共查询到20条相似文献,搜索用时 15 毫秒
1.
Pallone TL Silldorff EP Zhang Z 《American journal of physiology. Heart and circulatory physiology》2000,278(4):H1248-H1255
The intracellular calcium ([Ca(2+)](i)) response of outer medullary descending vasa recta (OMDVR) endothelia to ANG II was examined in fura 2-loaded vessels. Abluminal ANG II (10(-8) M) caused [Ca(2+)](i) to fall in proportion to the resting [Ca(2+)](i) (r = 0. 82) of the endothelium. ANG II (10(-8) M) also inhibited both phases of the [Ca(2+)](i) response generated by bradykinin (BK, 10(-7) M), 835 +/- 201 versus 159 +/- 30 nM (peak phase) and 169 +/- 26 versus 103 +/- 14 nM (plateau phase) (means +/- SE). Luminal ANG II reduced BK (10(-7) M)-stimulated plateau [Ca(2+)](i) from 180 +/- 40 to 134 +/- 22 nM without causing vasoconstriction. Abluminal ANG II added to the bath after luminal application further reduced [Ca(2+)](i) to 113 +/- 9 nM and constricted the vessels. After thapsigargin (TG) pretreatment, ANG II (10(-8) M) caused [Ca(2+)](i) to fall from 352 +/- 149 to 105 +/- 37 nM. This effect occurred at a threshold ANG II concentration of 10(-10) M and was maximal at 10(-8) M. ANG II inhibited both the rate of Ca(2+) entry into [Ca(2+)](i)-depleted endothelia and the rate of Mn(2+) entry into [Ca(2+)](i)-replete endothelia. In contrast, ANG II raised [Ca(2+)](i) in the medullary thick ascending limb and outer medullary collecting duct, increasing [Ca(2+)](i) from baselines of 99 +/- 33 and 53 +/- 11 to peaks of 200 +/- 47 and 65 +/- 11 nM, respectively. We conclude that OMDVR endothelia are unlikely to be the source of ANG II-stimulated NO production in the medulla but that interbundle nephrons might release Ca(2+)-dependent vasodilators to modulate vasomotor tone in vascular bundles. 相似文献
2.
Zhang Z Rhinehart K Solis G Pittner J Lee-Kwon W Welch WJ Wilcox CS Pallone TL 《American journal of physiology. Heart and circulatory physiology》2005,288(1):H29-H36
We tested whether chronic ANG II infusion into rats affects descending vasa recta (DVR) contractility, synthesis of superoxide, or synthesis of nitric oxide (NO). Rats were infused with ANG II at 250 ng.kg(-1).min(-1) for 11-13 days. DVR were loaded with dihydroethidium (DHE) to measure superoxide and 3-amino-4-aminomethyl-2',7'-difluorofluorescein (DAFFM) to measure NO. Acute constriction of DVR by ANG II (0.1, 1, and 10 nM) was diminished, and NO generation rate was raised by chronic ANG II infusion. DHE oxidation by DVR from ANG II-infused rats was similar to controls and was significantly higher when NO synthesis was prevented with N(omega)-nitro-L-arginine methyl ester (L-NAME). The superoxide dismutase mimetic Tempol (1 mM) increased NO generation compared with controls. The increased synthesis of NO by chronic ANG II-treated vessels persisted in the presence of Tempol. DVR endothelial cytoplasmic Ca(2+) response to ACh was diminished by chronic ANG II treatment, but the capacity of ACh to increase NO generation was unaltered. We conclude that DVR generation of superoxide is not affected by chronic ANG II exposure but that basal NO synthesis is increased. DVR superoxide is unlikely to be an important mediator of chronic ANG II slow pressor hypertension in rats. 相似文献
3.
Silldorff EP Pallone TL 《American journal of physiology. Regulatory, integrative and comparative physiology》2001,280(3):R854-R861
We tested whether dilation of outer medullary descending vasa recta (OMDVR) is mediated by cAMP, nitric oxide (NO), and cyclooxygenase (COX). Adenosine (A; 10(-6) M)-induced vasodilation of ANG II (10(-9) M)-preconstricted OMDVR was mimicked by the cAMP analog 8-bromoadenosine 3',5'-cyclic monophosphate (10(-10) to 10(-4) M) and reversed by the adenylate cyclase inhibitor SQ-22536. Adenosine (10(-4) M) stimulated OMDVR cAMP production greater than threefold. NO synthase blockade with N(G)-nitro-L-arginine methyl ester and N(G)-monomethyl-L-arginine (10(-4) M) did not affect adenosine vasodilation. Adenosine induced endothelial cytoplasmic calcium transients that were small. Indomethacin (10(-6) M) reversed adenonsine-induced dilation of OMDVR preconstricted with ANG II, endothelin, 4-bromo-calcium ionophore A23187, or carbocyclic thromboxane A(2). In contrast, selective A(2)-receptor activation dilated endothelin-preconstricted OMDVR even in the presence of indomethacin. We conclude that OMDVR vasodilation by adenosine involves cAMP and COX but not NO. COX blockade does not fully inhibit selective A(2) receptor-mediated OMDVR dilation. 相似文献
4.
It has been observed that vasoactivity of explanted descending vasa recta (DVR) is modulated by intrinsic nitric oxide (NO) and superoxide (O(2)(-)) production (Cao C, Edwards A, Sendeski M, Lee-Kwon W, Cui L, Cai CY, Patzak A, Pallone TL. Am J Physiol Renal Physiol 299: F1056-F1064, 2010). To elucidate the cellular mechanisms by which NO, O(2)(-) and hydrogen peroxide (H(2)O(2)) modulate DVR pericyte cytosolic Ca(2+) concentration ([Ca](cyt)) and vasoactivity, we expanded our mathematical model of Ca(2+) signaling in pericytes. We incorporated simulations of the pathways that translate an increase in [Ca](cyt) to the activation of myosin light chain (MLC) kinase and cell contraction, as well as the kinetics of NO and reactive oxygen species formation and their effects on [Ca](cyt) and MLC phosphorylation. The model reproduced experimentally observed trends of DVR vasoactivity that accompany exposure to N(ω)-nitro-L-arginine methyl ester, 8-Br-cGMP, Tempol, and H(2)O(2). Our results suggest that under resting conditions, NO-induced activation of cGMP maintains low levels of [Ca](cyt) and MLC phosphorylation to minimize basal tone. This results from stimulation of Ca(2+) uptake from the cytosol into the SR via SERCA pumps, Ca(2+) efflux into the extracellular space via plasma membrane Ca(2+) pumps, and MLC phosphatase (MLCP) activity. We predict that basal concentrations of O(2)(-) and H(2)O(2) have negligible effects on Ca(2+) signaling and MLC phosphorylation. At concentrations above 1 nM, O(2)(-) is predicted to modulate [Ca(cyt)] and MCLP activity mostly by reducing NO bioavailability. The DVR vasoconstriction that is induced by high concentrations of H(2)O(2) can be explained by H(2)O(2)-mediated downregulation of MLCP and SERCA activity. We conclude that intrinsic generation of NO by the DVR wall may be sufficient to inhibit vasoconstriction by maintaining suppression of MLC phosphorylation. 相似文献
5.
Zhang Z Rhinehart K Pallone TL 《American journal of physiology. Regulatory, integrative and comparative physiology》2002,283(4):R949-R957
We tested the hypothesis that constriction of descending vasa recta (DVR) is mediated by voltage-gated calcium entry. K(+) channel blockade with BaCl(2) (1 mM) or TEACl (30 mM) depolarized DVR smooth muscle/pericytes and constricted in vitro-perfused vessels. Pericyte depolarization by 100 mM extracellular KCl constricted DVR and increased pericyte intracellular Ca(2+) ([Ca(2+)](i)). The K(ATP) channel opener pinacidil (10(-7)-10(-4) M) hyperpolarized resting pericytes, repolarized pericytes previously depolarized by ANG II (10(-8) M), and vasodilated DVR. The DVR vasodilator bradykinin (10(-7) M) also reversed ANG II depolarization. The L-type Ca(2+) channel blocker diltiazem vasodilated ANG II (10(-8) M)- or KCl (100 mM)-preconstricted DVR, and the L-type agonist BayK 8644 constricted DVR. The plateau phase of the pericyte [Ca(2+)](i) response to ANG II was inhibited by diltiazem. These data support the conclusion that DVR vasoreactivity is controlled through variation of membrane potential and voltage-gated Ca(2+) entry into the pericyte cytoplasm. 相似文献
6.
ANG II AT2 receptor modulates AT1 receptor-mediated descending vasa recta endothelial Ca2+ signaling
Rhinehart K Handelsman CA Silldorff EP Pallone TL 《American journal of physiology. Heart and circulatory physiology》2003,284(3):H779-H789
We tested whether the respective angiotensin type 1 (AT(1)) and 2 (AT(2)) receptor subtype antagonists losartan and PD-123319 could block the descending vasa recta (DVR) endothelial intracellular calcium concentration ([Ca(2+)](i)) suppression induced by ANG II. ANG II partially reversed the increase in [Ca(2+)](i) generated by cyclopiazonic acid (CPA; 10(-5) M), acetylcholine (ACh; 10(-5) M), or bradykinin (BK; 10(-7) M). Losartan (10(-5) M) blocked that effect. When vessels were treated with ANG II before stimulation with BK and ACh, concomitant AT(2) receptor blockade with PD-123319 (10(-8) M) augmented the suppression of endothelial [Ca(2+)](i) responses. Similarly, preactivation with the AT(2) receptor agonist CGP-42112A (10(-8) M) prevented AT(1) receptor stimulation with ANG II + PD-123319 from suppressing endothelial [Ca(2+)](i). In contrast to endothelial [Ca(2+)](i) suppression by ANG II, pericyte [Ca(2+)](i) exhibited typical peak and plateau [Ca(2+)](i) responses that were blocked by losartan but not PD-123319. DVR vasoconstriction by ANG II was augmented when AT(2) receptors were blocked with PD-123319. Similarly, AT(2) receptor stimulation with CGP-42112A delayed the onset of ANG II-induced constriction. PD-123319 alone (10(-5) M) showed no AT(1)-like action to constrict microperfused DVR or increase pericyte [Ca(2+)](i). We conclude that ANG II suppression of endothelial [Ca(2+)](i) and stimulation of pericyte [Ca(2+)](i) is mediated by AT(1) or AT(1)-like receptors. Furthermore, AT(2) receptor activation opposes ANG II-induced endothelial [Ca(2+)](i) suppression and abrogates ANG II-induced DVR vasoconstriction. 相似文献
7.
Zhang Z Rhinehart K Kwon W Weinman E Pallone TL 《American journal of physiology. Heart and circulatory physiology》2004,287(2):H773-H781
ANG II constricts descending vasa recta (DVR) through Ca(2+) signaling in pericytes. We examined the role of PKC DVR pericytes isolated from the rat renal outer medulla. The PKC blocker staurosporine (10 microM) eliminated ANG II (10 nM)-induced vasoconstriction, inhibited pericyte cytoplasmic Ca(2+) concentration ([Ca(2+)](cyt)) elevation, and blocked Mn(2+) influx into the cytoplasm. Activation of PKC by either 1,2-dioctanoyl-sn-glycerol (10 microM) or phorbol 12,13-dibutyrate (PDBu; 1 microM) induced both vasoconstriction and pericyte [Ca(2+)](cyt) elevation. Diltiazem (10 microM) blocked the ability of PDBu to increase pericyte [Ca(2+)](cyt) and enhance Mn(2+) influx. Both ANG II- and PDBu-induced PKC stimulated DVR generation of reactive oxygen species (ROS), measured by oxidation of dihydroethidium (DHE). The effect of ANG II was only significant when ANG II AT(2) receptors were blocked with PD-123319 (10 nM). PDBu augmentation of DHE oxidation was blocked by either TEMPOL (1 mM) or diphenylene iodonium (10 microM). We conclude that ANG II and PKC activation increases DVR pericyte [Ca(2+)](cyt), divalent ion conductance into the cytoplasm, and ROS generation. 相似文献
8.
Expression of TRPC4 channel protein that interacts with NHERF-2 in rat descending vasa recta 总被引:2,自引:0,他引:2
Lee-Kwon W Wade JB Zhang Z Pallone TL Weinman EJ 《American journal of physiology. Cell physiology》2005,288(4):C942-C949
The PDZ domain adaptor protein Na+/H+ exchanger regulatory factor (NHERF)-2 is expressed in renal medullary descending vasa recta (DVR), although its function has not been defined. Transient receptor potential channels (TRPC) TRPC4 and TRPC5, nonselective cation channels that transport Ca2+, were recently demonstrated to complex with the NHERF proteins. We investigated whether TRPC4 and/or TRPC5 are associated with NHERF-2 in DVR. RT-PCR revealed mRNA for TRPC4 and NHERF-2, but not for TRPC5 or NHERF-1, in microdissected DVR. Immunohistochemical studies demonstrated expression of TRPC4 and NHERF-2 proteins in both the endothelial cells and pericytes. These proteins colocalized in some cells of the DVR. TRPC4 coimmunoprecipitated with NHERF-2 from renal medullary lysates, and NHERF-2 coimmunoprecipitated with TRPC4. TRPC5 was not detected in DVR with the use of immunohistochemistry or in NHERF-2 immunoprecipitates. We conclude that DVR pericytes and endothelia coexpress TRPC4 and NHERF-2 mRNA and protein and that these proteins colocalize and coimmunoprecipitate, indicating a possible physical association. These findings suggest that TRPC4 and NHERF-2 may play a role in interactions related to Ca2+ signaling. PDZ proteins; calcium channels; medulla; pericytes; endothelium; microcirculation 相似文献
9.
10.
Zhang W Edwards A 《American journal of physiology. Heart and circulatory physiology》2002,283(3):H1042-H1055
In this model of oxygen transport in the renal medullary microcirculation, we predicted that the net amount of oxygen reabsorbed from vasa recta into the interstitium is on the order of 10(-6) mmol/s, i.e., significantly lower than estimated medullary oxygen requirements based on active sodium reabsorption. Our simulations confirmed a number of experimental findings. Low medullary PO(2) results from the countercurrent arrangement of vessels and an elevated vasa recta permeability to oxygen, as well as high metabolic needs. Diffusional shunting of oxygen between descending vasa recta (DVR) and ascending vasa recta also explains why a 20-mmHg decrease in initial PO(2) at the corticomedullary junction only leads to a small drop in papillary tip PO(2) (<2 mmHg with baseline parameter values). Conversely, small changes in the consumption rate of DVR-supplied oxygen, in blood flow rate, in hematocrit, or in capillary permeability to oxygen, beyond certain values sharply reduce interstitial PO(2). Without erythrocytes, papillary tip PO(2) cannot be maintained above 10 mmHg, even when oxygen consumption is zero. 相似文献
11.
12.
钙调神经磷酸酶在血管紧张素Ⅱ刺激的心脏成纤维细胞增殖中的作用 总被引:3,自引:0,他引:3
本研究观察了钙调神经磷酸酶(CaN)在血管坚张素Ⅱ(AngⅡ)刺激的大鼠心脏成纤维细胞增殖中的作用。在培养的大鼠心脏成纤维细胞上,应用双波长荧光 计检测Fura-2标记的细胞游离Ca^2+浓度;应用对硝基苯磷酸(PNPP)作底物测定钙调神经磷酸酶(CaN)活性;根据^3H-胸腺嘧啶掺入法评估CaN特异性抑制剂环胞素A(CsA)对AngⅡ刺激的心脏成纤维细胞DNA合成的影响。结果表明,AngⅡ(10 相似文献
13.
Lund DD Brooks RM Faraci FM Heistad DD 《American journal of physiology. Heart and circulatory physiology》2007,293(6):H3726-H3731
Endotoxin [or lipopolysaccharide (LPS)] increases levels of superoxide in blood vessels and impairs vasomotor function. Angiotensin II plays an important role in the generation of superoxide in several disease states, including hypertension and heart failure. The goal of this study was to determine whether the activation of the renin-angiotensin system contributes to oxidative stress and endothelial dysfunction after endotoxin. We examined the effects of enalapril (an angiotensin-converting enzyme inhibitor) or L-158809 (an angiotensin receptor blocker) on increases of superoxide and vasomotor dysfunction in mice treated with LPS. C57BL/6 mice were treated with either enalapril (60 mg.kg(-1).day(-1)) or L-158809 (30 mg.kg(-1).day(-1)) for 4 days. After the third day, LPS (10-20 mg/kg) or vehicle was injected intraperitoneally, and one day later, vasomotor function of the aorta was examined in vitro. After precontraction with PGF(2alpha), the maximal responses to sodium nitroprusside were similar in the aorta from normal and LPS-treated mice. In contrast, the relaxation to acetylcholine was impaired after LPS (54 +/- 5% at 10(-5), mean +/- SE) compared with vessels treated with vehicle (88 +/- 1%; P < 0.05). Enalapril improved (P < 0.05) relaxation in response to acetylcholine to 81 +/- 6% after LPS. L-158809 also improved relaxation in response to acetylcholine to 77 +/- 4% after LPS. Superoxide (measured with lucigenin and hydroethidine) was increased (P < 0.05) in aorta after LPS, and levels were reduced (P < 0.05) following enalapril and L-158809. Thus, after LPS, enalapril and L-158809 reduce superoxide levels and improve relaxation to acetylcholine in the aorta. The findings suggest that activation of the renin-angiotensin system contributes importantly to oxidative stress and endothelial dysfunction after endotoxin. 相似文献
14.
The phosphorylation of nephrin plays an important role in maintaining the normal structure and function in podocytes. Dexamethasone (Dex) is usually used to treat glomerular diseases with proteinuria. In this study, we observated the effect of Dex and angiotensin II (AngII) on the change of nephrin phosphorylation in cultured podocytes. In vitro, cultured podocytes were exposed to AngII (10?6 mol/L) pretreated with or without Dex (100 nM) for different time periods. Nck or Fyn were silenced by small interfering RNA (siRNA), nephrin and its phosphorylation expression were analyzed by Western blotting. In vitro, the phosphorylation of nephrin was significantly reduced after AngII stimulation (P < 0.05). Dex significantly resisted podocyte injury inducted by AngII via increasing the phosphorylation of nephrin (P < 0.05), siRNA silencing Nck can partially inhibited nephrin phosphorylation, siRNA silencing Fyn can completely inhibited nephrin phosphorylation. Phosphorylation of nephrin is important for the survival status of podocytes. Glucocorticoid treatment for human glomerulonephritis may exert its function by regulating Nck and Fyn complex to promote phosphorylation of nephrin. These results elucidate a novel mechanism of glucocorticoid treatment for glomerulonephritis. 相似文献
15.
16.
17.
18.
Cisplatin-containing chemotherapy regimens are known to produce intense nausea and vomiting. Angiotensin II (AII) and vasopressin (AVP) have been shown to have emetic properties. The role of these two peptides on cisplatin-induced vomiting was investigated in beagle dogs. Cisplatin (2 mg/kg, IV over 5 min) produced consistent emesis in all dogs after a mean latency time of 144 +/- 4 min. Serum Angiotensin Converting Enzyme (ACE) and plasma AII levels did not significantly change 3 hr after cisplatin administration (at the time of nausea and emesis) in control animals. AVP levels rose from 0.3 pg/ml to 7.5 pg/ml 3 hrs after cisplatin. Complete inhibition of ACE with enalapril (given at 3 mg/kg p.o., 3 hrs prior to cisplatin) reduced AII levels by 70%, but failed to significantly modify the increase in AVP levels (7.2 +/- 2.2 pg/ml), the latency time to emesis (149 +/- 2 min) and the number of emetic episodes induced by cisplatin. These results suggest that AII does not mediate cisplatin-induced emesis, nor does it mediate the increase in AVP observed at the time of emesis. We propose that AVP may be a good marker for nausea and emesis, and that increases in AVP may be neurally-mediated. The large increase in circulating AVP may represent a desirable water conservation response in anticipation of fluid losses induced by vomiting. 相似文献
19.
Maximum urine-concentrating capacity (UCC) differs widely among mammals of different species, being very high in some desert species (e.g. kangaroo rats) and very low in freshwater acquatic species (e.g. beaver). In this study, kidneys of 21 species of mammals from widely different habitats were studied in histological sections to determine whether differences in UCC can be attributed to differences in kidney structure. Parameters studied included the ratio of medullary to cortical thickness, the proportional subdivision of the medulla into inner and outer zones, and the dimensions of the vasa recta expressed in terms of the total area and the number of lumens within the vascular bundles. Determinations were made at a level where the size of individual vasa recta bundles has reached a constant maximum size, i.e. in the distal half of the outer zone. A positive correlation was found between the UCC and the ratio of medullary length to cortical thickness. No clear correlation existed between the proportion of the medullary length comprised of outer or inner zones and the UCC, although a trend to higher UCC in animals with relatively longer inner zones was apparent. Thus, it appears that the relative length of the entire medullary region is a major factor determining UCC, but the length of individual medullary zones is of lesser importance. A correlation was also found between the density of vasa recta per cubic millimeter of medullary tissue (the number of lumens regardless of identify in bundles, based on the number counted at the level sampled) and the UCC of the species. Data reported here support the view that UCC can be correlated with two parameters of kidney structure - the length of medulla relative to that of cortex and the density of vasa recta within the outer zone. It is proposed that the anatomical characteristics of the vascular supply to the medulla - that is, the vasa recta - are equally as important for the concentration of urine as is the primary mechanism determined by the characteristics of the loop of Henle and collecting ducts. 相似文献
20.
脑内血管紧张素Ⅱ系统在穹窿下器升压反应中的作用 总被引:7,自引:0,他引:7
文献报道脑内存在血管紧张素Ⅱ系统。与此一致,本工作用氨基甲酸乙脂麻醉、箭毒制动、人工呼吸的大鼠观察到:(1)穹窿下器(SFO)、室旁核(NPV)或NPV的投射区:延髓头端腹外侧区(RVLM)、导水管周围灰质(PAG)、蓝斑(LC)内注入血管紧张素Ⅱ(AⅡ)均引起升压反应;(2)SFO升压反应可被双侧NPV或RVLM内预先注入[Sar1,Thr8]AⅡ(STAⅡ,AⅡ拮抗剂)明显衰减,NPV升压反应也可被RVLM内注入STAⅡ削弱;(3)双侧PAG用STAⅡ预处理后,AⅡ引起的NPV或SFO升压反应均明显减小;(4)NPV升压反应还可被双侧LC内预先注射STAⅡ衰减,但SFO升压反应不受影响。结合我们以往工作曾显示兴奋PAG或LC均可作用于RVLM引起升压反应,目前的结果表明:SFO内的AⅡ能神经元通过NPV内AⅡ能神经元,不仅可直接作用于RVLM引起升压反应,而且还可间接通过PAG作用于RVLM起升压作用,但LC不参与SFO升压反应。 相似文献