首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
近年来,塑料污染的问题始终困扰着人类社会。为了解决不可回收的塑料带来的环境问题,“降塑再造”的理念被提出。“降塑再造”主要包括塑料的降解和塑料的再生。而再生成为可降解的聚羟基脂肪酸酯(polyhydroxyalkanoates,PHA)则是实现塑料内循环的一种方式。PHA是一种可由多种微生物合成的生物聚酯,以其特有的生物相容性和可降解性以及热加工性能而被大家所关注。同时利用PHA的多样化的单体组成、加工技术和改性方法,可以进一步改善PHA的性能,产生类型多样、性能各异的PHA材料,也可以创造平衡耐久性和生物降解性的新产品,这些特性使PHA有望成为传统塑料的替代品之一。利用极端微生物进行生产的“下一代工业技术(next-generation industrial biotechnology,NGIB)”可以增加PHA的市场竞争力,为国家碳中和目标顺利实施提供参考。本文综述了各类塑料降解并生产PHA的可能性、PHA材料的基础材料属性、加工和改性方法及获得的新材料、新技术和独特的材料性质。  相似文献   

2.
Bacterial isolates from sludge samples collected at a local municipal sewage treatment plant were screened for bacteria producing polyhydroxyalkanoates (PHA). Initially Sudan black B staining was performed to detect lipid cellular inclusions. Lipid-positive isolates were then grown in a nitrogen limitation E2 medium containing 2% (w/v) glucose to promote accumulation of PHA before the subsequent staining with Nile blue A. The positive isolates were quantified initially with a u.v. spectrophotometer, for a very large number of isolates (105) and among them high PHA-producing isolates (15) were selected and were confirmed by gas chromatographic analysis. The GC analysis showed the polymers produced by 13 of the selected isolates to be polyhydroxybutyrate (PHB), and the remaining two isolates produced polyhydroxybutyrate-co-hydroxyvalerate (PHB-co-HV) copolymer. The proportion of the PHA-positive bacterial isolates showed variability in the number of PHA accumulators during various months. The correlation of PHB production with the cell dry weight (CDW) was found to be statistically significant. The metabolism of PHB in these selected 15 isolates was studied using the Nile blue A staining, which showed an initial increase in the fluorescence followed by a decline, on further incubation. All the selected 15 isolates were classified to genus level by studying their morphological and biochemical characteristics. There were seven Bacillus species, three Pseudomonas species, two Alcaligenes species, two Aeromonas species, and one Chromobacterium species.  相似文献   

3.
Both long term and batch experiments were carried out to identify the sources of the N2O emission in anoxic/aerobic sequencing batch reactors (A/O SBRs) under different aeration rates. The obtained results showed that aeration rate has an important effect on the N2O emission of A/O SBR and most of the N2O was emitted during the aerobic phase. During the anoxic phase, nitrate ammonification was the major source of N2O emission while denitrification performed as a sink of N2O, in all three bioreactors. The N2O emission mechanisms during the aerobic phase differed with the aeration rate. At low and high aeration rates (Run 1 and Run 3), both coupled-denitrification and nitrifier denitrification were ascribed to be the source of N2O emission. At mild aeration rate (Run 2), nitrifier denitrification by Nitrosomonas-like ammonia oxidizing-bacterial (AOB) was responsible for N2O emission while coupled-denitrification turned out to be a sink of N2O because of the presence of inner anaerobic region in sludge flocs.  相似文献   

4.
Functional role of biomolecules viz., carbohydrates and proteins on acidogenic biohydrogen (H2) production was studied through the treatment of canteen based composite food waste. The performance was evaluated in an anaerobic sequencing batch reactor (AnSBR) at pH 6 with five variable organic loading conditions (OLR1, 0.854; OLR2, 1.69; OLR3, 3.38; OLR4, 6.54 and OLR5, 9.85 kg COD/m3-day). Experimental data depicted the feasibility of H2 production from the stabilization of food waste and was found to depend on the substrate load. Among the five loading conditions studied, OLR4 documented maximum H2 production (69.95 mmol), while higher substrate degradation (3.99 kg COD/m3-day) was observed with OLR5. Specific hydrogen yield (SHY) vary with the removal of different biomolecules and was found to decrease with increase in the OLR. Maximum SHY was observed with hexose removal at OLR1 (139.24 mol/kg HexoseR at 24 h), followed by pentoses (OLR1, 108.26 mol/kg PentoseR at 48 h), proteins (OLR1, 109.71 mol/kg ProteinR at 48 h) and total carbohydrates (OLR1, 58.31 mol/kg CHOR at 24 h). Proteins present in wastewater helped to maintain the buffering capacity but also enhanced the H2 production by supplying readily available organic nitrogen to the consortia. Along with carbohydrates and proteins, total solids also registered good removal.  相似文献   

5.
Recombinant strains of Ralstonia eutropha PHB 4, which harbored Aeromonas caviae polyhydroxyalkanoates (PHA) biosynthesis genes under the control of a promoter for R. eutropha phb operon, were examined for PHA production from various alkanoic acids. The recombinants produced poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] from hexanoate and octanoate, and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxypentano ate) [P(3HB-co-3HV-co-3HHp)] from pentanoate and nonanoate. One of the recombinant strains, R. eutropha PHB 4/pJRDBB39d3 harboring ORF1 and PHA synthase gene of A. caviae (phaC(Ac)) accumulated copolyesters with much more 3HHx or 3HHp fraction than the other recombinant strains. To investigate the relationship between PHA synthase activity and in vivo PHA biosynthesis in R. eutropha, the PHB- 4 strains harboring pJRDBB39d13 or pJRDEE32d13 were used, in which the heterologous expression of phaC(Ac) was controlled by promoters for R. eutropha phb operon and A. caviae pha operon, respectively. The PHA contents and PHA accumulation rates were similar between the two recombinant strains in spite of the quite different levels of PHA synthase activity, indicating that the polymerization step is not the rate-determining one in PHA biosynthesis by R. eutropha. The molecular weights of poly(3-hydroxybutyrate) produced by the recombinant strains were also independent of the levels of PHA synthase activity. It has been suggested that a chain-transfer agent is generated in R. eutopha cells to regulate the chain length of polymers.  相似文献   

6.
Conditions for the optimal production of polyhydroxyalkanoate (PHA) by Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) were determined by response surface methodology. These were an initial carbon to nitrogen ratio (C/N) of 40 (mole/mole), an initial pH of 7.0, and a temperature of 35 °C. A biomass and PHA concentration of 3.65 g/L and about 2.6 g/L (77% DCW), respectively, were achieved in a growth associated process using 20 g/L glycerol in the BLW after 36 h of exponential growth. The PHA monomer compositions were 3HB (3-hydroxybutyrate), a short-chain-length-PHA, and the medium-chain-length-PHA e.g. 3-hydroxyoctanoate and 3-hydroxydecanoate. Both the phbC and phaC genes were characterized. The phbC enzyme had not been previously detected in a Pseudomonas mendocina species. A 2.15 g/L of an exopolysaccharide, alginate, was also produced with a similar composition to that of other Pseudomonas species.  相似文献   

7.
To reduce the production cost of polyhydroxyalkanoates (PHA) and disposal amount of excess sludge simultaneously, the feasibility of using fermentative volatile fatty acids (VFAs) as carbon sources to synthesize PHA by activated sludge was examined. At pH 11.0, 60 degrees C and fermentative time of 7d, the VFAs yield was 258.65 mgTOC/gVSS. To restrain cell growth during PHA production, the released phosphorus and residual ammonium in the fermentative VFAs was recovered by the formation of struvite precipitation. Acetic acid was the predominant composition of the fermentative VFAs. PHA accumulation in excess sludge occurred feeding by fermentative VFAs with aerobic dynamic feeding process. The maximum PHA content accounted for 56.5% of the dry cell. It can be concluded from this study that the VFAs generated from excess sludge fermentation were a suitable carbon source for PHA production by activated sludge.  相似文献   

8.
Utilization of wastes from agriculture is becoming increasingly important due to concerns of environmental impact. The goals of this work were to evaluate the ability of an unusual organism, Saccharophagus degradans (ATCC 43961), to degrade the major components of plant cell walls and to evaluate the ability of S. degradans to produce polyhydroxyalkanoates (PHAs, also known as bioplastics). S. degradans can readily attach to cellulosic fibers, degrade the cellulose, and utilize this as the primary carbon source. The growth of S. degradans was assessed in minimal media (MM) containing glucose, cellobiose, avicel, and bagasse with all able to support growth. Cells were able to attach to avicel and bagasse fibers; however, growth on these insoluble fibers was much slower and led to a lower maximal biomass production than observed with simple sugars. Lignin in MM alone did not support growth, but did support growth upon addition of glucose, although with an increased adaptation phase. When culture conditions were switched to a nitrogen depleted status, PHA production commences and extends for at least 48 h. At early stationary phase, stained inclusion bodies were visible and two chronologically increasing infrared light absorbance peaks at 1,725 and 1,741 cm(-1) confirmed the presence of PHAs. This work demonstrates for what we believe to be the first time, that a single organism can degrade insoluble cellulose and under similar conditions can produce and accumulate PHA. Additional work is necessary to more fully characterize these capabilities and to optimize the PHA production and purification.  相似文献   

9.
Hu Z  Zhang J  Xie H  Li S  Wang J  Zhang T 《Bioresource technology》2011,102(9):5486-5491
Laboratory scale anoxic/aerobic sequencing batch reactor (A/O SBR) was operated around 15 °C to evaluate the effect of anoxic/aerobic phase fraction (PF) on N2O emission. The ammonia removal exhibited a decrease trend with the increase of PF, while the highest total nitrogen removal was achieved at PF = 0.5. Almost all the N2O was emitted during the aerobic phase, despite of the PF value. However, the net emission of N2O was affected by PF. Under the premise of completely aerobic nitrification, the lowest N2O emission was achieved at PF = 0.5, with a N2O-N conversion rate of 9.8%. At lower PF (PF = 0.2), N2O emission was stimulated by residual nitrite caused by uncompleted denitrification during the anoxic phase. On the other hand, the exhaustion of the easily degradable carbon was the major cause for the high N2O emission at higher PF (PF = 0.5). The N2O emission increased with the decreasing temperature. The time-weighted N2O emission quantity at 15 °C was 2.9 times higher than that at 25 °C.  相似文献   

10.
Polyhydroxyalkanoates are biodegradable polymers produced by prokaryotic organisms from renewable resources. The production of PHAs by submerged fermentation processes has been intensively studied over the last 30 years. In recent years, alternative strategies have been proposed, such as the use of solid-state fermentation or the production of PHAs in transgenic plants. This paper gives an overview of submerged and solid-state fermentation processes used to produce PHAs from waste materials and by-products. The use of these low-cost raw materials has the potential to reduce PHA production costs, because the raw material costs contribute a significant part of production costs in traditional PHA production processes.  相似文献   

11.
In the present work, attention was devoted to understand how different carbon substrates and their concentration can influence the production of PHA by polyphosphate-accumulating bacteria. Acetate, propionate, and butyrate were tested independently. The composition of the polymers formed was found to vary with the substrate used. Acetate leads to the production of a copolymer of hydroxybutyrate (HB) and hydroxyvalerate (HV) with the HB units being dominant. With propionate, HV units are mainly produced and only a small amount of HB is synthesized. When butyrate is used, the amount of polymer formed is much lower with the HB units being produced to a higher extent. The yield of polymer produced per carbon consumed (YP/S) was found to diminish from acetate (0.97) to propionate (0.61) to butyrate (0.21). Using a mixture of acetate, propionate, and butyrate and increasing the carbon concentration, although maintaining the relative concentration of each substrate, propionate is primarily consumed and consequently, PHA synthesized was enriched in HV units. The polymers obtained in all experiments were copolymers with the average molecular weight of the most representative fraction higher when hydroxybutyrate units were present in considerable amounts. All the polymers synthesized were found to be quite homogeneous and their average molecular weight is of the same order of magnitude as the ones commercially available.  相似文献   

12.
You SJ  Tsai YP  Cho BC  Chou YH 《Bioresource technology》2011,102(17):8165-8170
Sludge in a sequential batch reactor (SBR) system was used to investigate the effect of lead toxicity on metabolisms of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) communities fed with acetic acid or glucose as their sole carbon source, respectively. Results showed that the effect of lead on substrate utilization of both PAOs and GAOs was insignificant. However, lead substantially inhibited both of phosphate release and uptake of PAOs. In high concentration of acetic acid trials, an abnormal aerobic phosphate release was observed instead of phosphate uptake and the release rate increased with increasing lead concentration. Results also showed that PAOs could normally synthesize polyhydroxybutyrate (PHB) in the anaerobic phase even though lead concentration was 40 mg L−1. However, they could not aerobically utilize PHB normally in the presence of lead. On the other hand, GAOs could not normally metabolize polyhydroxyvalerate (PHV) in both the anaerobic and aerobic phases.  相似文献   

13.
Du Z  Li H  Gu T 《Biotechnology advances》2007,25(5):464-482
A microbial fuel cell (MFC) is a bioreactor that converts chemical energy in the chemical bonds in organic compounds to electrical energy through catalytic reactions of microorganisms under anaerobic conditions. It has been known for many years that it is possible to generate electricity directly by using bacteria to break down organic substrates. The recent energy crisis has reinvigorated interests in MFCs among academic researchers as a way to generate electric power or hydrogen from biomass without a net carbon emission into the ecosystem. MFCs can also be used in wastewater treatment facilities to break down organic matters. They have also been studied for applications as biosensors such as sensors for biological oxygen demand monitoring. Power output and Coulombic efficiency are significantly affected by the types of microbe in the anodic chamber of an MFC, configuration of the MFC and operating conditions. Currently, real-world applications of MFCs are limited because of their low power density level of several thousand mW/m2. Efforts are being made to improve the performance and reduce the construction and operating costs of MFCs. This article presents a critical review on the recent advances in MFC research with emphases on MFC configurations and performances.  相似文献   

14.
Influence of initial pH on hydrogen production from cheese whey   总被引:1,自引:0,他引:1  
Batch experiments were conducted to investigate the effect of initial pH, between 5 and 10, on fermentative hydrogen production from crude cheese whey (87.5% (v/v) by Clostridium saccharoperbutylacetonicum). Hydrogen was produced over the range of pH studied. The hydrogen production rate and yield peaked at an initial pH 6 and then steadily decreased as the pH increased. The highest rate and yield were 28.3 ml h−1 and 7.89 mmol g−1 lactose, respectively. Sugar consumption was unaffected between pH 5 and 9 and remained at 97%. All final pHs were acidic and increased alongside the initial pH. There was no correlation between the initial pH and the fermentation time; the times were shorter (50–52 h) between pH 6 and 8, and longer (62–82 h) outside this range. A modified Gompertz equation adequately described fermentative hydrogen production from cheese whey. The respective maximum hydrogen production rate and hydrogen potential at an optimal pH of 6 were 47.07 ml h−1 and 1432 ml. Lag phase times were much longer at acidic pHs than at alkaline pHs.  相似文献   

15.
In this study, the possibility of manipulating biopolymer composition in mixed culture polyhydroxyalkanoate (PHA) production from fermented molasses was assessed by studying the effects of substrate volatile fatty acid (VFA) composition and feeding regime (pulse wise versus continuous). It was found that the use of a continuous feeding strategy rather than a pulse feeding strategy can not only help mitigate the process constraints of the pulse-feeding strategy (resulting in higher specific and volumetric productivities) but also be used as means to broaden the range of polymer structures. Continuous feeding increased the hydroxyvalerate content by 8% relatively to that obtained from the same feedstock using pulse wise feeding. Therefore, the feeding strategy can be used to manipulate polymer composition. Furthermore, the range of PHA compositions, copolymers of P(HB-co-HV) with HV fraction ranging from 15 to 39%, obtained subsequently resulted in different polymer properties. Increasing HV content resulted in a decrease of the average molecular weight, the glass transition and melting temperatures and also in a reduction in the crystallinity degree from a semi-crystalline material to an amorphous matrix.  相似文献   

16.
The impact of removable and irremovable fouling on the retention of viral and bacterial indicators by the submerged microfiltration membrane in an MBR pilot plant was evaluated. Escherichia coli, sulphite-reducing Clostridium spores, somatic coliphages and F-specific RNA bacteriophages were used as indicators. The membrane demonstrated almost complete removal of E. coli and sulphite-reducing Clostridium spores. However, there was no correlation with membrane fouling. The phage removal varied in accordance with the irremovable fouling, rising from 2.6 to 5.6 log10 units as the irremovable fouling increased (measured by the change in the transmembrane pressure). In contrast, removable fouling did not have any effect on the retention of viruses by the membrane. These results indicate that irremovable membrane fouling may affect the removal efficiency of MBRs and, therefore, their capacity to ensure the required microbiological standards for the permeate achieved.  相似文献   

17.
Hydrogen production by dark fermentation may suffer of inhibition or instability due to pH deviations from optimality. The co-fermentation of promptly degradable feedstock with alkali-rich materials, such as livestock wastes, may represent a feasible and easy to implement approach to avoid external adjustments of pH.Experiments were designed to investigate the effect of the mixing ratio of fruit-vegetable waste with swine manure with the aim of maximizing biohydrogen production while obtaining process stability through the endogenous alkalinity of manure.Fruit-vegetable/swine manure ratio of 35/65 and HRT of 2 d resulted to give the highest production rate of 3.27 ± 0.51 LH2 L−1 d−1, with a corresponding hydrogen yield of 126 ± 22 mLH2 g−1VS-added and H2 content in the biogas of 42 ± 5%. At these operating conditions the process exhibited also one of the highest measured stability, with daily productions deviating for less than 14% from the average.  相似文献   

18.
Polyhydroxyalkanoates (PHAs) belong to group of biopolymers that have in recent times received growing research interest as a result of being eco-friendly and close characteristics with petrochemical based plastics. Alternatives to utilization of synthetic plastics are being explored since synthetic plastics are non-recyclable and non-biodegradable in nature. One of the innovations of Green Chemistry is utilization of renewable feedstocks such as biomass to achieve sustainable development with future circular economy. Bio-based products are of great interest to sustainable development as a result of diminishing fossil fuel reserves and rising environmental concerns. This review summarizes the productions of PHAs from renewable feedstocks such as lignocellulose, crude glycerol, levulinic acid (LA), palm-oil mill effluents (POME) and waste oils. The production of bio-based polymers has become much more professional and differentiated in recent years. Presently, there are bio-based alternatives for practically every application, therefore, this review presents applications of PHA in bio-refinery, medical sectors, agriculture sector, construction industry, and in packaging industry. The cost analysis of PHA from renewable sources with commercially available ones and potential to attain circular economy were also stressed. The reasons for this shift are connected to the non-renewability of fossil-based resources, the deteriorating environmental impacts, and the lack of biodegradability of the petroleum-produced materials.  相似文献   

19.
Trehalose is an important nutraceutical of wide commercial interest in the food processing industry. Recently, crude glycerol was reported to be suitable for the production of trehalose using a food microbe, Propionibacterium freudenreichii subsp. shermanii, under static flask conditions. Similarly, enhanced trehalose yield was reported in an osmotically sensitive mutant of the same strain under anaerobic conditions. In the present study, an effort was made to achieve higher production of trehalose, propionic acid, and lactic acid using the parent and an osmotically sensitive mutant of P. freudenreichii subsp. shermanii under aeration conditions. Under aeration conditions (200 rpm in shake flasks and 30 % air saturation in a batch reactor), biomass was increased and approximately 98 % of crude glycerol was consumed. In the parent strain, a trehalose titre of 361 mg/l was achieved, whereas in the mutant strain a trehalose titre of 1.3 g/l was produced in shake flask conditions (200 rpm). In the mutant strain, propionic and lactic acid yields of 0.53 and 0.21 g/g of substrate were also achieved with crude glycerol. Similarly, in controlled batch reactor culturing conditions a final trehalose titre of approximately 1.56 g/l was achieved with the mutant strain using crude glycerol as the substrate. Enhanced production of trehalose using P. freudenreichii subsp. shermanii from waste under aeration conditions is reported here. Higher production of trehalose was not due to a higher yield of trehalose but to a higher final biomass concentration.  相似文献   

20.
The response of a mixed microbial culture to different feed compositions, that is, containing benzoate and pyruvate as sole carbon sources at different levels, was studied in a chemostat with a 48-h hydraulic residence time under cyclic aerobic and anoxic (denitrifying) conditions. The cyclic bacterial culture was well adapted to different feed compositions as evidenced by the lack of accumulation of benzoate or pyruvate in the chemostat. Both the benzoate-degrading capabilities and the in vitro catechol 2,3-dioxygenase (C23DO) activities of the cyclic bacterial cultures were in direct proportion to the flux through the chemostat of the substrate degraded by the pathway containing C23DO, with some exceptions. The quantity of C23DO showed a transient decrease during the initial portion of the aerobic period before returning to the level present during the anoxic period. That decrease was most likely caused by the production of H(2)O(2) by the cells upon being returned to aerobic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号