen bonds in [Pb(pyterpy)(MeOH)I2] · MeOH and weak C-H?N interactions for [Pb(pyterpy)(μ-AcO)]2(ClO4)2, thus extending the monomeric structures into one-dimensional networks.  相似文献   

19.
Preliminary screening of a series of medicinal plants, traditionally used in Tanzania, showed an IC50 of 15.6-31.2 μg/ml for the crude extract of the root of Ormocarpum kirkii S. Moore (Papilionaceae) against Plasmodium falciparum. A bioguided isolation was performed in order to isolate the active constituents. Twelve constituents were obtained and identified using NMR and MS data, and optical rotation measurements. The compounds comprised seven (I-3,II-3)-biflavonoids, three (I-3,II-3)-bi-4-phenyldihydrocoumarins, an isoflavanone and a C-glucosylated flavone. Six compounds, liquiritigeninyl-(I-3,II-3)-naringenin, apigeninyl-(I-3,II-3)-naringenin, 7-O-β-D-glucopyranosylchamaejasmin, (3R,4S,3″R,4″S)-5,5″-di-O-methyldiphysin, 7-O-β-D-glucopyranosyldiphysin, and 4″-hydroxydiphysolone, were isolated in addition to six known components. The compounds were evaluated for antimicrobial activity in a broad screening panel, including P. falciparum. Seven of these showed antiplasmodial activity; isochamaejasmin being the most active with an IC50 of 7.3 ± 3.8 μM, but the selectivity was rather limited. Thus, these constituents may contribute, at least in part, to the antimalarial use of O. kirkii in traditional medicine.  相似文献   

20.
Hyper-pigmentation of the skin is a common problem that is prevalent in middle aged and elderly people. It is caused by over production of melanin. Tyrosinase is known to be the key enzyme in melanin production. Ethanolic extract of Greyia flanaganii leaves showed significant (P < 0.05) antityrosinase activity exhibiting the IC50 of 32.62 μg/ml. The total extract was further investigated for its toxicity and effect on melanin production by melanocytes cells, and showed significant inhibition (P < 0.05) (20%) of melanin production at 6.25 μg/ml and low levels of cytotoxicity (IC50 < 400 μg/ml). The amount of antioxidants necessary to decrease the initial DPPH absorbance by 50% (EC50) by the total ethanolic extract was found to be 22.01 μg/ml. The effect of G. flanaganii against acne causing bacteria, Propionibacterium acnes, was investigated using microdilution assay. The MIC of the extract of G. flanaganii was found to be 250 μg/ml. Bioassay-guided fractionation led to the isolation of (3S)-4-hydroxyphenethyl 3-hydroxy-5-phenylpentanoate (1), 2′,4′,6′-trihydroxydihydrochalcone (2), 2′,6′,4-trihydroxy-4′-methoxydihydrochalcone (3), 2′,6′-dihydroxy-4′-methoxydihydrochalcone (4), 5,7-dihydroxyflavanone [(2S)-pinocembrin] (5), 2′,6′-dihydroxy-4′,4-dimethoxy dihydrochalcone (6) and (2R,3R)-3,5,7-trihydroxy-3-O-acetylflavanone (7). The isolated compounds were tested for their antioxidant, cytotoxicity, tyrosinase inhibition and antibacterial activities. Compound 2 exhibited significant (P < 0.05) antityrosinase activity exhibiting the IC50 of 69.15 μM. The isolated compounds showed low toxicity of the cells with reduction of melanin content of the cells. All compounds tested showed good radical scavenging activity. These data indicates that G. flanaganii extract and its isolated phenolic constituents could be possible skin lightening agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号