首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
The experimental survival curves of Bacillus stearothermophilus spores in aqueous suspension, for six constant temperatures ranging from 105 to 130°C, displayed an initial shoulder before a linear decline. To interpret these observations, we supposed that, before the heat treatment, the designated spore suspension contained a countable and mortal N0 population of activated spores and an M0 population of dormant spores which remained masked during spore counting and had to be activated before being destroyed by heat. We also hypothesized that the mechanisms of both activation and destruction are, at constant temperature, ruled by first-order kinetics, with velocity constants kA and kD, respectively. Mathematical analysis showed that this model could represent not only our experimental survival curves, but also all other shapes (linear and biphasic) of survival curves found in the literature; also, there is an inherent symmetry in the model formulation between the activation and destruction reactions, and we showed that the dormancy rate (τ = M0/N0) is the only parameter which permits a distinction between the two reactions. By applying the model to our experimental data and considering that the dormancy rate is not dependent on the treatment temperature, we showed that, for the studied suspension, the limiting reaction was the activation reaction.  相似文献   

3.
The synthesis and characterisation of cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 are described. Solvolysis rates have been measured by both 1H NMR spectroscopy and UV-Vis spectrophotometry in dimethyl sulfoxide at 298.2 K. The cis isomer undergoes solvolysis by consecutive first-order reactions, k1=5.61 × 10−4 and k2=5.35 × 10−4 s−1, each with steric retention. The measured solvolysis rate (single step reaction) for the trans isomer is k=1.54 × 10−5 s−1. The solvent exchange rates have been measured by 1H NMR spectroscopy in CD3CN at 298.2 K: kex(cis)=kct + kcc=2.0 × 10−5 and kex(trans)=ktc + ktt=4.56 × 10−6 s−1. From these data, the measured cis-trans isomerisation rate (1.71 × 10−6 s−1) and equilibrium position in CH3CN (17% trans), the steric course for substitution in the exchange processes has been determined: trans reactant - 69% trans product; cis reactant - 99% cis product. Aquation rates for cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 have also been determined spectrophotometrically and by NMR; kcis=1.3 × 10−4 and ktrans=2.7 × 10−5 s−1. In both cases the steric course for the primary aquation step is indeterminate because the subsequent steps are faster. Where data are available, the [Co(tmen)2X2]n+ complexes are found to be consistently much more reactive than their [Co(en)2X2]n+ analogues.  相似文献   

4.
Siegel DP 《Biophysical journal》2008,95(11):5200-5215
The Gaussian curvature elastic energy contribution to the energy of membrane fusion intermediates has usually been neglected because the Gaussian curvature elastic modulus, κ, was unknown. It is now possible to measure κ for phospholipids that form bicontinuous inverted cubic (QII) phases. Here, it is shown that one can estimate κ for lipids that do not form QII phases by studying the phase behavior of lipid mixtures. The method is used to estimate κ for several lipid compositions in excess water. The values of κ are used to compute the curvature elastic energies of stalks and catenoidal fusion pores according to recent models. The Gaussian curvature elastic contribution is positive and similar in magnitude to the bending energy contribution: it increases the total curvature energy of all the fusion intermediates by 100 units of kBT or more. It is important to note that this contribution makes the predicted intermediate energies compatible with observed lipid phase behavior in excess water. An order-of-magnitude fusion rate equation is used to estimate whether the predicted stalk energies are consistent with the observed rates of stalk-mediated processes in pure lipid systems. The current theory predicts a stalk energy that is slightly too large, by ∼30 kBT, to rationalize the observed rates of stalk-mediated processes in phosphatidylethanolamine or N-monomethylated dioleoylphosphatidylethanolamine systems. Despite this discrepancy, the results show that models of fusion intermediate energy are accurate enough to make semiquantitative predictions about how proteins mediate biomembrane fusion. The same rate model shows that for proteins to drive biomembrane fusion at observed rates, they have to perform mediating functions corresponding to a reduction in the energy of a purely lipidic stalk by several tens of kBT. By binding particular peptide sequences to the monolayer surface, proteins could lower fusion intermediate energies by altering the elastic constants of the patches of lipid monolayer that form the stalk. Here, it is shown that if peptide binding changes κ or some other combinations of local elastic constants by only tens of percents, the stalk energy and the energy of catenoidal fusion pores would decrease by tens of kBT relative to the pure lipid value. This is comparable to the required mediating effect. The curvature energies of stalks and catenoidal fusion pores have almost the same dependence on monolayer elastic constants as the curvature energies of the rhombohedral and QII phases; respectively. The effects of isolated fusion-relevant peptides on the energies of these intermediates can be determined by studying the effects of the peptides on the stability of rhombohedral and QII phases.  相似文献   

5.
A detailed investigation on the oxidation of aqueous sulfite and aqueous potassium hexacyanoferrate(II) by the title complex ion has been carried out using the stopped-flow technique over the ranges, 0.01≤[S(IV)]T≤0.05 mol dm−3, 4.47≤pH≤5.12, and 24.9≤θ≤37.6 °C and at ionic strength 1.0 mol dm−3 (NaNO3) for aqueous sulfite and 0.01≤[Fe(CN)6 4−]≤0.11 mol dm−3, 4.54≤pH≤5.63, and 25.0≤θ≤35.3 °C and at ionic strength 1.0 or 3.0 mol dm−3 (NaNO3) for the hexacyanoferrate(II) ion. Both redox processes are dependent on pH and reductant concentration in a complex manner, that is, for the reaction with aqueous sulfite, kobs={(k1K1K2K3+k2K1K4[H+])[S(IV)]T]/([H+]2+K1[H+]+K1K2) and for the hexacyanoferrate(II) ion, kobs={(k1K3K4K5+k2K3K6[H+])[Fe(CN)6 4−]T)/([H+]2+K3[H+]+K3K4). At 25.0 °C, the value of k1′ (the composite of k1K3) is 0.77±0.07 mol−1 dm3 s−1, while the value of k2′ (the composite of k2K4) is (3.78±0.17)×10−2 mol−1 dm3 s−1 for aqueous sulfite. For the hexacyanoferrate(II) ion, k1′ (the composite of k1K5) is 1.13±0.01 mol−1 dm3 s−1, while the value of k2′ (the composite of k2K6) is 2.36±0.05 mol−1 dm3 s−1 at 25.0 °C. In both cases there was reduction of the cobalt(III) centre to cobalt(II), but there was no reduction of the molybdenum(VI) centre. k22, the self-exchange rate constant, for aqueous sulfite (as SO3 2−) was calculated to be 5.37×10−12 mol−1 dm3 s−1, while for Fe(CN)6 4−, it was calculated to be 1.10×109 mol−1 dm3 s−1 from the Marcus equations.  相似文献   

6.
After determination of sorption isotherms of grape seeds using gravimetric method, five models with temperature effect were used to fit water sorption isotherms of grape seeds to investigate temperature effect on sorption isotherms and its thermodynamic characteristics. Halsey model had minimum mean relative percentage error (M e ) and all other models used were good in fitting experimental data (with M e of less than 10 %). Differential parameters such as net isosteric heat, isosteric heat, differential entropy and integral function such as equilibrium heat, net equilibrium heat, integral entropy and surface potential have been calculated. The net isosteric heat, isosteric heat and differential entropy decreased with moisture content. The net equilibrium enthalpy, equilibrium enthalpy and integral entropy decreased with moisture content. The surface potential at four temperatures (35, 45, 55 and 65 °C) was estimated, and low temperature effect was reported.  相似文献   

7.
Over the past several years, many crystal structures of photosynthetic pigment-protein complexes have been determined, and these have been used extensively to model spectroscopic results obtained on the same proteins in solution. However, the crystal structure is not necessarily identical to the structure of the protein in solution. Here, we studied picosecond fluorescence of photosystem I light-harvesting complex I (PSI-LHCI), a multisubunit pigment-protein complex that catalyzes the first steps of photosynthesis. The ultrafast fluorescence of PSI-LHCI crystals is identical to that of dissolved crystals, but differs considerably from most kinetics presented in the literature. In contrast to most studies, the data presented here can be modeled quantitatively with only two compartments: PSI core and LHCI. This yields the rate of charge separation from an equilibrated core (22.5 ± 2.5 ps) and rates of excitation energy transfer from LHCI to core (kLC) and vice versa (kCL). The ratio between these rates, R = kCL/kLC, appears to be wavelength-dependent and scales with the ratio of the absorption spectra of LHCI and core, indicating the validity of a detailed balance relation between both compartments. kLC depends slightly but nonsystematically on detection wavelength, averaging (9.4 ± 4.9 ps)−1. R ranges from 0.5 (<690 nm) to ∼1.3 above 720 nm.  相似文献   

8.
The oxidation of thiocyanate by iron(V) (Fe(V)) was studied as a function of pH in alkaline solutions by a premix pulse radiolysis technique. The rates decrease with an increase in pH. The rate law for the oxidation of SCN by Fe(V) was obtained as −d[Fe(V)]/dt = k10{[H+]2/([H+]2 + K2[H+] + K2K3)}[Fe(V)][SCN], where k10 = 5.72 ± 0.19 × 106 M−1 s−1, pK2 = 7.2, and pK3 = 10.1. The reaction precedes via a two-electron oxidation, which converts Fe(V) to Fe(III). Thiocyanate reacts approximately 103× faster with iron(V) than does with iron(VI).  相似文献   

9.
Luo HB  Ma L  Xi HF  Duan W  Li SH  Loescher W  Wang JF  Wang LJ 《PloS one》2011,6(8):e23033

Background

The electron transport chain, Rubisco and stomatal conductance are important in photosynthesis. Little is known about their combined responses to heat treatment at different temperatures and following recovery in grapevines (Vitis spp.) which are often grown in climates with high temperatures.

Methodology/Findings

The electron transport function of photosystem II, the activation state of Rubisco and the influence of stomatal behavior were investigated in grapevine leaves during heat treatments and following recovery. High temperature treatments included 35, 40 and 45°C, with 25°C as the control and recovery temperature. Heat treatment at 35°C did not significantly (P>0.05) inhibit net photosynthetic rate (P n). However, with treatments at 40 and 45°C, P n was decreased, accompanied by an increase in substomatal CO2 concentration (C i), decreases in stomatal conductance (g s) and the activation state of Rubisco, and inhibition of the donor side and the reaction center of PSII. The acceptor side of PSII was inhibited at 45°C but not at 40°C. When grape leaves recovered following heat treatment, P n, gs and the activation state of Rubisco also increased, and the donor side and the reaction center of PSII recovered. The increase in P n during the recovery period following the second 45°C stress was slower than that following the 40°C stress, and these increases corresponded to the donor side of PSII and the activation state of Rubisco.

Conclusions

Heat treatment at 35°C did not significantly (P>0.05) influence photosynthesis. The decrease of P n in grape leaves exposed to more severe heat stress (40 or 45°C) was mainly attributed to three factors: the activation state of Rubisco, the donor side and the reaction center of PSII. However, the increase of P n in grape leaves following heat stress was also associated with a stomatal response. The acceptor side of PSII in grape leaves was responsive but less sensitive to heat stress.  相似文献   

10.
(1) The kinetic parameters of rat pancreatic adenylate cyclase were evaluated, using GTP, p[NH]ppG or GTPγS as nucleotide activator, cholecystokinin as peptide hormone, and GDPβS and dibutyryl cyclic GMP as inhibitors of guanosine triphosphate and CCK-8, respectively. The time courses of activation and the degree of activation at steady state (EA/ETOT) were compatible with a simple two-state model of activation-deactivation based on a pseudo-monomolecular activation process (rate constant k+2, and a deactivation process (rate constant koff) that included, depending on the activating nucleotide, the hydrolysis of GTP (rate constant k2) and/or the dissociation of the intact nucleotide (rate constant k?1), so that EA/ETOT = k+1/(k+1 + k2 + k?a). (2) The hormone CCK-8 increased the value of k+1 with GTP dose-dependently, from 0.2 to 10.9 min?1. The value of k?1 increased 0.01 to 0.3 min?1 but the value of k2 was unaltered at 7 min?1, so that EA/ETOT increased 15-fold, from 4% to 61%. (3) A cholera toxin pretreatment at 30 μg/ml allowed also a large increase in EA/ETOT with GTP (up to 51%) but the underlying mechanism was different. It consisted of a 14-fold decrease in the koff value of the GTP-activated enzyme (from 7 min? to 0.5 min?1) that corresponded to a reduction in GTPase activity. When testing the system with p[NH]ppG, two added effects of the cholera toxin pretreatment were observed: a 4-fold increase in the value of k+1 (from 0.2 to 0.8 min?1) and the occurrence of a significant 0.3 min?1 value for k?1.  相似文献   

11.
The initial rates and steady-state values of proton uptake by broken chloroplasts have been measured as functions of light intensity at various concentrations of chlorophyll, pyocyanine, supporting electrolyte, buffer, as well as pH and temperature. Kinetic analysis of the data shows that the rate of decay of proton gradient due to backward leakage depends on light intensity. Under steady illumination, the decay constant kL is equal to kD + mR0, where R0 is the initial rate of proton uptake which is a function of light intensity, kD is the decay constant in the dark and m is a parameter which is independent of light intensity. Treatment of chloroplasts with lysolecithin, neutral detergent, 2,4-dinitrophenol, or valinomycin in the presence of K+ increases kD without affecting m. Treatment with N,N′-dicyclohexylcarbodiimide or adenylyl imidodiphosphate under appropriate conditions decreases m without affecting kD. Treatment with glutaraldehyde makes kL independent of light intensity and hence m = 0. These results suggest that the light-dependent part (mR0) of kL is due to leakage of protons through the coupling factor (CF1-CF0) complex which can open or close depending on light intensity and that the light-independent part (kD) of the decay constant kL is due to proton leakage elsewhere.  相似文献   

12.
Kinetics of tetramolecular quadruplexes   总被引:8,自引:6,他引:2  
The melting of tetramolecular DNA or RNA quadruplexes is kinetically irreversible. However, rather than being a hindrance, this kinetic inertia allows us to study association and dissociation processes independently. From a kinetic point of view, the association reaction is fourth order in monomer and the dissociation first order in quadruplex. The association rate constant kon, expressed in M−3·s−1 decreases with increasing temperature, reflecting a negative activation energy (Eon) for the sequences presented here. Association is favored by an increase in monocation concentration. The first-order dissociation process is temperature dependent, with a very positive activation energy Eoff, but nearly ionic strength independent. General rules may be drawn up for various DNA and RNA sequence motifs, involving 3–6 consecutive guanines and 0–5 protruding bases. RNA quadruplexes are more stable than their DNA counterparts as a result of both faster association and slower dissociation. In most cases, no dissociation is found for G-tracts of 5 guanines or more in sodium, 4 guanines or more in potassium. The data collected here allow us to predict the amount of time required for 50% (or 90%) quadruplex formation as a function of strand sequence and concentration, temperature and ionic strength.  相似文献   

13.
Microorganisms living in arsenic-rich geothermal environments act on arsenic with different biochemical strategies, but the molecular mechanisms responsible for the resistance to the harmful effects of the metalloid have only partially been examined. In this study, we investigated the mechanisms of arsenic resistance in the thermophilic bacterium Thermus thermophilus HB27. This strain, originally isolated from a Japanese hot spring, exhibited tolerance to concentrations of arsenate and arsenite up to 20 mM and 15 mM, respectively; it owns in its genome a putative chromosomal arsenate reductase (TtarsC) gene encoding a protein homologous to the one well characterized from the plasmid pI258 of the Gram + bacterium Staphylococcus aureus. Differently from the majority of microorganisms, TtarsC is part of an operon including genes not related to arsenic resistance; qRT-PCR showed that its expression was four-fold increased when arsenate was added to the growth medium. The gene cloning and expression in Escherichia coli, followed by purification of the recombinant protein, proved that TtArsC was indeed a thioredoxin-coupled arsenate reductase with a kcat/KM value of 1.2 × 104 M− 1 s− 1. It also exhibited weak phosphatase activity with a kcat/KM value of 2.7 × 10− 4 M− 1 s− 1. The catalytic role of the first cysteine (Cys7) was ascertained by site-directed mutagenesis. These results identify TtArsC as an important component in the arsenic resistance in T. thermophilus giving the first structural–functional characterization of a thermophilic arsenate reductase.  相似文献   

14.
Cai J  Yang S  Li T 《Bioresource technology》2011,102(3):3642-3644
The pyrolysis behavior of cellulose has been investigated by using thermogravimetric analysis (TGA). The non-isothermal TGA data obtained at different heating rates have been analyzed simultaneously. Pattern Search Method has been proposed for the estimation of the model parameter values. Predicted values from the logistic distributed activation energy model have been compared with the experimental data and the results have indicated that the model describes the kinetic behavior of cellulose pyrolysis very well. The mean value and standard deviation of the logistic activation energy distribution for cellulose pyrolysis are found to be 258.5718 kJ mol(-1) and 2.6601 kJ mol(-1), the reaction order is 1.1101 and the k(0) is 1.6218×10(17) s(-1).  相似文献   

15.
A UV-Vis absorption study was performed in order to elucidate the electronic energy levels of three tetragonal chromium (III) complexes, namely trans-[Cr(en)2(CN)2]ClO4, trans-[Cr(cyclam)(CN)2]ClO4, and trans-[Cr(NH3)4(CN)2]ClO4. The absorption spectra of the preceding complexes have been analyzed via Gaussian analysis to locate the quartet band maxima of the tetragonal components. The deconvoluted band maxima were then fitted with the tetragonal energy matrices of d3 configuration with full configuration interaction, neglecting spin-orbit interaction. The ligand field parameters Dq, Dt, and Ds along with the electron correlation parameters have been extracted via the fitting procedure. The significance of these parameters and the translated angular overlap model parameters has been discussed. We have also uncovered in the spectrum of the ethylenediamine complex the low intensity doublet absorption bands and a high intensity charge transfer band which have been tentatively assigned.  相似文献   

16.
Solutions of the enzyme luciferase, extracted from Cypridina, were subjected at pH 6.8 to temperatures from 40–55°C. for times up to 24 hours. After the desired exposures samples were cooled rapidly to room temperature, mixed with luciferin, and the first order velocity constants (representing luciferase activity) of the resulting luminescent reactions were determined by a photo electric method. The form of the curve relating luciferase activity to time of exposure to a temperature in the above range is compound in nature. If the exposure to the high temperature is not too long, about two-thirds of the lost activity is slowly regained on standing at room temperature. The data were described by an equation which represents the following mechanism: See PDF for Equation A plot of the logarithm of the rate constant, k1, against the reciprocal of the absolute temperature yielded an experimental activation energy for this reaction of about 57,000 calories, typical of protein denaturation processes. Log k2 plotted against 1/T was described by either a curve or two straight lines, high activation energies resulting in either case, again indicating protein denaturation. The plot of log k3: vs. 1/T showed no apparent dependence upon temperature, k3 being practically constant over the range studied. This may indicate that the underlying mechanism is not actually as simple as pictured. Two other mechanisms that were also considered were discarded because of lack of experimental support. Measurements of the decrease of luciferase activity at 48°C. and at pH 6.7, pH 5.5, and pH 7.9 showed that inactivation of the enzyme at this temperature was much more rapid at pH 7.9 than at pH 6.7 and was even faster at pH 5.5. These results from the Cypridina luminescent system were compared with those of other investigators on other systems.  相似文献   

17.
The purpose of this study is to investigate the ability of multivariate analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted MRI (DW-MRI) parametric maps, obtained early in the course of therapy, to predict which patients will achieve pathologic complete response (pCR) at the time of surgery. Thirty-three patients underwent DCE-MRI (to estimate Ktrans, ve, kep, and vp) and DW-MRI [to estimate the apparent diffusion coefficient (ADC)] at baseline (t1) and after the first cycle of neoadjuvant chemotherapy (t2). Four analyses were performed and evaluated using receiver-operating characteristic (ROC) analysis to test their ability to predict pCR. First, a region of interest (ROI) level analysis input the mean Ktrans, ve, kep, vp, and ADC into the logistic model. Second, a voxel-based analysis was performed in which a longitudinal registration algorithm aligned serial parameters to a common space for each patient. The voxels with an increase in kep, Ktrans, and vp or a decrease in ADC or ve were then detected and input into the regression model. In the third analysis, both the ROI and voxel level data were included in the regression model. In the fourth analysis, the ROI and voxel level data were combined with selected clinical data in the regression model. The overfitting-corrected area under the ROC curve (AUC) with 95% confidence intervals (CIs) was then calculated to evaluate the performance of the four analyses. The combination of kep, ADC ROI, and voxel level data achieved the best AUC (95% CI) of 0.87 (0.77–0.98).  相似文献   

18.
The concentration profiles and the absorbed fraction (F) of the País grape seed extract in the human small intestine were obtained using a microscopic model simulation that accounts for the extracts'' dissolution and absorption. To apply this model, the physical and chemical parameters of the grape seed extract solubility (Cs), density (ρ), global mass transfer coefficient between the intestinal and blood content (k) (effective permeability), and diffusion coefficient (D) were experimentally evaluated. The diffusion coefficient (D = 3.45 × 10−6 ± 5 × 10−8 cm2/s) was approximately on the same order of magnitude as the coefficients of the relevant constituents. These results were chemically validated to discover that only the compounds with low molecular weights diffused across the membrane (mainly the (+)-catechin and (−)-epicatechin compounds). The model demonstrated that for the País grape seed extract, the dissolution process would proceed at a faster rate than the convective process. In addition, the absorbed fraction was elevated (F = 85.3%). The global mass transfer coefficient (k = 1.53 × 10−4 ± 5 × 10−6 cm/s) was a critical parameter in the absorption process, and minor changes drastically modified the prediction of the extract absorption. The simulation and experimental results show that the grape seed extract possesses the qualities of a potential phytodrug.KEY WORDS: dose absorption, mathematical modeling, País grape seed extract, simulation  相似文献   

19.
Phospholamban (PLN) is a dynamic single-pass membrane protein that inhibits the flow of Ca2+ ions into the sarcoplasmic reticulum (SR) of heart muscle by directly binding to and inhibiting the SR Ca2+ATPase (SERCA). The PLN monomer is the functionally active form that exists in equilibrium between ordered (T state) and disordered (R state) states. While the T state has been fully characterized using a hybrid solution/solid-state NMR approach, the R state structure has not been fully portrayed. It has, however, been detected by both NMR and EPR experiments in detergent micelles and lipid bilayers. In this work, we quantitatively probed the μs to ms dynamics of the PLN excited states by observing the T state in DPC micelles using CPMG relaxation dispersion NMR spectroscopy under functional conditions for SERCA. The 15N backbone and 13Cδ1 Ile-methyl dispersion curves were fit using a two-state equilibrium model, and indicate that residues within domain Ia (residues 1-16), the loop (17-22), and domain Ib (23-30) of PLN undergo μs-ms dynamics (kex = 6100 ±800 s- 1 at 17 °C). We measured kex at additional temperatures, which allowed for a calculation of activation energy equal to ∼ 5 kcal/mol. This energy barrier probably does not correspond to the detachment of the amphipathic domain Ia, but rather the energy needed to unwind domain Ib on the membrane surface, likely an important mechanism by which PLN converts between high and low affinity states for its binding partners.  相似文献   

20.
Mammalian E3 is an essential mitochondrial enzyme responsible for catalyzing the terminal reaction in the oxidative catabolism of several metabolites. E3 is a key regulator of metabolic fuel selection as a component of the pyruvate dehydrogenase complex (PDHc). E3 regulates PDHc activity by altering the affinity of pyruvate dehydrogenase kinase, an inhibitor of the enzyme complex, through changes in reduction and acetylation state of lipoamide moieties set by the NAD+/NADH ratio. Thus, an accurate kinetic model of E3 is needed to predict overall mammalian PDHc activity. Here, we have combined numerous literature data sets and new equilibrium spectroscopic experiments with a multitude of independently collected forward and reverse steady-state kinetic assays using pig heart E3. The latter kinetic assays demonstrate a pH-dependent transition of NAD+ activation to inhibition, shown here, to our knowledge, for the first time in a single consistent data set. Experimental data were analyzed to yield a thermodynamically constrained four-redox-state model of E3 that simulates pH-dependent activation/inhibition and active site redox states for various conditions. The developed model was used to determine substrate/product conditions that give maximal E3 rates and show that, due to non-Michaelis-Menten behavior, the maximal flux is different compared with the classically defined kcat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号