首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two known tissue-specific tropomyosin (TM) isoforms are produced from the rodent beta-TM gene. Skeletal muscle beta-TM uses the alternative exons 6b and 9a and the exon 9a-associated poly(A) site. Fibroblast and smooth muscle TM-1 use exons 6a and 9b and the exon-9b associated poly(A) site. We have identified a new skeletal muscle beta-TM isoform, beta-TM2. beta-TM2 contains exon 6b (muscle) and exon 9b (nonmuscle). Full-length beta-TM2 cDNA clones were isolated from a cDNA library of mouse muscle BC3H1 cells. Its mRNA was also found in mouse skeletal muscle tissue but not in other tissues. beta-TM2 mRNA level and protein synthesis are differentiation-dependent, with a transient high level in the early stages of myogenesis both in BC3H1 cells and in mouse embryo limbs. Trace amounts of beta-TM3 mRNA, the other hybrid form (exons 6a + 9a), were found in less differentiated BC3H1 cells, mouse uterus, heart, and 3T3 fibroblasts but not skeletal muscle tissue. Thus, the selection of the two alternative exons appears to be controlled independently. Furthermore, during myogenesis, there is a sequential switch in the internal alternative exon, the terminal exon, and the poly(A) site from the nonmuscle to the muscle type.  相似文献   

2.
Adenylosuccinate synthetase (EC 6.3.4.4) catalyzes the first step in formation of AMP from IMP. At least two isozymes exist in vertebrate tissue. An acidic form, present in most tissues, has been suggested to be involved in de novo biosynthesis while a basic isozyme, which predominates in muscle, appears to function in the purine nucleotide cycle. Antibodies specific for the basic isozyme detect a single protein in mouse tissues with highest levels in skeletal muscle, tongue, esophagus, and heart tissue consistent with a role for the enzyme in muscle metabolism. A series of degenerate oligonucleotides were constructed based on peptide sequences from purified rat muscle enzyme and then used to clone a mouse muscle cDNA encoding the basic isozyme. The clone contains a open reading frame of 1356 bases with 452 amino acids. Northern analysis of RNA from mouse tissues showed a tissue distribution similar to that of the protein, indicating a high level of gene expression in muscle. Transfection of COS cells with the mouse muscle cDNA allows expression of a functional protein with a molecular mass of approximately 50 kDa, consistent with the open reading frame and the size of the isolated rat enzyme. The deduced amino acid sequence of the mouse synthetase is 47 and 37% identical to the synthetase sequences from Dictyostelium discoideum and Escherichia coli, respectively. The availability of antibodies and cDNA clones specific for the basic isozyme of adenylosuccinate synthetase from muscle will facilitate future genetic and biochemical analysis of this protein and its role in muscle physiology.  相似文献   

3.
Glycogen synthase was isolated from extracts of mouse diaphragm muscle by immunoprecipitation with specific antibodies raised against the rabbit muscle enzyme. A procedure was developed which permitted phosphorylation of the immunoprecipitated enzyme by several purified protein kinases. Peptide mapping techniques (including reverse-phase HPLC and thin-layer electrophoresis and chromatography) were used to compare tryptic phosphopeptides of the rabbit and mouse muscle enzymes. The results demonstrated a high degree of similarity in the chemical properties of these peptides, suggesting significant homology around the phosphorylation sites in these proteins. Thus, mouse peptides corresponding to the rabbit muscle peptides containing sites 1a, 1b, 2, 3, and 5 were identified, with protein kinase recognition specificities identical to those of the rabbit enzyme. The study indicates significant conservation in the muscle isozymes of glycogen synthase between mouse and rabbit as well as a similar distribution of phosphorylation sites throughout the enzyme subunit.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is primarily a motor neuron disorder. Intriguingly, early muscle denervation preceding motor neuron loss is observed in mouse models of ALS. Enhanced muscle vulnerability to denervation process has been suggested by accelerated muscle deterioration following peripheral nerve injury in an ALS mouse model. Here we provide evidence of biochemical changes in the hindlimb muscle of young, presymptomatic G93A hSOD1 transgenic mice. In this report, we demonstrate that cdk5 activity is reduced in hindlimb muscle of 27-day-old G93A hSOD1 transgenic mice. In vitro analysis revealed mutant hSOD1-mediated suppression of cdk5 activity. Furthermore, the decrease in muscle cdk5 activity was accompanied by a significant reduction in MyoD and cyclin D1 levels. These early muscle changes raise the possibility that the progressive deterioration of muscle function is potentiated by altered muscle biochemistry in these mice at a very young, presymptomatic age.  相似文献   

5.
Duchenne muscular dystrophy (DMD) is a genetic muscle disease caused by the absence of a functional dystrophin protein. Lack of dystrophin protein disrupts the dystrophin-glycoprotein complex causing muscle membrane instability and degeneration. One of the secondary manifestations resulting from lack of functional dystrophin in muscle tissue is an increased level of cytokines that recruit inflammatory cells, leading to chronic upregulation of the nuclear factor (NF)-κB. Negative regulators of the classical NF-κB pathway improve muscle health in the mdx mouse model for DMD. We have previously shown in vitro that a negative regulator of the NF-κB pathway, A20, plays a role in muscle regeneration. Here, we show that overexpression of A20 by using a muscle-specific promoter delivered with an adeno-associated virus serotype 8 (AAV8) vector to the mdx mouse decreases activation of the NF-κB pathway in skeletal muscle. Recombinant A20 expression resulted in a reduction in number of fibers with centrally placed nuclei and a reduction in the number of T cells infiltrating muscle transduced with the AAV8–A20 vector. Taken together, we conclude that overexpression of A20 in mdx skeletal muscle provides improved muscle health by reduction of chronic inflammation and muscle degeneration. These results suggest A20 is a potential therapeutic target to ameliorate symptoms of DMD.  相似文献   

6.
When grown in primary cell culture in the absence of neurons, muscle cells from a variety of species synthesize several forms of acetylcholinesterase (AChE), including the collagen-tailed A12 form. A12 AChE has been the subject of much study because it is thought to be a major functional enzyme form normally found in the basal lamina at the neuromuscular junction. In this paper, we show that muscle fibers derived from mouse embryos and neonates are also able to synthesize substantial percentages of their AChE as the A12 form when grown in vitro. This synthesis is modulated by a process associated with spontaneous muscle contractile activity since both total enzyme levels and the proportion of A12 AChE expressed on the cell surface are decreased when the cells are grown in the sodium channel blocker tetrodotoxin, which blocks muscle contraction. On the other hand, when the cells are treated with veratridine, which opens sodium channels, thereby mimicking one aspect of muscle contraction, their AChE levels are comparable to those of untreated cells. Although smaller in magnitude, these changes are similar to those seen in rat muscle cultures. A novel feature of mouse muscle cultures, not seen in those from rat and chick, is the presence of a secreted enzyme form that sediments in the same position as the cellular A12 form (when separated on sucrose density gradients containing high salt) and is also collagenase sensitive.  相似文献   

7.
1. Although the total weight of leg muscle increased with the age of a normal mouse the DNA and RNA content per leg did not change significantly. 2. The weight of leg muscle from a dystrophic mouse was only about 45% of that from a normal mouse but the DNA and RNA contents were the same and hence similar DNA/RNA ratios were obtained. 3. The total ribosome contents of normal and dystrophic mice were the same on a whole-leg basis, and for both the free ribosomes were about 60% of the total. However, comparison with similar data from liver suggested that some loss of ribosomes occurred during the isolation procedure. 4. The polyribosome patterns obtained by density-gradient centrifugation were the same for normal and dystrophic muscle, and comparable polyribosome fractions of different sizes obtained from such gradients had similar capacities for the incorporation of radioactive amino acids in a standard protein-synthesizing system. 5. By using a standard protein-synthesizing system with normal polyribosomes similar extents of incorporation were found with normal- or dystrophic-muscle pH5 fraction or partially purified transfer RNA preparation. 6. It is concluded that there is no absolute difference between the protein-synthesizing systems of normal and dystrophic mouse muscle and that the observed apparent differences result from concentration differences caused by changes in muscle volume. 7. A possible cause of the failure of dystrophic muscle to resynthesize myofibrils is also suggested.  相似文献   

8.
The concentration, activity, and distribution of calcium-dependent proteases (calpains) are compared in dystrophin-deficient (mdx) and control mouse muscle. Calpains have been implicated previously as the protease responsible for the observed necrosis in dystrophin-deficient human muscle. Although these mouse and human muscular dystrophies have been attributed to similar genetic defects, the mouse dystrophy shows a brief necrotic episode while the human deficiency results in progressive, lethal muscle necrosis. Findings of the present study show that control mouse muscle contains more calcium-dependent proteolytic activity than dystrophin-deficient muscle. Paradoxically, adult, dystrophin-deficient mouse muscle contains higher concentrations of calpain than found in controls. Furthermore, indirect immunofluorescence using antisera produced against an oligopeptide found in the proteolytic domain of calpain shows that calpain distribution in dystrophin-deficient muscle is dispersed throughout the cytoplasm while immunolabeling of control muscle shows calpain concentrated at Z-discs. This redistribution is consistent with calpain activation in dystrophic muscle. These findings indicate that mdx mice possess the capability of suppressing calpain-mediated proteolysis. We speculate that this suppression may enable dystrophin-deficient mouse muscle to arrest necrosis and regenerate successfully.  相似文献   

9.
We have cloned a cDNA representing mouse phosphodiesterases (PDE) 7A1. The open reading frame encodes a protein of 482 amino acids with a predicted molecular mass of 55417. Like human PDE7A variants, mouse PDE7A1 and A2 are 5' splice variants from a common gene. The distinct N-terminal sequence of mouse PDE7A1 is highly homologous to the corresponding sequence of human PDE7A1 with a similarity of 98% but not to that of mouse PDE7A2 (with a similarity of 12%), and is more hydrophilic than that of mouse PDE7A2. Mouse PDE7A1 expressed in SF9 cells has been compared with human PDE7A1 under identical conditions. Mouse PDE7A1 has a Km for cAMP of 0.2 microM, an optimal pH of 7.5, an IC(50) value of 14 microM for 3-isobutyl-1-methylxanthine (IBMX), and is dependent on Mg(2+) for activity. All these characteristics are very similar to those of human PDE7A1. In mice, PDE7A1 is expressed in tissues of the immune system (lymph node, thymus, spleen, and blood leukocyte), testis, brain, kidney and lung but not in skeletal muscle, heart, embryo, or liver, while PDE7A2 is expressed in skeletal muscle, heart, embryo, and kidney, but not in the other tissues. This tissue distribution profile is very similar to that in humans, and hence suggests that PDE7A1 and 7A2 might play a similar role in different species.  相似文献   

10.
Dystrophin-related protein (DRP) is an autosomal gene product with high homology to dystrophin. We have used highly specific antibodies to the unique C-terminal peptide sequences of DRP and dystrophin to examine the subcellular localization and biochemical properties of DRP in adult skeletal muscle. DRP is enriched in isolated sarcolemma from control and mdx mouse muscle, but is much less abundant than dystrophin. Immunofluorescence microscopy localized DRP almost exclusively to the neuromuscular junction region in rabbit and mouse skeletal muscle, as well as mdx mouse muscle and denervated mouse muscle. DRP is also present in normal size and abundance and localizes to the neuromuscular junction region in muscle from the dystrophic mouse model dy/dy. Thus, DRP is a junction-specific membrane cytoskeletal protein that may play an important role in the organization of the postsynaptic membrane of the neuromuscular junction.  相似文献   

11.
12.
Inositol 1,4,5-trisphosphate (InsP3) mediates smooth muscle contraction by mobilizing intracellular calcium release. In this study we provide a direct comparison of the smooth muscle and brain InsP3 receptors in terms of InsP3 binding and primary structure. The KD for InsP3 binding for both receptors was found to be essentially the same. Sequences from 11 bovine smooth muscle receptor tryptic peptides (120 amino acids) were identified in the mouse brain receptor with two substitutions attributable to species differences. A cDNA (approximately 1-kilobase) encoding a portion of the mouse smooth muscle InsP3 receptor was cloned and found to be identical to that reported for the brain receptor. This cDNA was used as a probe to demonstrate that the approximately 10-kilobase InsP3 receptor mRNA is detected in brain, smooth muscle, heart, liver, and kidney but was not detected in skeletal muscle or skin.  相似文献   

13.
Chronic disease states are associated with elevated levels of inflammatory cytokines that have been demonstrated to lead to severe muscle wasting. A mechanistic understanding of muscle wasting is hampered by limited in vivo cytokine models which can be applied to emerging mouse mutants as they are generated. We developed a simple and novel approach to induce adult mouse skeletal muscle wasting based on direct gene transfer of an expression vector encoding the secreted form of the murine tumor necrosis factor-alpha (mTNFalpha). This procedure results in the production of elevated levels of circulating mTNFalpha followed by body weight loss, upregulation of Atrogin1, and muscle atrophy, including muscles distant from the site of gene transfer. We also found that mTNFalpha gene transfer resulted in a significant inhibition of regeneration following muscle injury. We conclude that in addition to being a potent inducer of cachexia, TNFalpha is a potent inhibitor of myogenesis in vivo.  相似文献   

14.
Mammalian cardiac muscle contains two myosin alkali light chains which are the major isoforms present in either atrial (MLC1A) or ventricular (MLC1V) muscle, and which are different from the fast skeletal muscle isoforms (MLC1F and MLC3F). The atrial isoform is also expressed in fetal skeletal and fetal ventricular muscle, where this isoform is also described as the fetal isoform MLC1emb. We have previously isolated a cDNA clone encoding part of the mouse MLC1A/MLC1emb isoform and have used this clone to demonstrate the identity of MLC1A and MLC1emb in the mouse. To date no information on the amino acid sequence of this mammalian atrial/fetal isoform has been available. Here we present the complete structure and sequence of the mouse MLC1A/MLC1emb gene, together with the predicted amino acid sequence of this isoform. Comparison of the MLC1A/MLC1emb gene and polypeptide with those of MLC1F and MLC1V suggests that MLC1A/MLC1emb and MLC1V were generated from a common ancestral gene. The NH2-terminal region of MLC1A/MLC1emb, thought to be involved in the actomyosin interaction, shows conservation with MLC1V but not with MLC1F suggesting a shared functional domain in these cardiac isoforms. Comparison with the chicken embryonic MLC (L23) suggests that although MLC1A/MLC1emb and L23 show very different patterns of expression, both during development and in the adult, they probably represent the homologous gene in these two species.  相似文献   

15.
We recently identified Smads1, 5 and 8 as muscle biomarkers in human ALS. In the ALS mouse, these markers are elevated and track disease progression. Smads are signal transducers and become activated upon receptor engagement of ligands from the TGF-β superfamily. Here, we sought to characterize ligands linked to activation of Smads in ALS muscle and their role as biomarkers of disease progression. RNA sequencing data of ALS muscle samples were mined for TGF-β superfamily ligands. Candidate targets were validated by qRT-PCR in a large cohort of human ALS muscle biopsy samples and in the G93A SOD1 mouse. Protein expression was evaluated by Western blot, ELISA and immunohistochemistry. C2C12 muscle cells were used to assess Smad activation and induction. TGF-β1, 2 and 3 mRNAs were increased in ALS muscle samples compared to controls and correlated with muscle strength and Smads1, 2, 5 and 8. In the G93A SOD1 mouse, the temporal pattern of TGF-β expression paralleled the Smads and increased with disease progression. TGF-β1 immunoreactivity was detected in mononuclear cells surrounding muscle fibers in ALS samples. In muscle cells, TGF-β ligands were capable of activating Smads. In conclusion, TGF-β1, 2 and 3 are novel biomarkers of ALS in skeletal muscle. Their correlation with weakness in human ALS and their progressive increase with advancing disease in the ALS mouse suggest that they, as with the Smads, can track disease progression. These ligands are capable of upregulating and activating Smads and thus may contribute to the Smad signaling pathway in ALS muscle.  相似文献   

16.
A protein with MW approximately 350 k daltons and pI approximately 5.5, which was deleted in the dystrophic mouse (C57BL/10ScSn-mdx), was detected on two-dimensional gel electrophoresis with silver staining. Deletion of this protein was uniformly observed in the dystrophic mouse extensor digitus longus, soleus and cardiac muscle. This protein specifically reacted with the monoclonal antibody against the chemically synthesized N-terminal fragment of human dystrophin. The protein reacting with this monoclonal antibody was also detected in rabbit back-muscle, rat extensor digitus longus and human skeletal muscle at the same position as the mouse muscle protein, on the two-dimensional gel electrophoresis. Our results show that dystrophin is solubilized in 8M guanidine HCl and that the modified two-dimensional gel electrophoresis can be applied to separate dystrophin.  相似文献   

17.
Myofiber properties of mouse mylohyoid muscle in the growth period   总被引:1,自引:0,他引:1  
  相似文献   

18.
19.
Muscle fiber number, cross-sectional area, and composition were studied in response to enlargement produced by synergistic ablation in the mouse soleus muscle. The effect of the location of a histological section on the number of fibers that appear in the section was also studied using the mouse soleus muscle. Enlargement was produced in the soleus muscle of 15 male and 15 female mice by ablation of the ipsilateral gastrocnemius muscle. Fiber counts, using the nitric acid digestion method, revealed no difference between control and enlarged muscles in male and female mice. Mean fiber area, determined by planimetry, was 49.1 and 34.5% greater following enlargement in male and female mice, respectively. Increase in muscle weight could be totally accounted for by the increase in fiber area following enlargement. A transformation of type II to type I fibers occurred following enlargement for both sexes. Counts of fibers from histological sections revealed that there was a progressive decrease in the fiber number as the section was moved from the belly to the distal end of the muscle. The results of these studies indicate that muscle enlargement in the mouse soleus muscle is due to hypertrophy of the existing muscle fibers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号