首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Titration of cyanide-incubated cytochrome c oxidase (ox heart cytochrome aa3) with ferrocytochrome c or with NNN'N'-tetramethyl-p-phenylenediamine initially introduces two reducing equivalents per mol of cytochrome aa3. The first equivalent reduces the cytochrome a haem iron; the second reducing equivalent is not associated with reduction of the 830 nm chromophores (e.p.r.-detectable copper) but is probably required for reduction of the e.p.r.-undetectable copper. Excess reductant introduces a third reducing equivalent into the cyanide complex of cytochrome aa3. During steady-state respiration in the presence of cytochrome c and ascorbate, the 830 nm chromophore is almost completely oxidized. It is reduced more slowly than cytochrome a on anaerobiosis. In the presence of formate or azide, some reduction at 830 nm can be seen in the steady state; in an oxygen-pulsed system, a decrease in steady-state reduction of cytochromes c and a is associated with ab increased reduction of the 830 nm species. In the formate-inhibited system the reduction of a3 on anaerobiosis shows a lag phase, the duration of which corresponds to the time taken for the 830 nm species to be reduced. It is concluded that the e.p.r.-undetectable copper (CuD) is reduced early in the reaction sequence, whereas the detectable copper (CUD) is reduced late. The latter species is probably that responsible for reduction of the cytochrome a3 haem. The magnetic association between undetectable copper and the a3 haem may not imply capability for electron transfer, which occurs more readily between cytochrome a3 and the 830 nm species.  相似文献   

2.
The kinetics of the electron-transfer process which occurs between ferrocytochrome c and partially reduced mammalian cytochrome oxidase were studied by the rapid spectrophotometric techniques of stopped flow and temperature jump. Stopped-flow experiments showed initial very fast extinction changes at 605 nm and at 563 nm, indicating the simultaneous reduction of cytochrome a and oxidation of ferrocytochrome c. During this 'burst' phase, say the first 50 ms after mixing, it was invariably found that more cytochrome c had been oxidized than cytochrome a had been reduced. This discrepancy in electron equivalents may be accounted for by the rapid reduction of another redox site in the enzyme, possibly that associated with the extinction changes observed at 830 nm. During the incubation period in which the partially reduced oxidase was prepared, the rate of reduction of cytochrome a by ferrocytochrome c, at constant reactant concentrations, decreased with time. Temperature-jump experiments showed the presence of two relaxation processes. The faster of the two phases was assigned to the electron-transfer reaction between cytochrome c and cytochrome a. A study of the concentration-dependence of the reciprocal relaxation time for this phase yielded a rate constant of 9 X 10(6)M-1-s-1 for the electron transfer from cytochrome c to cytochrome a, and a value of 8.5 X 10(6)M-1-s-1 for the reverse reaction. The equilibrium constant for the electron-transfer reaction is therefore close to unity. The slower phase has been interpreted as signalling the transfer of electrons between cytochrome a and another redox site within the oxidase molecule.  相似文献   

3.
The reaction between cytochrome c1 and cytochrome c   总被引:3,自引:0,他引:3  
The kinetics of electron transfer between the isolated enzymes of cytochrome c1 and cytochrome c have been investigated using the stopped-flow technique. The reaction between ferrocytochrome c1 and ferricytochrome c is fast; the second-order rate constant (k1) is 3.0 . 10(7) M-1 . s-1 at low ionic strength (I = 223 mM, 10 degrees C). The value of this rate constant decreases to 1.8 . 10(5) M-1 . s-1 upon increasing the ionic strength to 1.13 M. The ionic strength dependence of the electron transfer between cytochrome c1 and cytochrome c implies the involvement of electrostatic interactions in the reaction between both cytochromes. In addition to a general influence of ionic strength, specific anion effects are found for phosphate, chloride and morpholinosulphonate. These anions appear to inhibit the reaction between cytochrome c1 and cytochrome c by binding of these anions to the cytochrome c molecule. Such a phenomenon is not observed for cacodylate. At an ionic strength of 1.02 M, the second-order rate constants for the reaction between ferrocytochrome c1 and ferricytochrome c and the reverse reaction are k1 = 2.4 . 10(5) M-1 . s-1 and k-1 = 3.3 . 10(5) M-1 . s-1, respectively (450 mM potassium phosphate, pH 7.0, 1% Tween 20, 10 degrees C). The 'equilibrium' constant calculated from the rate constants (0.73) is equal to the constant determined from equilibrium studies. Moreover, it is shown that at this ionic strength, the concentrations of intermediary complexes are very low and that the value of the equilibrium constant is independent of ionic strength. These data can be fitted into the following simple reaction scheme: cytochrome c2+1 + cytochrome c3+ in equilibrium or formed from cytochrome c3+1 + cytochrome c2+.  相似文献   

4.
The stoichiometry of vectorial H+ ejection, coupled to ferrocytochrome c oxidation by a three-subunit bacterial cytochrome c oxidase (EC 1.9.3.1) from the thermophilic bacterium PS3, was measured. Three methods of measuring the H+/e- ratio were applied to proteoliposomes containing a relatively small amount of PS3 cytochrome oxidase, which showed a relatively low oxidation rate and a very low H+ leakage, as follows: (a) simultaneous measurements of H+ ejection and cytochrome c oxidation upon addition of a yeast ferrocytochrome c pulse, which enable us to calculate the H+/e- ratio as H+ ejected per cytochrome c oxidized; (b) computer simulations to find out the fit for the pH meter trace by changing the H+/e- ratio and the velocity constant of leakage; and (c) two successive measurements of initial rates of H+ movement in the absence and presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone. The H+/e- ratios obtained were 1.39, the 10-s value after ferrocytochrome c addition in (a), 1.35 in (b), and 1.33 in (c). This high H+/e- stoichiometry observed, exceeding 1 and as high as 1.4, is discussed with respect to the controversy of the H+/e- ratio at the cytochrome oxidase site.  相似文献   

5.
Experiments were performed to examine the cyanide-binding properties of resting and pulsed cytochrome c oxidase in both their stable and transient turnover states. Inhibition of the oxidation of ferrocytochrome c was monitored as a function of cyanide concentration. Cyanide binding to partially reduced forms produced by mixing cytochrome c oxidase with sodium dithionite was also examined. A model is presented that accounts fully for cyanide inhibition of the enzyme, the essential feature of which is the rapid, tight, binding of cyanide to transient, partially reduced, forms of the enzyme populated during turnover. Computer fitting of the experimentally obtained data to the kinetic predictions given by this model indicate that the cyanide-sensitive form of the enzyme binds the ligand with combination constants in excess of 10(6) M-1 X s-1 and with KD values of 50 nM or less. Kinetic difference spectra indicate that cyanide binds to oxidized cytochrome a33+ and that this occurs rapidly only when cytochrome a and CuA are reduced.  相似文献   

6.
Horse heart cytochrome c was covalently bound to Sepharose 4B and its redox properties were measured under various experimental conditions. The equilibrium constant for the electron exchange between the oxidized and the reduced form of cytochrome c when one of the two forms was in the semi-solid state and the other one in solution was close to 1. Matrix-bound ferrocytochrome c is very stable to autoxidation and is not oxidized by O2 even in the presence of mammalian cytochrome oxidase. Oxidation occurs if catalytic amounts of soluble cytochrome c are added to the reaction mixture. The rate of oxidation of matrix-bound ferrocytochrome c in the presence of cytochrome oxidase and catalytic amounts of soluble cytochrome c may be correlated with the rate of electron transfer between soluble and matrix-bound cytochrome c. This rate is more than two orders of magnitude lower than that reported for the homonuclear (between identical species) electron transfer in solution.  相似文献   

7.
Contrary to most heme proteins, ferrous cytochrome c does not bind ligands such as cyanide and CO. In order to quantify this observation, the redox potential of the ferric/ferrous cytochrome c-cyanide redox couple was determined for the first time by cyclic voltammetry. Its E0' was -240 mV versus SHE, equivalent to -23.2 kJ/mol. The entropy of reaction for the reduction of the cyanide complex was also determined. From a thermodynamic cycle that included this new value for the cyt c cyanide complex E0', the binding constant of cyanide to the reduced protein was estimated to be 4.7 x 10(-3) L M(-1) or 13.4 kJ/mol (3.2 kcal/mol), which is 48.1 kJ/mol (11.5 kcal/mol) less favorable than the binding of cyanide to ferricytochrome c. For coordination of cyanide to ferrocytochrome c, the entropy change was earlier experimentally evaluated as 92.4 J mol(-1) K(-1) (22.1 e.u.) at 25 K, and the enthalpy change for the same net reaction was calculated to be 41.0 kJ/mol (9.8 kcal/mol). By taking these results into account, it was discovered that the major obstacle to cyanide coordination to ferrocytochrome c is enthalpic, due to the greater compactness of the reduced molecule or, alternatively, to a lower rate of conformational fluctuation caused by solvation, electrostatic, and structural factors. The biophysical consequences of the large difference in the stabilities of the closed crevice structures are discussed.  相似文献   

8.
The spectrophotometric oxidation of horse heart ferrocytochrome c was examined by use of the particulate electron transport fraction (R(3)) of Azotobacter vinelandii strain O. Unlike cytochrome c, purified preparations of native Azotobacter cytochromes c(4) + c(5) were oxidized only slowly by the electron transport fraction. The oxidation of mammalian cytochrome c proceeded at an appreciable rate and displayed "apparent" first-order kinetics at a pH optimum of 9.0 with tris(hydroxymethyl)aminomethane-chloride buffer. The calculated V(max) value was 0.22 mumole of cytochrome c oxidized per min per mg of protein (25 C) and a K(m) value for cytochrome c of 2.3 x 10(-5)m was obtained. Ferricytochrome c was a "strict" competitive inhibitor for this oxidation. Cytochrome c oxidation by the Azotobacter electron transport system was markedly sensitive to cyanide, azide, and hydroxylamine, although carbon monoxide inhibition could not be demonstrated. It was sensitive also to high concentrations of phosphate, ethylenediaminetetraacetate, and some metal cations. "Aging" or prolonged storage of the Azotobacter R(3) fraction, at 4 C for 10 days, resulted in a threefold increase in specific activity. The cytochrome c peroxidase type of reaction did not occur with the R(3) electron transport fraction.  相似文献   

9.
The minimal structural unit of cytochrome c oxidase purified from Thiobacillus novellus was composed of one molecule each of two subunits with molecular masses of 32 and 23 kDa, respectively, and the unit had one molecule of heme a and one atom of copper. In the presence of n-octyl-beta-D-thioglucoside, the oxidase existed as the monomeric form of the unit, while it occurred as the dimeric form of the unit in the presence of Tween 20. The monomeric form showed an active cytochrome c oxidizing activity and reduced molecular oxygen to water with ferrocytochrome c. Namely, it has been shown that the bacterial cytochrome c oxidase with one heme a molecule and one copper atom per molecule can catalyze oxidation of ferrocytochrome c with concomitant reduction of molecular oxygen to water.  相似文献   

10.
Characterization of the steady state kinetics of reduction of horse ferricytochrome c by purified beef ubiquinol-cytochrome c reductase, employing 2,3-dimethoxy-5-methyl-6-decylbenzoquinol as reductant, has shown that: 1) the dependence of the reaction on quinol and on ferricytochrome c concentration is consistent with a ping-pong mechanism; 2) the pH optimum of the reaction is near 8.0; 3) the effect of ionic strength on the apparent Km and the TNmax of the reaction for the native cytochrome c is small, and at higher cytochrome c concentrations substrate inhibition is observed; 4) the effect of ionic strength on the kinetic parameters for the reaction of 4-carboxy-2,6-dinitrophenyllysine 27 horse cytochrome c is much larger than for the native protein; and 5) competitive product inhibition is also observed with a Ki consistent with the binding affinity of ferrocytochrome c for Complex III, as determined by gel filtration. In addition, direct binding measurements demonstrated that ferricytochrome c binds more tightly than the reduced protein to Complex III under low ionic strength conditions and that under these conditions more than one molecule of cytochrome c is bound per molecule of Complex III. Exchange of Complex III into a nonionic detergent decreases this excess nonspecific binding. Measurement of the rates of dissociation of the oxidized and reduced 1:1 complexes of cytochrome c and Complex III by stopped flow was consistent with the disparity of binding affinities, the dissociation rate constant for ferrocytochrome c being about 5-fold higher than that for the ferric protein. A model which accounts for the properties of this system is described, assuming that cytochrome c bound to noncatalytic sites on the respiratory complex decreases the catalytic site binding constant for the substrate.  相似文献   

11.
T Andersson  E Thulin  S Forsén 《Biochemistry》1979,18(12):2487-2493
The enhancement of the 35Cl- transverse relaxation rate on binding of chloride ions to oxidized and reduced cytochrome c has been studied under conditions of variable sodium chloride concentration, temperature, pH, sodium phosphate, iron hexacyanide, and sodium cyanide concentration. The results revealed the presence of a strong binding site(s) for chloride in both oxidized and reduced cyt c, with a higher affinity in ferrocytochrome c. Competition experiments suggest that these sites also bind iron hexacyanide and phosphate. Cyanide binding to the iron in ferricytochrome c at alkaline and neutral pH was shown to decrease the binding of chloride. The pH dependence of the 35Cl- relaxation rate has been fitted by using literature pK values for ionizable groups. No indications of Na+ binding to oxidized and reduced cytochrome c have been observed by using 23Na+ NMR. Our results suggest that chloride is bound near the exposed heme edge and that the surface structure or dynamics in this region are different in the two oxidation states.  相似文献   

12.
In rat liver mitochondria treated with rotenone, N-ethylmaleimide or oligomycin the expected alkalinization caused by proton consumption for aerobic oxidation of ferrocyanide was delayed with respect to ferrocyanide oxidation, unless carbonyl cyanide p-trifluoromethoxyphenylhydrazone was present. 2. When valinomycin or valinomycin plus antimycin were also present, ferricyanide, produced by oxidation of ferrocyanide, was re-reduced by hydrogenated endogenous reductants. Under these circumstances the expected net proton consumption caused by ferrocyanide oxidation was preceded by transient acidification. It is shown that re-reduction of formed ferricyanide and proton release derive from rotenone- and antimycin-resistant oxidation of endogenous reductants through the proton-translocating segments of the respiratory chain on the substrate side of cytochrome c. The number of protons released per electron flowing to ferricyanide varied, depending on the experimental conditions, from 3.6 to 1.5. 3. The antimycin-insensitive re-reduction of ferricyanide and proton release from mitochondria were strongly depressed by 2-n-heptyl-4-hydroxyquinoline N-oxide. This shows that the ferricyanide formed accepts electrons passing through the protonmotive segments of the respiratory chain at the level of cytochrome c and/or redox components of the cytochrome b-c1 complex situated on the oxygen side of the antimycin-inhibition site. Dibromothymoquinone depressed and duroquinol enhanced, in the presence of antimycin, the proton-release process induced by ferrocyanide respiration. Both quinones enhanced the rate of scalar proton production associated with ferrocyanide respiration, but lowered the number of protons released per electron flowing to the ferricyanide formed. 4. Net proton consumption caused by aerobic oxidation of exogenous ferrocytochrome c by antimycin-supplemented bovine heart mitochondria was preceded by scalar proton release, which was included in the stoicheiometry of 1 proton consumed per mol of ferrocytochrome c oxidized. This scalar proton production was associated with transition of cytochrome c from the reduced to the oxidized form and not to electron flow along cytochrome c oxidase. 5. It is concluded that cytochrome c oxidase only mediates vectorial electron flow from cytochrome c at the outer side to protons that enter the oxidase from the matrix side of the membrane. In addition to this consumption of protons the oxidase does not mediate vectorial proton translocation.  相似文献   

13.
Cytochrome oxidase vesicles catalyzed the peroxidatic oxidation of ferrocytochrome c. The maximal peroxidase activity in the absence of an uncoupling agent was 9.8 mol ferrocytochrome c oxidized/(s X mol heme a), indicating a 5-fold activation compared with the soluble enzyme system. The peroxidase activity was further enhanced 1.2 to 2.1 times upon addition of an uncoupler, carbonyl cyanide p-trifluoromethoxyphenyl hydrazone. The stoichiometry of the reduction of hydrogen peroxide by ferrocytochrome c was established to be 1 : 2, indicating water formation. Potassium cyanide (0.14 mM) completely inhibited the peroxidase activity. The inhibition by 1 mM CO was 40-77% depending on the energized state of cytochrome oxidase vesicles, but in contrast, 85% inhibition was observed with the soluble enzyme. In the energized state the enzyme showed a slightly lower affinity for CO than in the deenergized state. Coupled with the peroxidase activity, a membrane potential of 72 mV was registered transiently; this may be physiologically significant in relation to the energy transduction mechanism.  相似文献   

14.
1. The electric potential fields around tuna ferri- and ferrocytochrome c were calculated assuming that (i) all of the lysines and arginines are protonated, (ii) all of the glutamic and aspartic acids and the terminal carboxylic acid are dissociated, and (iii) the haem has a net charge of +1e in the oxidized form. 2. Near the haem crevice high values for the potential (greater than +2.5 kT/e) are found. Consequently, electron transfer via the haem edge is favored if the oxidant or reductant is negatively charged. 3. The inhomogeneous distribution of charges leads to a dipole moment of 244 and 238 debye for oxidized and reduced tuna cytochrome c, respectively. Horse cytochrome c has dipole moments of 303 (oxidized) and 286 (reduced) debye. 4. A line through the positive and negative charge centres, the dipole axis, crosses the tuna cytochrome c surface at Ala 83 (positive part) and Lys 99 (negative part). The direction of the dipole axis of horse cytochrome c is very similar. Since the centre of the domain on the cytochrome c surface, which is involved in the binding to cytochrome c oxidase, is found at the beta-carbon of the Phe 82 in horse cytochrome c (Ferguson-Miller, S., Brautigan, D.L. and Margoliash, E. (1978) J. Biol. Chem. 253, 149--159) it is suggested that the direction of the dipole is of physiological importance. 5. The activity coefficients of horse ferri- and ferrocytochrome c were calculated as a function of ionic strength using a formula derived by Kirkwood (Kirkwood, J.G. (1934) J. Chem. Phys. 2, 351--361). 6. Due to the high net charge at pH 7.5 the influence of the dipole moments of horse ferri- and ferrocytochrome c on the respective activity coefficients can be neglected at I less than or equal to 50 mM. 7. Using the Br?nsted relation the effect of ionic strength on reaction rates of horse cytochrome c was calculated. Good agreement is found between theory and experimental results reported in the literature.  相似文献   

15.
The existence of a proton pump associated with bovine cytochrome c oxidase (EC 1.9.3.1) has over the last few years been a matter of considerable dispute. In an attempt to resolve some of the problems with the measuring system we have synthesized fluorescein-phosphatidylethanolamine which when reconstituted with cytochrome c oxidase into phospholipid vesicles provided a reliable indicator of the intravesicular pH. It was observed that cytochrome c oxidase catalyzed the abstraction of almost 2 protons from the intravesicular medium/molecule of ferrocytochrome c oxidized. In parallel experiments whereby the extravesicular pH was measured with an electrode it was found that the enzyme appeared to be responsible for the appearance of almost 1.0 proton/molecule of ferrocytochrome c oxidized. Taken together these data unequivocally demonstrate that cytochrome c oxidase behaves as a proton pump. Furthermore, the other proton which was abstracted is believed to be used for the process of the reduction of oxygen. Similar experiments were performed with a cytochrome c oxidase preparation which was devoid of subunit III. Under these circumstances the enzyme appeared to be unable to translocate protons across the vesicular membrane but was competent to abstract protons from the intravesicular medium for the reduction of oxygen.  相似文献   

16.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Pseudomonas AM 1 to an electrophoretically homogeneous state and some of its properties were studied. The oxidase showed absorption peaks at 428 and 598 nm in the oxidized form, and at 442 and 604 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 432 and 602 nm. The enzyme molecule was composed of two kinds of subunits with molecular weights of 50,000 and 30,000 and it contained equimolar amounts of heme a and copper atom. The enzyme rapidly oxidized Candida krusei and horse ferrocytochromes c as well as Pseudomonas AM 1 ferrocytochrome c. The reactions catalyzed by the enzyme were strongly inhibited by KCN.  相似文献   

17.
Cytochrome c oxidase (cytochrome aa3-type) [EC 1.9.3.1] was purified from Nitrobacter agilis to an electrophoretically homogeneous state and some of its properties were studied. The enzyme showed absorption peaks at 422, 598, and 840 nm in the oxidized form, and at 442 and 606 nm in the reduced form. The CO compound of the reduced enzyme showed peaks at 436 and 604 nm, and the latter peak had a shoulder at 599 nm. The enzyme possessed 1 mol of heme a and 1.6 g-atom of copper per 41,000 g, and was composed of two kinds of subunits of 51,000 and 31,000 daltons. These results show that the structurally minimal unit of the enzyme molecule is composed of one molecule each of the two subunits and contains 2 molecules of heme a and 2-3 atoms of copper. the enzyme rapidly oxidized ferrocytochromes c of several eukaryotes as well as N. agilis ferrocytochrome c-552. The reactions catalyzed by the enzyme were strongly inhibited by KCN. The reduction product of oxygen catalyzed by the enzyme was concluded to be water on the basis of the ratio of ferrocytochrome c oxidized to molecular oxygen consumed.  相似文献   

18.
The oxidation of yeast cytochrome c peroxidase by hydrogen peroxide produces a unique enzyme intermediate, cytochrome c peroxidase Compound I, in which the ferric heme iron has been oxidized to an oxyferryl state, Fe(IV), and an amino acid residue has been oxidized to a radical state. The reduction of cytochrome c peroxidase Compound I by horse heart ferrocytochrome c is biphasic in the presence of excess ferrocytochrome c as cytochrome c peroxidase Compound I is reduced to the native enzyme via a second enzyme intermediate, cytochrome c peroxidase Compound II. In the first phase of the reaction, the oxyferryl heme iron in Compound I is reduced to the ferric state producing Compound II which retains the amino acid free radical. The pseudo-first order rate constant for reduction of Compound I to Compound II increases with increasing cytochrome c concentration in a hyperbolic fashion. The limiting value at infinite cytochrome c concentration, which is attributed to the intracomplex electron transfer rate from ferrocytochrome c to the heme site in Compound I, is 450 +/- 20 s-1 at pH 7.5 and 25 degrees C. Ferricytochrome c inhibits the reaction in a competitive manner. The reduction of the free radical in Compound II is complex. At low cytochrome c peroxidase concentrations, the reduction rate is 5 +/- 3 s-1, independent of the ferrocytochrome c concentration. At higher peroxidase concentrations, a term proportional to the square of the Compound II concentration is involved in the reduction of the free radical. Reduction of Compound II is not inhibited by ferricytochrome c. The rates and equilibrium constant for the interconversion of the free radical and oxyferryl forms of Compound II have also been determined.  相似文献   

19.
1. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are described. Kinetic differences between the older and more recent preparations of the enzyme most probably arise from differences in intrinsic turnover rates. 2. The time-courses of cytochrome c peroxidation by the enzyme follow essentially first-order kinetics in phosphate buffer. Deviations from first-order kinetics occur in acetate buffer, and are due to a higher enzymic turnover rate in this medium accompanied by a greater tendency to autocatalytic peroxidation of cytochrome c. 3. The kinetics of ferrocytochrome c peroxidation by yeast peroxidase are interpreted in terms of a mechanism postulating formation of reversible complexes between the peroxidase and both reduced and oxidized cytochrome c. Formation of these complexes is inhibited at high ionic strengths and by polycations. 4. Oxidized cytochrome c can act as a competitive inhibitor of ferrocytochrome c peroxidation by peroxidase. The K(i) for ferricytochrome c is approximately equal to the K(m) for ferrocytochrome c and thus probably accounts for the observed apparent first-order kinetics even at saturating concentrations of ferrocytochrome c. 5. The results are discussed in terms of a possible analogy between the oxidations of cytochrome c catalysed by yeast peroxidase and by mammalian cytochrome oxidase.  相似文献   

20.
Zinc cytochrome c forms tight 1:1 complexes with a variety of derivatives of cytochrome c oxidase. On complex-formation the fluorescence of zinc cytochrome c is diminished. Titrations of zinc cytochrome c with cytochrome c oxidase, followed through the fluorescence emission of the former, have yielded both binding constants (K approximately 7 x 10(6) M-1 for the fully oxidized and 2 x 10(7) M-1 for the fully reduced enzyme) and distance information. Comparison of steady-state measurements obtained by absorbance and fluorescence spectroscopy in the presence and in the absence of cyanide show that it is the reduction of cytochrome a and/or CuA that triggers a conformational change: this increases the zinc cytochrome c to acceptor (most probably cytochrome a itself) distance by some 0.5 nm. Ligand binding to the fully oxidized or fully reduced enzyme leaves the extent of fluorescence quenching unchanged, whereas binding of cyanide to the half-reduced enzyme (a2+CuA+CuB2+-CN(-)-a3(3+)) enhances fluorescence emission relative to that for the fully reduced enzyme, implying further relative movement of donor and acceptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号