首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We have previously shown that neonate rabbit tubules have a lower chloride permeability but comparable mannitol permeability compared with adult proximal tubules. The surprising finding of lower chloride permeability in neonate proximals compared with adults impacts net chloride transport in this segment, which reabsorbs 60% of the filtered chloride in adults. However, this maturational difference in chloride permeability may not be applicable to other species. The present in vitro microperfusion study directly examined the chloride and mannitol permeability using in vitro perfused rat proximal tubules during postnatal maturation. Whereas there was no maturational change in mannitol permeability, chloride permeability was 6.3 +/- 1.3 x 10(-5) cm/s in neonate rat proximal convoluted tubule and 16.1 +/- 2.3 x 10(-5) cm/s in adult rat proximal convoluted tubule (P < 0.01). There was also a maturational increase in chloride permeability in the rat proximal straight tubule (5.1 +/- 0.6 x 10(-5) cm/s vs. 9.3 +/- 0.6 x 10(-5) cm/s, P < 0.01). There was no maturational change in bicarbonate-to-chloride permeabilities (P(HCO3)/P(Cl)) in the rat proximal straight tubules (PST) and proximal convoluted tubules (PCT) or in the sodium-to-chloride permeability (P(Na)/P(Cl)) in the proximal straight tubule; however, there was a significant maturational decrease in proximal convoluted tubule P(Na)/P(Cl) with postnatal development (1.31 +/- 0.12 in neonates vs. 0.75 +/- 0.06 in adults, P < 0.001). There was no difference in the transepithelial resistance measured by current injection and cable analysis in the PCT, but there was a maturational decrease in the PST (7.2 +/- 0.8 vs. 4.6 +/- 0.1 ohms x cm2, P < 0.05). These studies demonstrate there are maturational changes in the rat paracellular pathway that impact net NaCl transport during development.  相似文献   

2.
Signals that regulate GLUT4 translocation   总被引:7,自引:0,他引:7  
We have shown that there is a maturational increase in osmotic water permeability (Pf) of rabbit renal brush border membrane vesicles (BBMV). The purpose of the present study was to further investigate the changes in proximal tubule water transport that occur during postnatal development. Diffusional water permeability (PDW) has not been measured directly in adult or neonatal BBMV. We validated the method described by Ye and Verkman (Simultaneous optical measurement of osmotic and diffusional water permeability in cells and liposomes. Biochemistry 28:824-829, 1989) to measure PDW in red cell ghosts and liposomes, to examine the maturational changes in PDW in BBMV. This method utilizes the sensitivity of 8-aminonaphtalene-1,3,6-trisulfonic acid (ANTS) fluorescence to the D2O-H2O content of the solvent. ANTS-loaded neonatal (11 days old) and adult BBMV were rapidly mixed with two volumes of isoosmotic D2O solution using a stopped-flow apparatus at 5 degrees -37 degrees C. PDW was lower in neonatal than adult BBMV at 5 degrees (3.77 +/- 0.34 vs. 5.35 +/- 0.43 mm/sec, respectively, p<0.05) and 20 degrees C (7.03 +/- 0.40 vs. 9.04 +/- 0.25 mm/sec, respectively, p<0.001), but was not different at 30 degrees and 37 degrees C. The activation energy (Ea) was higher in neonatal than in adult BBMV (9.29 +/- 0.56 kcal/mol vs. 6.46 +/- 0.56 kcal/mol, p<0.001). In adult BBMV, PDW was inhibited by 0.5 mM HgCl2 by 46.6 +/- 3.6%, while it was not affected in neonatal BBMV (p<0.001). The results indicate that PDW can be measured in rabbit renal BBMV. There are significant changes in water transport across the apical membrane during postnatal development, consistent with a maturational increase in channel-mediated water transport.  相似文献   

3.
Recent in vivo evidence suggests that the mechanism of branchial urea excretion in the ammoniotelic rainbow trout (Oncorhynchus mykiss) is carrier-mediated. Further characterization of this proposed mechanism was achieved by using an in vitro isolated basolateral membrane vesicle (BLMV) preparation in which isolated gill membranes were used to determine a variety of physiological properties of the transporter. BLMV demonstrated two components of urea uptake, a linear component at concentrations up to 17.5 mmol x l(-1) and a saturable component (K(0.5)=0.35+/-0.01 mmol x l(-1); V(max)=0.14+/-0.02 micromol mg protein(-1) h(-1)) with a Hill constant of 1.35+/-0.18 at low, physiologically relevant urea concentrations (<2 mmol x l(-1)). Saturable uptake of urea at 1 mmol x l(-1) by BLMV was reduced by 88.5% when incubated with 0.25 mmol x l(-1) phloretin, a potent blocker of UT-type facilitated diffusion urea transport mechanisms. BLMV also demonstrated differential handling of urea versus urea analogues at 1 mmol x l(-1) concentrations and total analogue/total urea uptake ratios were 32% for acetamide and 84% for thiourea. Saturable urea uptake at 1 mmol x l(-1) was significantly reduced by almost 100% in the presence of 5 mmol x l(-1) thiourea but was not affected by 5 mmol x l(-1) acetamide or 5 mmol x l(-1) N-methylurea. Lastly, total urea uptake at 1 mmol x l(-1) by BLMV was sensitive to temperatures above and below the temperature of acclimation with a Q(10)>2 suggesting a protein carrier-mediated process. Combined, this evidence indicates that a facilitated diffusion urea transport mechanism is likely present in the basolateral membrane of the rainbow trout gill.  相似文献   

4.
We have recently demonstrated that while the osmotic water permeability (P f ) of neonatal proximal tubules is higher than that of adult tubules, the P f of brush-border membrane vesicles from neonatal rabbits is lower than that of adults. The present study examined developmental changes in the water transport characteristics of proximal tubule basolateral membranes by determining aquaporin 1 (AQP1) protein abundance and the P f in neonatal (10–14 days old) and adult rabbit renal basolateral membrane vesicles (BLMV). At 25°C the P f of neonatal BLMV was significantly lower than the adult BLMV at osmotic gradients ranging from 40 to 160 mOsm/kg water. The activation energies for osmotic water movement were identical in the neonatal and adult BLMV (8.65 ± 0.47 vs. 8.86 ± 1.35 kcal · deg−1· mol−1). Reflection coefficients for sodium chloride and sodium bicarbonate were identical in both the neonatal and adult BLMV and were not different from one. Mercury chloride (0.5 mm) reduced osmotic water movement by 31.3 ± 5.5% in the adult BLMV, but by only 4.0 ± 4.0% in neonatal vesicles (P < 0.01). Adult BLMV AQP1 abundance was higher than that in the neonate. These data demonstrate that neonatal BLMV have a lower P f and AQP1 protein abundance than adults and that a significantly greater fraction of water traverses the basolateral membrane lipid bilayer and not water channels in neonates compared to adults. The lower P f of the neonatal BLMV indicates that the basolateral membrane is not responsible for the higher transepithelial P f in the neonatal proximal tubule. Received: 8 July 1999/Revised: 9 November 1999  相似文献   

5.
P Y Chen  D Pearce  A S Verkman 《Biochemistry》1988,27(15):5713-5718
Quantitative determination of rapid water and solute transport and solute reflection coefficients by light-scattering methods is complicated by dependence of vesicle or cell light scattering on nonvolume factors including solution refractive index, cell motion, and membrane aggregation. To overcome these difficulties, a fluorescence technique has been developed to measure accurately (1) osmotic water permeability (Pf), (2) solute permeability (Ps), and (3) solute reflection coefficient (sigma). The time course of vesicle volume is determined by the self-quenching of entrapped fluorescein sulfonate (FS), the best of a series of dyes screened for self-quenching, brightness, and vesicle loading/trapping. To validate the method, rabbit renal brush border vesicles (BBV) were loaded with 1-10 mM FS for 12 h at 4 degrees C and washed to remove extravesicular FS. FS leakage occurred over greater than 6 h at 4 degrees C and greater than 30 min at 23 degrees C. FS fluorescence vs vesicle volume was calibrated from the time course of fluorescence decrease (excitation 470 nm, emission greater than 515 nm) in response to a series of inward osmotic gradients in a stopped-flow apparatus. At 23 degrees C Pf was 0.005 +/- 0.001 cm/s, independent of osmotic gradient size, and inhibited 67% by 0.5 mM HgCl2. Urea Ps was 2 x 10(-6) cm/s with sigma 0.95-1.00 on the basis of the fluorescence time course analysis and the extravesicular [urea] required to obtain zero initial volume flow (null method) when vesicles were loaded with sucrose.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Expression of urea transporter UT-B confers high urea permeability to mammalian erythrocytes. Erythrocyte membranes also permeate various urea analogues, suggesting common transport pathways for urea and structurally similar solutes. In this study, we examined UT-B-facilitated passage of urea analogues and other neutral small solutes by comparing transport properties of wildtype to UT-B-deficient mouse erythrocytes. Stopped-flow light-scattering measurements indicated high UT-B permeability to urea and chemical analogues formamide, acetamide, methylurea, methylformamide, ammonium carbamate, and acrylamide, each with P(s)>5.0 x 10(-6) cm/s at 10 degrees C. UT-B genetic knockout and phloretin treatment of wildtype erythrocytes similarly reduced urea analogue permeabilities. Strong temperature dependencies of formamide, acetamide, acrylamide and butyramide transport across UT-B-null membranes (E(a)>10 kcal/mol) suggested efficient diffusion of these amides across lipid bilayers. Urea analogues dimethylurea, acryalmide, methylurea, thiourea and methylformamide inhibited UT-B-mediated urea transport by >60% in the absence of transmembrane analogue gradients, supporting a pore-blocking mechanism of UT-B inhibition. Differential transport efficiencies of urea and its analogues through UT-B provide insight into chemical interactions between neutral solutes and the UT-B pore.  相似文献   

7.
A temperate environment heat tolerance test (HTT) was formerly reported (Shvartz et al. 1977b) to distinguish heat acclimatized humans from former heat stroke patients. The purpose of this investigation was to evaluate the ability of HTT to measure acute individual changes in the HR and Tre responses of normal subjects, induced by classical heat acclimation procedures, thereby assessing the utility and sensitivity of HTT as a heat tolerance screening procedure. On day 1, 14 healthy males performed HTT (23.2 +/- 0.5 degrees C db, 14.9 +/- 0.5 degrees C wb) by bench stepping (30 cm high, 27 steps x min-1) for 15 min at 67 +/- 3% VO2max. On days 2-9, all subjects underwent heat acclimation (41.2 +/- 0.3 degrees C db, 28.4 +/- 0.3 degrees C wb) via treadmill exercise. Heat acclimation trials (identical on days 2 and 9) resulted in significant decreases in HR (170 +/- 3 vs 144 +/- 5 beats x min-1), Tre (39.21 +/- 0.09 vs 38.56 +/- 0.17 degrees C), and ratings of perceived exertion; plasma volume expanded 5.2 +/- 1.7%. On day 10, subjects repeated HTT; day 1 vs day 10 HR were statistically similar (143 +/- 6 vs 137 +/- 6 beats x min-1, p greater than 0.05) but Tre decreased significantly (37.7 +/- 0.1 vs 37.5 +/- 0.1 degrees C, p less than 0.05). Group mean HTT composite score (day 1 vs day 10) was unchanged (63 +/- 5 vs 72 +/- 6, p greater than 0.05), and individual composite scores indicated that HTT did not accurately measure HR and Tre trends at 41.2 +/- degrees C in 6 out of 14 subjects.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
We reported increased water permeability and a low urea reflection coefficient in Xenopus oocytes expressing urea transporter UT-B (former name UT3), suggesting that water and urea share a common aqueous pathway (Yang, B., and Verkman, A. S. (1998) J. Biol. Chem. 273, 9369-9372). Although increased water permeability was confirmed in the Xenopus oocyte expression system, it has been argued (Sidoux-Walter, F., Lucien, N., Olives, B., Gobin, R., Rousselet, G., Kamsteeg, E. J., Ripoche, P., Deen, P. M., Cartron, J. P., and Bailly, P. (1999) J. Biol. Chem. 274, 30228-30235) that UT-B does not transport water when expressed at normal levels in mammalian cells such as erythrocytes. To quantify UT-B-mediated water transport, we generated double knockout mice lacking UT-B and the major erythrocyte water channel, aquaporin-1 (AQP1). The mice had reduced survival, retarded growth, and defective urinary concentrating ability. However, erythrocyte size and morphology were not affected. Stopped-flow light scattering measurements indicated erythrocyte osmotic water permeabilities (in cm/s x 0.01, 10 degrees C): 2.1 +/- 0.2 (wild-type mice), 2.1 +/- 0.05 (UT-B null), 0.19 +/- 0.02 (AQP1 null), and 0.045 +/- 0.009 (AQP1/UT-B null). The low water permeability found in AQP1/UT-B null erythrocytes was also seen after HgCl(2) treatment of UT-B null erythrocytes or phloretin treatment of AQP1 null erythrocytes. The apparent activation energy for UT-B-mediated water transport was low, <2 kcal/mol. Estimating 14,000 UT-B molecules per mouse erythrocyte, the UT-B-dependent P(f) of 0.15 x 10(-4) cm/s indicated a substantial single channel water permeability of UT-B of 7.5 x 10(-14) cm(3)/s, similar to that of AQP1. These results provide direct functional evidence for UT-B-facilitated water transport in erythrocytes and suggest that urea traverses an aqueous pore in the UT-B protein.  相似文献   

9.
During postnatal maturation, there is an increase in renal brush border membrane vesicle (BBMV) osmotic water permeability and a parallel increase in aquaporin-1 (AQP1) protein abundance. The mechanisms responsible for these changes remain unknown. Because serum glucocorticoid levels rise postnatally and have previously been linked to other maturational changes in renal function, we examined the effects of glucocorticoids on osmotic (Pf) and diffusional (P(DW)) water permeability and AQP1 protein abundance of renal BBMV. Neonatal rabbits were treated with dexamethasone (10 microg/100 g) for three days and compared with control neonates and adults. Pf and P(DW) were measured at 20 degrees C with a stopped-flow apparatus using light-scattering and aminonaphthalene trisulfonic acid (ANTS) fluorescence, respectively. Pf was significantly higher in BBMV from dexamethasone-treated neonates compared with vehicle-treated neonates, but remained lower than in BBMV from adults (P<0.05). P(DW) in dexamethasone and vehicle-treated neonatal BBMV was lower than in adult BBMV. Pf/P(DW) ratio increased from neonate (5.1+/-0.3) to dexamethasone (7.0+/-0.1) and adult BBMV (6.3+/-0.1). AQP1 expression was increased by dexamethasone treatment to adult levels. Membrane fluidity, which is inversely related to generalized polarization (GP) of steady-state laurdan fluorescence, was significantly higher in neonatal BBMV than both dexamethasone and adult BBMV (GP: neonate 0.285+/-0.002, dexamethasone treatment 0.302+/-0.006, and adult 0.300+/-0.005; P<0.05). These combined results show that dexamethasone-treatment during days 4-7 of life increases BBMV water permeability despite a decrease in membrane fluidity. This occurs by increasing channel-mediated water transport, as reflected in an increase in AQP1 protein abundance and a higher Pf/P(DW) ratio. This mimics the maturational changes and suggests a physiological role for glucocorticoids in maturation of proximal tubule water transport.  相似文献   

10.
We used a perfused gill preparation from dogfish to investigate the origin of low branchial permeability to urea. Urea permeability (14C-urea) was measured simultaneously with diffusional water permeability (3H2O). Permeability coefficients for urea and ammonia in the perfused preparation were almost identical to in vivo values. The permeability coefficient of urea was 0.032 x 10(-6) cm/sec and of 3H2O 6.55 x 10(-6) cm/sec. Adrenalin (1 x 10(-6) M) increased water and ammonia effluxes by a factor of 1.5 and urea efflux by a factor of 3.1. Urea efflux was almost independent of the urea concentration in the perfusion medium. The urea analogue thiourea in the perfusate had no effect on urea efflux, whereas the non-competitive inhibitor of urea transport, phloretin, increased efflux markedly. The basolateral membrane is approximately 14 times more permeable to urea than the apical membrane. We conclude that the dogfish apical membrane is extremely tight to urea, but the low apparent branchial permeability may also relate to the presence of an active urea transporter on the basolateral membrane that returns urea to the blood and hence reduces the apical urea gradient.  相似文献   

11.
Urea permeability of human red cells   总被引:5,自引:1,他引:4       下载免费PDF全文
The rate of unidirectional [14C]urea efflux from human red cells was determined in the self-exchange and net efflux modes with the continuous flow tube method. Self-exchange flux was saturable and followed simple Michaelis-Menten kinetics. At 38 degrees C the maximal self-exchange flux was 1.3 X 10(-7) mol cm-2 s-1, and the urea concentration for half-maximal flux, K1/2, was 396 mM. At 25 degrees C the maximal self-exchange flux decreased to 8.2 X 10(-8) mol cm-2 s-1, and K1/2 to 334 mM. The concentration-dependent urea permeability coefficient was 3 X 10(-4) cm s-1 at 1 mM and 8 X 10(-5) cm s-1 at 800 mM (25 degrees C). The latter value is consonant with previous volumetric determinations of urea permeability. Urea transport was inhibited competitively by thiourea; the half-inhibition constant, Ki, was 17 mM at 38 degrees C and 13 mM at 25 degrees C. Treatment with 1 mM p-chloromercuribenzosulfonate inhibited urea permeability by 92%. Phloretin reduced urea permeability further (greater than 97%) to a "ground" permeability of approximately 10(-6) cm s-1 (25 degrees C). This residual permeability is probably due to urea permeating the hydrophobic core of the membrane by simple diffusion. The apparent activation energy, EA, of urea transport after maximal inhibition was 59 kJ mol-1, whereas in control cells EA was 34 kJ mol-1 at 1 M and 12 kJ mol-1 at 1 mM urea. In net efflux experiments with no extracellular urea, the permeability coefficient remained constantly high, independent of a variation of intracellular urea between 1 and 500 mM, which indicates that the urea transport system is asymmetric. It is concluded that urea permeability above the ground permeability is due to facilitate diffusion and not to diffusion through nonspecific leak pathways as suggested previously.  相似文献   

12.
Two potential mechanisms, reduced skin blood flow (SBF) and sweating rate (SR), may be responsible for elevated intestinal temperature (T(in)) during exercise after bed rest and spaceflight. Seven men underwent 13 days of 6 degrees head-down bed rest. Pre- and post-bed rest, subjects completed supine submaximal cycle ergometry (20 min at 40% and 20 min at 65% of pre-bed rest supine peak exercise capacity) in a thermoneutral room. After bed rest, T(in) was elevated at rest (+0.31 +/- 0.12 degrees C) and at the end of exercise (+0.33 +/- 0.07 degrees C). Percent increase in SBF during exercise was less after bed rest (211 +/- 53 vs. 96 +/- 31%; P < or = 0.05), SBF/T(in) threshold was greater (37.09 +/- 0.16 vs. 37.33 +/- 0.13 degrees C; P < or = 0.05), and slope of SBF/T(in) tended to be reduced (536 +/- 184 vs. 201 +/- 46%/ degrees C; P = 0.08). SR/T(in) threshold was delayed (37.06 +/- 0.11 vs. 37.34 +/- 0.06 degrees C; P < or = 0.05), but the slope of SR/T(in) (3.45 +/- 1.22 vs. 2.58 +/- 0.71 mg x min-1 x cm-2 x degrees C-1) and total sweat loss (0.42 +/- 0.06 vs. 0.44 +/- 0.08 kg) were not changed. The higher resting and exercise T(in) and delayed onset of SBF and SR suggest a centrally mediated elevation in the thermoregulatory set point during bed rest exposure.  相似文献   

13.
Using a 2-step extension methodology to freeze ram semen, 2 freezing protocols (P1 and P2) and 3 extenders were evaluated in a split-sample experiment. The freezing protocols were tested in combination with Extenders A and B (Experiment 1), and B and C (Experiment 2). Protocol 1 included centrifugation before filling the straws to reconcentrate the diluted semen to a calculated sperm concentration of 800 x 10(6) cells/mL. Protocol 2 involved appropriate ejaculate extension to yield 800 x 10(6) cells/mL as in P1, albeit avoiding centrifugation. Extenders A and B were milk-based and were supplemented with 5% egg yolk and fructose. Extender B was clarified by centrifugation (twice at 3310 g/20 min). Extender C was based on TRIS-citrate-fructose supplemented with 20% egg yolk and clarified as described for Extender B. Final glycerol concentration was 7% for all 3 extenders. Post-thaw parameters studied were subjective motility, computer assisted sperm motility analysis (CASA), membrane integrity (SYBR-14/P1), and capacitation status (chlortetracycline assay, CTC). The overall sperm concentration (x 10(6)/straw) differed (P<0.001) between P1 (mean+/-SD, 138.1+/-14.8) and P2 (216.5+/-13.9). Despite centrifugation, P1 appeared to be less harmful for spermatozoa than P2, yielding higher percentages of subjective motility, linearity, membrane integrity and uncapacitated spermatozoa. Due to the difference in concentrations obtained between P1 and P2, the total calculated numbers of spermatozoa having desirable characteristics were higher in samples processed as P2. In Experiment 1, P1 resulted in lower calculated numbers x 10(6) in the Aldose of subjective motility (87.2+/-5.1 vs 125.3+/-5.1; P<0.05), linearity (70.6+/-4.3 vs 79.8+/-4.3; NS), intact-membrane (77.4+/-5 vs 108.5+/-5.1; P<0.001), and uncapacitated (36.5+/-2.5 vs 46.5+/-2.5; P<0.05) spermatozoa, than P2. In Experiment 2, calculated sperm numbers (x 10(6)/straw) were lower in P1 than in P2 for subjective motility (80.8+/-5.4 vs 92.0+/-5.4; NS), linearity (63.3+/-5.6 vs 73.1+/-5.6; NS), membrane integrity (77.7+/-3.6 vs 101.0+/-3.6; P<0.001), and uncapacitated spermatozoa (28.3+/-3.24 vs. 4.1+/-3.2; P<0.01). Extender B (clarified milk extender) was consistently better than Extender A (nonclarified milk extender) for all parameters studied, but the difference was only statistically significant for linearity after 1 h of incubation at 38 degrees C (44.0+/-2.4 vs 36.2+/-2.4; P<0.05). Extender B was also better than Extender C (TRIS-citrate-fructose) for percentage of uncapacitated (49.7+/-2.2 vs 34.4+/-2.3; P<0.001), subjective motile (57.5+/-2.7 vs 43.8+/-2.7; P<0.01), and linear motile (46.5+/-2.8 vs 33.7+/-2.8; P<0.01) spermatozoa, but not for membrane integrity (51.6+/-1.5 vs 51.7+/-1.5). It was concluded that exclusion of centrifugation, as in P2, yielded higher sperm numbers with desirable characteristics per straw. Clarification of milk-based extender (B) resulted in better post-thaw sperm quality, especially compared with TRIS-based extender (C).  相似文献   

14.
Urea equilibrium exchange fluxes were measured in human red cells under conditions which recruit the anion transporter into an outward-facing or an inward-facing state (with respect to the anion transport site). Regardless of these conditions, urea transport always occurred at the same rate: 41 +/- 2 mol.(kg cell solids.min)-1 with 1.5 M urea at 0 degrees C. These data suggest that the pathway on the band-3 protein which mediates anion transport is kinetically uncoupled from urea transport and is probably not involved in the transport of urea across the red cell membrane.  相似文献   

15.
Transgenic null mice were used to test the hypothesis that water channel aquaporin-4 (AQP4) is involved in colon water transport and fecal dehydration. AQP4 was immunolocalized to the basolateral membrane of colonic surface epithelium of wild-type (+/+) mice and was absent in AQP4 null (-/-) mice. The transepithelial osmotic water permeability coefficient (P(f)) of in vivo perfused colon of +/+ mice, measured using the volume marker (14)C-labeled polyethylene glycol, was 0.016 +/- 0.002 cm/s. P(f) of proximal colon was greater than that of distal colon (0.020 +/- 0.004 vs. 0. 009 +/- 0.003 cm/s, P < 0.01). P(f) was significantly lower in -/- mice when measured in full-length colon (0.009 +/- 0.002 cm/s, P < 0. 05) and proximal colon (0.013 +/- 0.002 cm/s, P < 0.05) but not in distal colon. There was no difference in water content of cecal stool from +/+ vs. -/- mice (0.80 +/- 0.01 vs. 0.81 +/- 0.01), but there was a slightly higher water content in defecated stool from -/- mice (0.68 +/- 0.01 vs. 0.65 +/- 0.01, P < 0.05). Despite the differences in water permeability with AQP4 deletion, theophylline-induced secretion was not impaired (50 +/- 9 vs. 51 +/- 8 microl. min(-1). g(-1)). These results provide evidence that transcellular water transport through AQP4 water channels in colonic epithelium facilitates transepithelial osmotic water permeability but has little or no effect on colonic fluid secretion or fecal dehydration.  相似文献   

16.
Male subjects (n = 8) cycled for 90 min in 5, 20, and 30 degrees C environments. Rectal (Tre), chest, and thigh temperatures, O2 consumption (VO2), respiratory exchange ratio (R), and venous concentrations of glucose, free fatty acids (FFA), urea N, lactic acid (LA), norepinephrine (NE), epinephrine (E), and cortisol (C) were measured before, during, and after exercise. Urea N excretion was measured in 72 h of nonexercise, in 72 h of exercise (exercise day + 2 post-exercise days) urine samples, and in exercise sweat. Calculated 72-h protein utilization (means +/- SE) was significantly greater (P less than 0.05) for the 5 (86.9 +/- 27.1 g) and 20 (82.9 +/- 22.7 g) compared with 30 degrees C (34.01 +/- 19.1 g) trial. Regardless of ambient temperature exercise increased the venous concentration of C, E, and NE. These catabolic hormones were greatest in 5, lowest in 20, and intermediate in 30 degrees C. Exercise Tre and VO2 were greatest in the 30 degrees C environment. Venous FFA concentration was significantly higher and R significantly lower in 5 vs. 20 or 30 degrees C, and venous LA concentration was significantly greater in 30 vs. 20 or 5 degrees C. Although these results indicate that exercise protein breakdown is affected by ambient temperatures, the mechanism of action is not due solely to circulating NE, E, and C. Differences in venous FFA and LA across environmental temperatures suggest that alterations in carbohydrate and fat metabolism may have contributed to the observed variable protein utilization.  相似文献   

17.
A new technique was developed to isolate basolateral membrane vesicles individually from proximal and distal tubules of the rat cortex. This new technique enabled us to study differences in their kinetics and mechanisms of hormonal regulation of Ca pump between proximal and distal tubules. The Ca pump in distal tubule has very high affinity (42.6 nM Ca2+) and the one in proximal tubule has relatively low affinity (75.6 nM Ca2+). Parathyroidectomy (PTX) decreased the Vmax of Ca pump activity in proximal tubule (4.68 +/- 0.99 vs. 9.08 +/- 2.21 nmol 45Ca2+/min per mg protein BLMV, P less than 0.05), while it increased Km in distal tubule (93.1 +/- 11.0 vs. 35.1 +/- 16.1 nM Ca2+, P less than 0.05). Restoration of serum Ca2+ concentration by 1,25(OH)2D3 supplement could not reverse these changes by PTX in Ca pump activity in either the proximal or the distal tubule. In conclusion, this study strongly suggested that parathyroid hormone stimulated Ca pump activity by increasing the Vmax in proximal tubule and by increasing the affinity in distal tubule. 1,25(OH)2D3 does not have a direct effect on the basolateral membrane Ca pump activity.  相似文献   

18.
The lipid-phase structures of brush border membrane vesicles (BBMV) and basolateral membrane vesicles (BLMV) isolated from rabbit renal cortex were compared by steady-state and phase-modulation measurements of diphenylhexatriene (DPH) and trans- and cis-parinaric acid (tPnA and cPnA) fluorescence. A temperature-scanning system was used which gave reproducible temperature profiles of steady-state and dynamic fluorescence parameters with a resolution of 0.1 degrees C. Steady-state anisotropy of DPH showed a triphasic dependence on temperature with slope discontinuities at 22 +/- 4 and 47 +/- 3 degrees C (BBMV) and at 23 +/- 2 and 48 +/- 1 degrees C (BLMV). At all temperatures, DPH anisotropy in BBMV was greater than that in BLMV. Ground-state heterogeneity analysis of tPnA and cPnA fluorescence lifetime data demonstrated the presence of long (greater than 12 ns) and short (less than 5 ns) lifetime components, interpreted in terms of solid-phase and fluid-phase lipid domains. The fraction of solid-phase phospholipid decreased from 0.9 to 0.1 for BBMV and from 0.7 to 0.3 in BLMV with increasing temperature (10-50 degrees C). In both membranes, tryptophan-PnA fluorescence energy-transfer measurements showed that membrane proteins were surrounded by a fluidlike phospholipid phase. These results demonstrate the inadequacy of steady-state DPH anisotropy data in defining the structural characteristics of complex biological membranes. Results obtained with the phase-sensitive parinaric acid probes demonstrate major differences in the phase structure of the two opposing cell membranes in both the bulk lipid and the lipid microenvironment around membrane proteins.  相似文献   

19.
Because L-arginine is degraded by hepatic arginase to ornithine and urea and is transported by the regulated 2A cationic amino acid y(+) transporter (CAT2A), hepatic transport may regulate plasma arginine concentration. Groups of rats (n = 6) were fed a diet of either low salt (LS) or high salt (HS) for 7 days to test the hypothesis that dietary salt intake regulates plasma arginine concentration and renal nitric oxide (NO) generation by measuring plasma arginine and ornithine concentrations, renal NO excretion, and expression of hepatic CAT2A, and arginase. LS rats had lower excretion of NO metabolites and cGMP, lower plasma arginine concentration (LS: 83 +/- 7 vs. HS: 165 +/- 10 micromol/l, P < 0.001), but higher plasma ornithine concentration (LS: 82 +/- 6 vs. HS: 66 +/- 4 micromol/l, P < 0.05) and urea excretion. However, neither the in vitro hepatic arginase activity nor the mRNA for hepatic arginase I was different between groups. In contrast, LS rats had twice the abundance of mRNA for hepatic CAT2A (LS: 3.4 +/- 0.4 vs. HS: 1.6 +/- 0.5, P < 0.05). The reduced plasma arginine concentration with increased plasma ornithine concentration and urea excretion during LS indicates increased arginine metabolism by arginase. This cannot be ascribed to changes in hepatic arginase expression but may be a consequence of increased hepatic arginine uptake via CAT2A.  相似文献   

20.
The transepithelial absorption of food-type proteins has been shown to proceed by endocytosis along two functional pathways: a minor direct pathway allowing transport of intact protein and a major lysosomal degradative pathway. The human colon carcinoma cell line CaCo-2 grown on Millipore filters was used here further to characterize these pathways by measuring HRP transport across the cell monolayer in Ussing chambers. In the apical-basal direction, this transport mainly occurred along the degradative pathway and was inhibited at 4 degrees C (7.41 +/- 1.26 pmoles/h.cm2 vs. 27.40 +/- 8.91 at 37 degrees C). The amount conveyed via the direct pathway was very small (0.89 +/- 0.35 pmoles/h.cm2) and did not diminish at 4 degrees C (1.43 +/- 0.59 pmoles/h.cm2). In the basal-apical direction, HRP transport along the degradative pathway at 37 degrees C was similar to the apical-basal value and was inhibited at 4 degrees C (16.40 +/- 4.05 vs. 2.72 +/- 2.52 pmoles/h.cm2), but along the direct pathway, it was eight times the apical-basal value (8.36 +/- 3.11 pmoles/h.cm2) and was inhibited at 4 degrees C (2.43 +/- 0.78 pmoles/h.cm2). Intact HRP fluxes were not correlated with the electrical resistance of the filters, indicating transport via a transcellular route. Monensin at 10(-5) M did not affect direct or degradative transport in the apical-to-basal direction. These results suggest that in CaCo-2 cells HRP undergoes bidirectional transcytosis by a fluid-phase mechanism, but the extent of degradation during that transport varies according to the membrane (apical or basal) where it is presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号