首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A monoclonal H-2d-specific antibody markedly inhibits target-cell lysis mediated by two influenza virus A/JAP/57-specific, H-2K d -restricted cloned CTL lines. Three other A/JAP/57-specific, H-2 d -restricted CTL clones (two of which are also restricted to H-2K d in target-cell recognition) are only minimally inhibited by this monoclonal antibody. The inhibitory effect of the antibody is not due to selective binding to certain cloned CTL lines but rather is due to blocking of a determinant on the target cell. The monoclonal antibody produces partial inhibition of lysis mediated by a heterogeneous population of A/JAP/57-specific, H-2 d -restricted CTL. Likewise the profound, selective inhibition of cytolysis produced by the H-2d-specific monoclonal antibody could not be reproduced with a conventional H-2d alloantiserum. These observations suggest that more than one site on a particular H-2K or H-2D molecule can serve as a determinant for H-2-restricted CTL recognition. They furthermore imply that there is more than one recognition structure (receptor) for self MHC products clonally distributed among a population of H-2-restricted CTL directed to a particular antigen.  相似文献   

2.
We defined the epitopes recognized by three influenza A virus-specific, H-2Kd-restricted CD8+ cytotoxic T-lymphocyte (CTL) clones: H1-specific clone A-12, H2-specific clone F-4, and H1- and H2-cross-reactive clone B7-B7. The A-12 and B7-B7 clones recognized the same peptide, which comprises amino acids 533 to 541 (IYSTVASSL) of A/PR/8 hemagglutinin (HA). The F-4 and B7-B7 clones both recognized the peptide which comprise amino acids 529 to 537 (IYATVAGSL) of A/Jap HA. Amino acids 533 to 541 of A/PR/8 HA are compatible with amino acids 529 to 537 of A/Jap HA. Amino acid S at positions 3 and 7 was responsible for recognition by H1-specific clone A-12, while amino acid G at position 7 was responsible for recognition by H2-specific clone F-4. Two conserved amino acids, T at position 4 and A at position 6, were responsible for recognition by H1-, and H2-cross-reactive clone B7-B7. These results indicate that a single nine-amino-acid region is recognized by HA-specific CTL clones of three different subtype specificities and that the amino acids responsible for the recognition by the CTL clones are different.  相似文献   

3.
Herpes-simplex-virus (HSV) specific, H-2k-restricted, immune cytotoxic T lymphocytes also lyse noninfected H-2d target cells. Genetic mapping studies revealed that HSV-specific Dk-restricted CTL cross-react with allogeneic targets expressing Dd alloantigens. Cold target inhibition experiments indicate that only a minority of HSV-specific CTL mediate cross-reactive cytolysis. The data give an example of where the phenomenon of H-2-restricted versus nonrestricted responsiveness is not due to distinct subsets of T cells but solely depends on the antigenic determinants recognized.This work was supported by the SFB 107 and the Stiftung Volkswagenwerk.  相似文献   

4.
《Cellular immunology》1986,99(1):182-195
We evaluated the role of molecules of the major histocompatibility complex (MHC) involved in the cellular interactions of two T-cell clones by testing the effect of monoclonal antibodies on the responses of the clones in vitro. The two T-cell clones used in the study are specific for minor histocompatibility antigens and restricted to the H-2Kk. In the absence of exogenous IL-2 the clones require the presence of Ia+, Thy-1 accessory cells and of Thy-1+, Lyt-1+2 cells in the irradiated spleen cell suspension used as stimulator. It is also necessary that both the accessory cells and the T cells in the stimulator cell populations are recognized specifically by the clones. Monoclonal antibodies specific for the H-2K product inhibited the lytic effector function of the cytolytic clone. These antibodies when added to cultures of stimulator cells and clones inhibited also the proliferation of this clone and of a nonlytic clone. When antigen recognition was measured by the increase in sensitivity of the clones to IL-2 while confronted with uv-irradiated stimulator cells, both clones were blocked efficiently by anti-H-2K antibodies. Thus, these results suggest that the interaction of monoclonal antibodies with the restricting H-2K molecule is sufficient to block the recognition signal, a prerequisite for proliferation. In contrast, monoclonal antibodies specific for AαAβ and/or EαEβ had no effect on cytolysis or on restricted recognition. However, they inhibited the proliferative responses as efficiently as the H-2K specific antibodies. Inhibition by class II-specific antibodies was not abolished when stimulator cell populations were depleted of Lyt-2+ cells. The blocking effect, however, was reversed by the addition of IL-2. No inhibition was obtained with antibody specific for EαEβ when B10.A(4R) spleen cells, which do not express EαEβ, or when B10.A(4R) accessory cells, which were reconstituted with (BALB/c X B10.A(4R)) F1 T cells, were used as stimulators. Stimulator cells heterozygous for H-2 could be inhibited by antibodies to the parental haplotype not encoded in the clones (H-2Kd). These and previous results suggest that H-2K-restricted minor histocompatibility antigen-specific recognition transmits an activating signal to the clones and to the stimulator cells. The clones probably are induced to express more IL-2 receptors. The stimulator T cells seem to interact through AαAβ and EαEβ molecules with syngeneic accessory cells. This interaction results in IL-2 production by the stimulator T cells and thus in the proliferation of the clones.  相似文献   

5.
The molecular relationship between H-2 private and some public specificities was studied in C3H.OH (H-2 02 ) mice using surface-antigen re-distribution methods. Besides the Kd- and Dk-region antigens, which can be capped by antisera against the private and public specificities characteristic for a given allele, a previously unknown type of molecule was found in the products of both theK d andD k regions. These can be capped by the respective anti-private serum but not by antisera against some public specificities. The two Kd-region molecules are provisionally named H-2K1d and H-2K2d. We detected them onH-2 02 (K d ,I d ,S d ,D k ) and also onH-2 dx (K d ,I f ,S f ,D dx ) T lymphocytes. Similarly, the two types of molecules detected on the products of theD k region are provisionally named H-2D1k and H-2D2k. The serological characteristics of these molecules are described. When compared with the products of theD d region, in which we previously described three different molecules (H-2Dd, H-2Md, and H-2Ld), the mutual relationship between H-2K1d and H-2K2d as well as between H-2D1k and H-2D2k appears to be similar to that between H-2Dd and H-2Md. In the absence of relevant recombinants or informative biochemical data, it is, however, difficult to establish homology between molecules produced by differentK- andD-region alleles.  相似文献   

6.
A series of 16 H-2b-restricted, A influenza virus-specific cytotoxic T-cell clones are described and characterized. One is Kb restricted, the others Db restricted. The factors governing Kb or Db restriction patterns seen in the mixed populations from which clones are derived are investigated. The Kb-restricted clone does not recognize Kb mutant bm1 and influenza and all 15 Db-restricted clones do not recognize Db mutant bm14 and A influenza virus; these results are discussed in the light of findings in a variety of other viral systems. Representative Kb- and Db-restricted clones were used to assess the functional properties of cloned cosmids containing either Kb or Db genes expressed in transformed L-cells (κ haplotype). The expression products of both cosmids functioned efficiently as mutually exclusive restriction elements for A influenza virus recognition.  相似文献   

7.
In capping experiments with peripheral T lymphocytes, two anti-H-2.28 sera (AKR anti-AKR.L, anti-Kb, and C3H anti-0H.B10, k anti-b) that do not contain any Qa-2-specific antibodies are able to redistribute not only the H-2.28-positive H-2 molecules, but also Qa-2 molecules. This is due to the capacity of these sera to react with Qa-2 molecules because on cells where all known molecules of the H-2 d haplotype were capped (K1d, K2d, Dd, Md, Ld, L2d), both antisera still reacted when the cells came from a Qa-2 positive Dd strain (B10.A) but not when the cells were of Qa-2 negative strain (BALB/cByA). The reaction with la and non-H-2 antigens was excluded in these experiments. These data show that Qa-2 and H-2 antigens share some specificities of the H-2.28 family. Other anti-private and anti-public anti-H-2 sera failed to react with the Qa-2 molecules.  相似文献   

8.
In the present work, we used the differential redistribution method to study the molecular expression of several H-2 specificities controlled by theD region of theH-2 a haplotype. We observed that: capping of the private specificity H-2.4 induced capping of the public specificities H-2.3, H-2.35, and H-2.36, and vice versa; capping of any one of these specificities did not induce capping of the public specificity H-2.28, controlled by the same region. By contrast, capping of the H-2.28 specificity induced capping of these specificities; redistribution of H-2K and H-2D private specificities or redistribution of H-2D private specificity and Ia specificities did not induce capping of the H-2.28 specificity. These data indicate that a part of a molecule carrying the H-2.28 specificity is linked to a molecule carrying H-2.4, H-2.3, H-2.35, and H-2.36 specificities and that a part of a polypeptide chain bearing the H-2.28 specificity is independent from that bearing other specificities controlled either by theD region (i.e., H-2.4, H-2.3, H-2.35, and H-2.36) or by theK andI regions. These results further strengthened the hypothesis of the existence of at least two genes controlling theD-region H-2 antigenic specificities.  相似文献   

9.
Cytotoxic T lymphocytes generated in the course of an HSV-infection of CBA (H-2 k ) mice not only lyse syngeneic, virus-infected target cells but also cross-react with noninfected target cells expressing the Dd alloantigen. On the effector cell level, this alloreactivity is mediated by virus-specific CTL's that are restricted to H-2Dk determinants. On the prekiller cell level, the anti-HSV-reactive T cells exhibiting cross-reactivity for Dd alloantigen could be positively selected on H-2d spleen-cell monolayers. After differentiation into cytolytic effector cells, target cells expressing Dd alloantigens and syngeneic HSV-infected target were lysed with equal efficiency. The results imply that the phenomenon of H-2-restricted versus nonrestricted T-cell reactivity is not due to distinct T-cell subsets, but rather is dependent on the antigeneic determinants recognized.  相似文献   

10.
The effect of t-butyl hydroperoxide (t-BOOH) on the induction of the Major Histocompatibility Complex (MHC) class I genes has been studied in two cell clones (B9 and G2) of the methylcholanthrene-induced murine fibrosarcoma GR9. These two clones were selected based on their different biological and biochemical behavior specially related to their tumor induction capability when injected into a BALB/c mouse. t-BOOH (0.125mM) induced the expression of H-2 molecules in both cell clones. In B9 cell clone, in which MHC basal expression is very low or absent, t-BOOH significantly induced H-2Kd, H-2Dd and H-2Ld molecules. In G2 cell clone the expression of MHC class I genes was also enhanced by the xenobiotic, the effect being especially significant on the H-2Ld molecule which is not expressed under basal conditions. H-2 molecules expression was accompanied by the activation of the transactivator factor NFκB. These results suggest that oxidative stress may modulate the antigen expression of tumor cells and thus the immune response of the host organism.

Basal levels of oxidative parameters, such as anti-oxidant enzymes, malondialdehyde (MDA) and the DNA damaged base 8-hydroxy-2′-deoxyguanosine (8-OHdG), showed differences between the two fibrosarcoma cell clones.  相似文献   

11.
The D region of the H-2 d haplotype contains five class I genes: H-2D d , D2 d , D3 d , D4 d and H-2L d . Although previous studies have suggested the presence of D-end encoded class I molecules in addition to H-2Dd and H-2Ld, segregation of genes encoding such molecules has not been demonstrated. In this report we have used cãtotoxic T lymphocytes (CTL) to examine the D region of the H-2 d haplotype for the presence of additional class I molecules. CTL generated in (C3H × B6.K1)F1 (K k D k , K b D b ) mice against the hybrid class I gene product Q10d/Ld expressed on L cells cross-react with H-2Ld but not H-2Dd molecules, as determined by lysis of transfected cells expressing H-2Ld but not H-2Dd. Although H-2Ld-specific monoclonal antibodies (mAb) completely inhibit H-2Ld-specific CTL from killing B10.A(3R) (K b D d L d ) target cells, only partial inhibition of anti-Q10 CTL-mediated lysis was observed, suggesting the presence of an additional D-end molecule as a target for these latter CTL. To identify the region containing the gene encoding the Q10 cross-reactive molecule, we show that anti-Q10 CTL lyse target cells from a D-region recombinant strain B10.RQDB, which has H-2D d , D2 d , D3 d , D4 d , and H-2D b but not the H-2L d H-2 d , and H-2L d (including D2 d , D3 d , and D4 d , lacks this anti-Q10 CTL target molecule. Together, these data demonstrate that a class I gene mapping between H-2D d and H-2L d encodes an antigen recognozed by anti-Q10 CTL. A likely candidate for this gene is D2 d , D3 d or D4 d .  相似文献   

12.
In order to investigate the role of residues inside and outside the peptide binding cleft of the L2 molecule in peptide presentation to cytotoxic T lymphocytes (CTL), we constructed a series of point mutations in the L d gene. We determined the effects of the mutations in the Ld molecule on the binding and recognition of an Ld-restricted CTL epitope derived from the nucleoprotein (NP) of the lymphocytic phoriomeningitis virus (LCMV). Each of the mutations within the Ld peptide binding cleft resulted in a complete loss of CTL recognition. Addition of the LCMV NP peptide to cells expressing these mutants did not increase surface Ld expression, suggesting that the mutations altered peptide binding. Mutations involving pockets D and E within the cleft affected LCMV peptide binding and recognition as drastically as those in pocket B, which was predicted to interact with a main anchor residue of the peptide. In striking contrast, the mutations located outside the cleft did not change either recognition or binding. These results demonstrate that the Ld residues in the peptide binding cleft are the main determinants dictating LCMV NP peptide binding, and that the residues in each of the pockets within the cleft play a role in this interaction. Surprisingly, one mutation outside the peptide binding cleft, T92S, abrogated CTL lysis of target cells treated with the LCMV NP peptide, but not virus-infected cells. These data show that this mutation selectively altered the presentation of the LCMV NP peptide introduced to the cell exogenously, but not endogenously. This implies that the pathway by which peptides associate with class I molecules within the cell differs from that of exogenous peptide binding.  相似文献   

13.
Immunogenicity for T cell-independent B-cell response assessed by splenic plaque-forming cell (PFC) response and cell-surface expression measured by laser flow cytometry of various class I H-2 antigens on mouse red blood cells (RBC) were compared. It was found that the order of magnitude of both immunogenicity and cell-surface expression on RBC is H-2Dd H-2Db > H-2Kd, H-2Kb. Furthermore, H-2d public antigens and H-2Ld antigens were neither immunogenic nor easily demonstrable on RBC. These findings contrasted with poor immunogenicity for PFC response (Nakashima et al. 1982, 1983) and proportionally strong expression of H-2 antigens on lymphoid cells. Immunogenicity and cell-surface expression of H-2Dd antigen on RBC were not shown to be controlled by the action of genes outside H-2D. It was therefore suggested that a number of H-2 antigens, including H-2Kd private, H-2Kb private, and H-2d public specificities are at least functionally defective on RBC. This is possibly due to the structural characteristics of the antigens. Since immunogenicity and cell-surface expression were in parallel, the expression of H-2 antigens on RBC must be dictated by a subset of B cells whose activity was assessed by PFC response. This finding supports the view that the H-2 molecules display a new category of activity which is different from their ability to activate T cells and depends on their expression on RBC.  相似文献   

14.
We have shown that cytotoxic T lymphocytes (CTL) raised in H-2 dmice use H-2Ld but not H-2Dd or H-2Kd antigens as restricting elements in lymphocytic choriomeningitis virus (LCMV) and vesicular stomatis virus (VSV) infections. To localize the regions of H-2Ld protein recognized by CTL, we constructed a recombinant H-2L d/D dgene encoding a hybrid antigen with 1 and 2 external domains of H-2Ld and 3, transmembrane and cytoplasmic domains of H-2Dd. The recombinant gene was transfected into mouse cells and the hybrid molecules were characterized serologically, biochemically and functionally. In all assays, H-2Ld/Dd molecules were recognized by LCMV- and VSV-specific H-2Ld-restricted CTL in a manner similar to that of wild-type H-2Ld antigens. Analogous results were obtained with alloreactive CTL. Hybrid antigens containing the 3 domain of H-2Ld fused to 1 and 2 domains of a Qa-2,3 region-encoded antigen were not used as restricting elements by LCMV-specific CTL. These results suggest that H-2Ld-restricted CTL directed against LCMV and VSV recognize determinants controlled by the 1 and/or 2 domains of the H-2Ld molecule.Abbreviations used in this paper CTL cytotoxic T lymphocytes - VSV vesicular stomatitis virus - LCMV lymphocytic choriomeningitis virus - tk thymidine kinase - HAT hypoxanthine, aminopterine, thymidine - HSV herpes simplex virus - FCS fetal calf serum - SAC Staphylococcus aureus Cowan I strain - TM transmembrane - CYT cytoplasmic  相似文献   

15.
The differential expression of H-2 specificities recognized by antibody and by cytotoxic T lymphocytes (CTL) has been studied using a clone (FY7) of the C57BL/6 leukemia cell line FBL-3 (H-2 b /H-2 b ). Unlike C57BL/10 spleen cells, EL-4 lymphoma cells and Y57-2C leukemia cells (allH-2 b /H-2 b ), FY7 failed to induce the primary in vitro generation of anti-H-2b CTL by (B10.A x A)F1 (H-2 a /H-2 a or (B10.D2 x BALB/c)F1 (H-2 d /H-2 d ) responder spleen cells. In addition, FY7 was not lysed by, and did not competitively inhibit anti-H-2b CTL. Quantitative absorption tests with H-2Kb and H-2Db antisera revealed that FY7 expressed these antigens in quantitatively similar amounts to EL-4. The H-2Kb product of FY7 appeared to be identical with that of C57BL/10 spleen cells both in apparent molecular weight and isoelectric point. Yet FY7 failed to inhibit anti-H-2Kb CTL competitively in a cold target inhibition assay. Possible mechanisms are discussed for the lack of T-lymphocyte recognition of the H-2Kb-gene product expressed by FY7.Abbreviations used in this paper CTL cytotoxic T lymphocytes - MHC major histocompatibility complex - MLC mixed lymphocyte culture - PAGE polyacrylamide gel electrophoresis  相似文献   

16.
The immune attack against malignant tumors require the concerted action of CD8+ cytotoxic T lymphocytes (CTL) as well as CD4+ T helper cells. The contribution of T cell receptor (TCR) αβ+ CD4 CD8 double-negative (DN) T cells to anti-tumor immune responses is widely unknown. In previous studies, we have demonstrated that DN T cells with a broad TCR repertoire are present in humans in the peripheral blood and the lymph nodes of healthy individuals. Here, we characterize a human DN T cell clone (T4H2) recognizing an HLA-A2-restricted melanoma-associated antigenic gp100-peptide isolated from the peripheral blood of a melanoma patient. Antigen recognition by the T4H2 DN clone resulted in specific secretion of IFN-γ and TNF. Although lacking the CD8 molecule the gp100-specifc DN T cell clone was able to confer antigen-specific cytotoxicity against gp100-loaded target cells as well as HLA-A2+ gp100 expressing melanoma cells. The cytotoxic capacity was found to be perforin/granzymeB-dependent. Together, these data indicate that functionally active antigen-specific DN T cells recognizing MHC class I-restricted tumor-associated antigen (TAA) may contribute to anti-tumor immunity in vivo. A. Mackensen and K. Fischer contributed equally to this work and should be considered joint senior authors. This work was supported by the Deutsche Forschungsgemeinschaft (MA 1351/5-1, KFO 146) and NIH grants CA90873, CA102280, 104947 (MIN). Companion paper: “Relationship between CD8-dependent antigen recognition, T cell functional avidity, and tumor cell recognition” by Tamson V. Moore et al. doi: .  相似文献   

17.
The region of the murine 17th chromosome telomeric to H-2D encodes a group of serologically defined cell surface antigens termed Qa-1-5. These antigens are of interest because their expression is restricted to hematopoietic cells. In addition, the molecular weight and subunit structure (ie, association with β-2 microglobulin) of Qa-2 molecules are similar to H-2 and TL antigens. In the present studies, we have prepared isotopically labeled Qa-2 and H-2 molecules from mitogen-stimulated C57BL/6 spleen cells. Comparative peptide mapping of tryptic peptides from Qa-2 and H-2 molecules (Kb, DbKk, Dd) reveal that Qa-2 has a unique primary structure. However, considerable homology is indicated since 30–40% of the Qa-2 peptides cochromatograph with peptides derived from H-2Kb, H-2Db, H-2Kk, and H-2Dd. Studies by other investigators have demonstrated that similar levels of structural homology are observed when H-2K, H-2D, and H-2L tryptic peptides are analyzed. We conclude from these studies that the Qa-2 alloantigen is structurally related to a class of cell surface molecules (ie, H-2) that play critical roles in immune recognition processes. These data further suggest that the genes encoding Qa-2 and H-2 molecules have arisen from a common primordial gene.  相似文献   

18.
The effect of persistent measles virus infection on the expression of major histocompatibility complex (MHC) class I antigens was studied. Mouse neuroblastoma cells C1300, clone NS20Y, were persistently infected with the Edmonston strain of measles virus. The persistently infected cell line, NS20Y/MS, expressed augmented levels of both H-2Kk and H-2Dd MHC class I glycoproteins. Activation of two interferon(IFN)-induced enzymes, known to be part of the IFN system: (2–5)oligoadenylate synthetase and double-stranded-RNA-activated protein kinase, was detected. Measles-virus-infected cells elicited cytotoxic T lymphocytes that recognized and lysed virus-infected and uninfected neuroblastoma cells in an H-2-restricted fashion. Furthermore, immunization of mice with persistently infected cells conferred resistance to tumor growth after challenge with the highly malignant NS20Y cells. The rationale for using measles virus for immunotherapy is that most patients develop lifelong immunity after recovery or vaccination from this infection. Patients developing cancer are likely to have memory cells. A secondary response induced by measles-virus-infected cells may therefore induce an efficient immune response against non-infected tumour cells.  相似文献   

19.
The receptor specificity of H-2-restricted T lymphoblasts activated against trinitrobenzene sulfonate (TNBS)-coupled spleen cells was examined using an antigen binding assay. A population of Lyt-1+,2-T lymphoblasts acquired syngeneic Ia determinants during 4 days of primary culture with hapten-coupled stimulator cells. Syngeneic Ia was not reexpressed after trypsin treatment of the T cells, but was found after incubation with soluble Ia shed from lipopolysaccharide-activated blasts. Self-Ia binding was specific in that Lyt-1+,2- but not Lyt-1-,2+ cells acquired the antigen, and in that self-Ia bound more effectively than allogeneic Ia material. To determine the relationship of self-Ia binding to the recognition of foreign antigen, the binding of trinitrophenyl (TNP)-coupled plasma membrane vesicles by TNP-specific T cells was studied. TNP-vesicle binding occurred via TNP and H-2(Ia) molecules on the vesicles in that binding was inhibited with antibodies against TNP or H-2(Ia) molecules but not non-major histocompatibility complex (e.g., Ly-6.2) molecules on the vesicles. Complete inhibition of TNP-vesicle binding by an Iak-restricted TNP-specific T-cell line occurred with soluble TNP-lysine, but not an unrelated hapten, N-iodoacetyl-N-(5-sulfonic-1-naphthyl)ethylenediamine (I-AED)-cysteine. Conversely, I-AED-cysteine, but not TNP-lysine, inhibited binding of I-AED-coupled B6 vesicles by B6 anti-I-AED T cells. Significant, but weak inhibition of TNP-vesicle binding by the anti-TNP line was observed with glycoprotein preparations containing partially purified self-Ia molecules. However, inhibition was specific for I-Ak molecules, in that inhibition was lost after removal of I-Ak molecules from the glycoprotein preparation, and very little inhibition occurred with soluble glycoproteins prepared from thymocytes which contained very little Ia material or from LPS blasts of an unrelated H-2 haplotype. These results suggest a recognition model in which TNP and Ia determinants are recognized by neighboring receptor combining sites.  相似文献   

20.
Macrophages play an important role in murine cytomegalovirus (MCMV) infection in vivo, both in disseminating infection and in harboring latent virus. MCMV encodes three immune evasion genes (m4, m6, and m152) that interfere with the ability of cytotoxic T cells (CTL) to detect virus-infected fibroblasts, but the efficacy of immune evasion in macrophages has been controversial. Here we show that MCMV immune evasion genes function in H-2(b) primary bone marrow macrophages (BMMphi) in the same way that they do in fibroblasts. Metabolic labeling experiments showed that class I is retained in the endoplasmic reticulum by MCMV infection and associates with m4/gp34 to a similar extent in fibroblasts and BMMphi. We tested a series of K(b)- and D(b)-restricted CTL clones specific for MCMV early genes against a panel of MCMV wild-type virus and mutants lacking m152, m4, or m6. MCMV immune evasion genes effectively inhibited antigen presentation. m152 appeared sufficient to abolish D(b)-restricted presentation in infected macrophages, as has been previously observed in infected fibroblasts. However, for inhibition of recognition of infected macrophages by K(b)-restricted CTL, m4, m6, and m152 were all required. The contribution of m4 to inhibition of recognition appeared much more important in macrophages than in fibroblasts. Thus, MCMV immune evasion genes function effectively in primary macrophages to prevent CTL recognition of early antigens and show the same pattern of major histocompatibility complex class I allele discrimination as is seen in fibroblasts. Furthermore, for inhibition of K(b)-restricted presentation, a strong synergistic effect was noted among m152, m4, and m6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号