首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aging is associated with altered autonomic control of cardiovascular function, but baroreflex function in animal models of aging remains controversial. In this study, pressor and depressor agent-induced reflex bradycardia and tachycardia were attenuated in conscious old (24 mo) rats [57 and 59% of responses in young (10 wk) Wistar rats, respectively]. The intrinsic heart rate (HR, 339 +/- 5 vs. 410 +/- 10 beats/min) was reduced in aged animals, but no intergroup differences in resting mean arterial blood pressure (MAP, 112 +/- 3 vs. 113 +/- 5 mmHg) or HR (344 +/- 9 vs. 347 +/- 9 beats/min) existed between old and young rats, respectively. The aged group also exhibited a depressed (49%) parasympathetic contribution to the resting HR value (vagal effect) but preserved sympathetic function after intravenous methylatropine and propranolol. An implantable electrode revealed tonic renal sympathetic nerve activity (RSNA) was similar between groups. However, old rats showed impaired baroreflex control of HR and RSNA after intravenous nitroprusside (-0.63 +/- 0. 18 vs. -1.84 +/- 0.4 bars x cycle(-1) x mmHg(-1) x s(-1)). Therefore, aging in rats is associated with 1) preserved baseline MAP, HR, and RSNA, 2) impaired baroreflex control of HR and RSNA, and 3) altered autonomic control of resting HR.  相似文献   

2.
The maintenance of stable blood pressure during postural changes is known to involve integration of vestibular and cardiovascular central regulatory mechanisms. Sensory activity in the vestibular system plays an important role in cardiovascular regulation. The purpose of this study was to determine the role of vestibular gravity receptors in normal baroreflex function. Baroreflex heart rate (HR) responses to changes in blood pressure (BP) in otoconia-deficient head tilt (het) mice (n = 8) were compared with their wild-type littermates (n = 12). The study was carried out in conscious male mice chronically implanted with arterial and venous catheters for recording BP and HR and for the infusion of vasoactive drugs. Resting HR was higher in the het mice (661 +/- 13 beats/min) than in the wild-type mice (579 +/- 20 beats/min). BP was comparable in the het (113 +/- 4 mmHg) and wild-type mice (104 +/- 4 mmHg). The slopes of reflex decreases in HR in response to phenylephrine (PE) were blunted in the het mice (-5.5 +/- 1.5 beats x min(-1) x mmHg(-1)) compared with the wild-type mice (-8.5 +/- 0.9 beats x min(-1) x mmHg(-1)). Likewise, reflex tachycardic responses to decreases in BP with sodium nitroprusside (SNP) were significantly blunted in the het mice (-0.8 +/- 0.3 beats x min(-1) x mmHg(-1)) versus the wild-type mice (-2.2 +/- 0.6 beats x min(-1) x mmHg(-1)). Frequency-domain analysis of the HR variability suggests that under resting conditions, parasympathetic contribution was lower in the het versus wild-type mice. Mapping of the expression of immediate-early gene product, c-Fos, in forebrain and brain stem nuclei in response to a BP challenge showed no differences between the wild-type and het mice. These results suggest that tonic activity of gravity receptors modulates and is required for normal function of the cardiac baroreflexes.  相似文献   

3.
Patients with postural tachycardia syndrome (POTS) have excessive tachycardia without hypotension during orthostasis as well as exercise. We tested the hypothesis that excessive tachycardia during exercise in POTS is not related to abnormal baroreflex control of heart rate (HR). Patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter) and HR (ECG) were measured. Baroreflex sensitivity of HR was assessed by bolus intravenous infusion of phenylephrine at each workload. In both positions, HR was higher in the patients than the controls during exercise. Supine baroreflex sensitivity (HR/systolic pressure) in POTS patients was -1.3 +/- 0.1 beats.min(-1).mmHg(-1) at rest and decreased to -0.6 +/- 0.1 beats.min(-1).mmHg(-1) during 75-W exercise, neither significantly different from the controls (P > 0.6). In the upright position, baroreflex sensitivity in POTS patients at rest (-1.4 +/- 0.1 beats.min(-1).mmHg(-1)) was higher than the controls (-1.0 +/- 0.1 beats.min(-1).mmHg(-1)) (P < 0.05), and it decreased to -0.1 +/- 0.04 beats.min(-1).mmHg(-1) during 75-W exercise, lower than the controls (-0.3 +/- 0.09 beats.min(-1).mmHg(-1)) (P < 0.05). The reduced arterial baroreflex sensitivity of HR during upright exercise was accompanied by greater fluctuations in systolic and pulse pressure in the patients than in the controls with 56 and 90% higher coefficient of variations, respectively (P < 0.01). However, when baroreflex control of HR was corrected for differences in HR, it was similar between the patients and controls during upright exercise. These results suggest that the tachycardia during exercise in POTS was not due to abnormal baroreflex control of HR.  相似文献   

4.
Cyclosporine A (CyA), an immunosuppressant drug, has been shown to attenuate the baroreflex control of heart rate (HR). This study investigated whether or not the CyA-induced baroreflex dysfunction is due to alterations in the autonomic (sympathetic and parasympathetic) control of the heart. We evaluated the effect of muscarinic or beta-adrenergic blockade by atropine and propranolol, respectively, on reflex HR responses in conscious rats treated with CyA (20 mg x kg(-1) x day(-1) dissolved in sesame oil) for 11-13 days or the vehicle. Baroreflex curves relating changes in HR to increases or decreases in blood pressure (BP) evoked by phenylephrine (PE) and sodium nitroprusside (NP), respectively, were constructed and the slopes of the curves were taken as a measure of baroreflex sensitivity (BRS(PE) and BRS(NP)). Intravenous administration of PE and NP produced dose-related increases and decreases in BP, respectively, that were associated with reciprocal changes in HR. CyA caused significant (P < 0.05) reductions in reflex HR responses as indicated by the smaller BRS(PE) (-0.97 +/- 0.07 versus -1.47 +/- 0.10 beats x min(-1) x mmHg(-1) (1 mmHg = 133.322 Pa)) and BRS(NP) (-2.49 +/- 0.29 versus -5.23 +/- 0.42 beats x min(-1) x mmHg(-1)) in CyA-treated versus control rats. Vagal withdrawal evoked by muscarinic blockade elicited significantly lesser attenuation of BRS(PE) in CyA compared with control rats (40.2 +/- 8.0 versus 57.7 +/- 4.4%) and abolished the BRS(PE) difference between the two groups, suggesting that CyA reduces vagal activity. CyA also appears to impair cardiac sympathetic control because blockade of beta-adrenergic receptors by propranolol was less effective in reducing reflex tachycardic responses in CyA compared with control rats (41.6 +/- 4.2 versus 59.5 +/- 4.5%). These findings confirm earlier reports that CyA attenuates the baroreceptor control of HR. More importantly, the study provides the first pharmacological evidence that CyA attenuates reflex chronotropic responses via impairment of the autonomic modulation of the baroreceptor neural pathways.  相似文献   

5.
Moderate exercise training (Ex) enhances work capacity and quality of life in patients with chronic heart failure (CHF). We investigated the autonomic components of resting heart rate (HR) and the baroreflex control of HR in conscious, instrumented rabbits with pacing-induced CHF after Ex. Sham and CHF rabbits were exercise trained for 4 wk at 15-18 m/min, 6 days/wk. Arterial pressure and HR were recorded before and after metoprolol (1 mg/kg iv) or after atropine (0.2 mg/kg iv). Mean arterial pressure was altered by infusions of sodium nitroprusside and phenylephrine. The data were fit to a sigmoid (logistic) function. Baseline HRs were 266.5 +/- 8.4 and 232.1 +/- 1.6 beats/min in CHF and CHF Ex rabbits, respectively (P < 0.05). In the unblocked state, CHF rabbits had a significantly depressed peak baroreflex slope (1.7 +/- 0.3 vs. 5.6 +/- 0.7 beats. min(-1). mmHg(-1); P < 0.001) and HR range (128.6 +/- 34.5 vs. 253.2 +/- 20.3 beats/min; P < 0.05) compared with normal subjects. Ex increased baroreflex slope to 4.9 +/- 0.3 from 1.7 +/- 0.3 beats. min(-1). mmHg(-1) in unblocked rabbits (P < 0.001 compared with CHF non-Ex). Ex did not alter baroreflex function in sham animals. After metoprolol, baroreflex slope was significantly increased in CHF Ex rabbits (1.5 +/- 0.2 vs. 3.0 +/- 0.2 beats. min(-1). mmHg(-1); P < 0.05). After atropine, there was no significant change in baroreflex slope or HR range between CHF Ex and CHF rabbits. These data support the view that enhancement of baroreflex control of HR after Ex is due to an augmentation of vagal tone.  相似文献   

6.
The objective of the present study was to evaluate the baroreflex and the autonomic control of heart rate (HR) in renovascular hypertensive mice. Experiments were carried out in conscious C57BL/6 (n = 16) mice 28 days after a 2-kidney 1-clip procedure (2K1C mice) or a sham operation (sham mice). Baroreflex sensitivity was evaluated by measuring changes in heart rate (HR) in response to increases or decreases in mean arterial pressure (MAP) induced by phenylephrine or sodium nitroprusside. Cardiac autonomic tone was determined by use of atropine and atenolol. Basal HR and MAP were significantly higher in 2K1C mice than in sham mice. The reflex tachycardia induced by decreases in MAP was greatly attenuated in 2K1C mice compared with sham mice. Consequently, the baroreflex sensitivity was greatly decreased (2.2 +/- 0.4 vs. 4.4 +/- 0.3 beats x min(-1) x mmHg(-1)) in hypertensive mice compared with sham mice. The reflex bradycardia induced by increases in MAP and the baroreflex sensitivity were similar in both groups. Evaluation of autonomic control of HR showed an increased sympathetic tone and a tendency to a decreased vagal tone in 2K1C mice compared with that in sham mice. 2K1C hypertension in mice is accompanied by resting tachycardia, increased predominance of the cardiac sympathetic tone over the cardiac vagal tone, and impairment of baroreflex sensitivity.  相似文献   

7.
The present study tested the hypothesis that nitric oxide (NO) contributes to impaired baroreflex gain of pregnancy and that this action is enhanced by angiotensin II. To test these hypotheses, we quantified baroreflex control of heart rate in nonpregnant and pregnant conscious rabbits before and after: 1) blockade of NO synthase (NOS) with Nomega-nitro-L-arginine (20 mg/kg iv); 2) blockade of the angiotensin II AT1 receptor with L-158,809 (5 microg x kg(-1) x min(-1) iv); 3) infusion of angiotensin II (1 ng x kg(-1) x min(-1) nonpregnant, 1.6-4 ng x kg(-1) x min(-1) pregnant iv); 4) combined blockade of angiotensin II AT(1) receptors and NOS; and 5) combined infusion of angiotensin II and blockade of NOS. To determine the potential role of brain neuronal NOS (nNOS), mRNA and protein levels were measured in the paraventricular nucleus, nucleus of the solitary tract, caudal ventrolateral medulla, and rostral ventrolateral medulla in pregnant and nonpregnant rabbits. The decrease in baroreflex gain observed in pregnant rabbits (from 23.3 +/- 3.6 to 7.1 +/- 0.9 beats x min(-1) x mmHg(-1), P < 0.05) was not reversed by NOS blockade (to 8.3 +/- 2.5 beats x min(-1) x mmHg(-1)), angiotensin II blockade (to 5.0 +/- 1.1 beats x min(-1) x mmHg(-1)), or combined blockade (to 12.3 +/- 4.8 beats x min(-1) x mmHg(-1)). Angiotensin II infusion with (to 5.7 +/- 1.0 beats x min(-1) x mmHg(-1)) or without (to 8.4 +/- 2.4 beats x min(-1) x mmHg(-1)) NOS blockade also failed to improve baroreflex gain in pregnant or nonpregnant rabbits. In addition, nNOS mRNA and protein levels in cardiovascular brain regions were not different between nonpregnant and pregnant rabbits. Therefore, we conclude that NO, either alone or via an interaction with angiotensin II, is not responsible for decrease in baroreflex gain during pregnancy.  相似文献   

8.
Oxytocin (OT) has been implicated in the cardiovascular responses to exercise, stress, and baroreflex adjustments. Studies were conducted to determine the effect of genetic manipulation of the OT gene on blood pressure (BP), heart rate (HR), and autonomic/baroreflex function. OT knockout (OTKO -/-) and control +/+ mice were prepared with chronic arterial catheters. OTKO -/- mice exhibited a mild hypotension (102 +/- 3 vs. 110 +/- 3 mmHg). Sympathetic and vagal tone were tested using beta(1)-adrenergic and cholinergic blockade (atenolol and atropine). Magnitude of sympathetic and vagal tone to the heart and periphery was not significantly different between groups. However, there was an upward shift of sympathetic tone to higher HR values in OTKO -/- mice. This displacement combined with unchanged basal HR led to larger responses to cholinergic blockade (+77 +/- 25 vs. +5 +/- 15 beats/min, OTKO -/- vs. control +/+ group). There was also an increase in baroreflex gain (-13.1 +/- 2.5 vs. -4.1 +/- 1.2 beats x min(-1) x mmHg(-1), OTKO -/- vs. control +/+ group) over a smaller BP range. Results show that OTKO -/- mice are characterized by 1) hypotension, suggesting that OT is involved in tonic BP maintenance; 2) enhanced baroreflex gain over a small BP range, suggesting that OT extends the functional range of arterial baroreceptor reflex; and 3) shift in autonomic balance, indicating that OT reduces the sympathetic reserve.  相似文献   

9.
Chronic intermittent hypoxia (CIH) leads to increased sympathetic nerve activity and arterial hypertension. In this study, we tested the hypothesis that CIH impairs baroreflex (BR) control of heart rate (HR) in mice, and that decreased cardiac chronotropic responsiveness to vagal efferent activity contributes to such impairment. C57BL/6J mice were exposed to either room air (RA) or CIH (6-min alternations of 21% O(2) and 5.7% O(2), 12 h/day) for 90 days. After the treatment period, mice were anesthetized (Avertin) and arterial blood pressure (ABP) was measured from the femoral artery. Mean ABP (MABP) was significantly increased in mice exposed to CIH (98.7 +/- 2.5 vs. RA: 78.9 +/- 1.4 mmHg, P < 0.001). CIH increased HR significantly (584.7 +/- 8.9 beats/min; RA: 518.2 +/- 17.9 beats/min, P < 0.05). Sustained infusion of phenylephrine (PE) at different doses (0.1-0.4 microg/min) significantly increased MABP in both CIH and RA mice, but the ABP-mediated decreases in HR were significantly attenuated in mice exposed to CIH (P < 0.001). In contrast, decreases in HR in response to electrical stimulation of the left vagus nerve (30 microA, 2-ms pulses) were significantly enhanced in mice exposed to CIH compared with RA mice at low frequencies. We conclude that CIH elicits a sustained impairment of baroreflex control of HR in mice. The blunted BR-mediated bradycardia occurs despite enhanced cardiac chronotropic responsiveness to vagal efferent stimulation. This suggests that an afferent and/or a central defect is responsible for the baroreflex impairment following CIH.  相似文献   

10.
In a previous clinical study we have demonstrated a significantly lower baroreflex-mediated bradycardic response in young women compared with men. The present study determined whether sexual dimorphism in baroreflex sensitivity in young rats also covers the reflex tachycardic response. The study was then extended to test the hypothesis that an attenuated cardiac cholinergic component of the baroreflex heart rate response in females may account for the gender difference. Baroreflex sensitivity (BRS) was expressed as the regression coefficient of the reciprocal relationship between evoked changes in blood pressure and heart rate. BRS measured in conscious rats with phenylephrine (BRS(PE)) and nitroprusside (BRS(NP)) represented the reflex bradycardic and tachycardic responses, respectively. Female rats exhibited significantly lower BRS(PE) compared with male rats (-1.53+/-0.1 vs. -2.36+/-0.13 beats x min(-1) x mmHg(-1); p < 0.05) but similar BRS(NP) (-2.60+/-0.20 vs. -2.29+/-0.17 beats x min(-1) x mmHg(-1)). Blockade of cardiac muscarinic receptors with atropine methyl bromide elicited greater attenuation of BRS(PE) in male than in female rats (72+/-4.6 vs. 53+/-6.7% inhibition; p < 0.01) and abolished the gender difference. In male rats cardiac muscarinic blockade attenuated BRS(PE) significantly more than did cardiac beta-adrenergic receptor blockade with propranolol (72+/-4.6 vs. 43+/-2.7; p < 0.01), which suggests greater dependence of BRS(PE) on the parasympathetic component. In females, muscarinic and beta-adrenergic blockade elicited similar attenuation of BRS(PE). The findings suggest that (i) BRS is differentially influenced by gender; female rats exhibit substantially lower BRS(PE) but similar BRS(NP) compared with age-matched male rats and (ii) the sexual dimorphism in BRS(PE) results, at least partly, from a smaller increase in vagal outflow to the heart in response to baroreceptor activation.  相似文献   

11.
We hypothesized that gene transfer of neuronal nitric oxide synthase (nNOS) into the rostral ventrolateral medulla (RVLM) improves baroreflex function in rats with chronic heart failure (CHF). Six to eight weeks after coronary artery ligation, rats showed hemodynamic signs of CHF. A recombinant adenovirus, either Ad.nNOS or Ad.beta-Gal, was transfected into the RVLM. nNOS expression in the RVLM was confirmed by Western blot analysis, NADPH-diaphorase, and immunohistochemical staining. We studied baroreflex control of the heart rate (HR) and renal sympathetic nerve activity (RSNA) in the anesthetized state 3 days after gene transfer by intravenous injections of phenylephrine and nitroprusside. Baroreflex sensitivity was depressed for HR and RSNA regulation in CHF rats (2.0 +/- 0.3 vs. 0.8 +/- 0.2 beats.min-1.mmHg-1, P < 0.01 and 3.8 +/- 0.3 vs. 1.2 +/- 0.1% max/mmHg, P < 0.01, respectively). Ad.nNOS transfer into RVLM significantly increased the HR and RSNA ranges (152 +/- 19 vs. 94 +/- 12 beats/min, P < 0.05 and 130 +/- 16 vs. 106 +/- 5% max/mmHg, P < 0.05) compared with the Ad.beta-Gal in CHF rats. Ad.nNOS also improved the baroreflex gain for the control of HR and RSNA (1.8 +/- 0.2 vs. 0.8 +/- 0.2 beats.min-1.mmHg-1, P < 0.01 and 2.6 +/- 0.2 vs. 1.2 +/- 0.1% max/mmHg, P < 0.01). In sham-operated rats, we found that Ad.nNOS transfer enhanced the HR range compared with Ad.beta-Gal gene transfer (188 +/- 15 vs. 127 +/- 14 beats/min, P < 0.05) but did not alter any other parameter. This study represents the first demonstration of altered baroreflex function following increases in central nNOS in the CHF state. We conclude that delivery of Ad.nNOS into the RVLM improves baroreflex function in rats with CHF.  相似文献   

12.
Nineteen males (aged 45-68 yr) were studied before and after either a period of regular endurance exercise [walk/jog 3-4 days/wk for 30 +/- 1 (SE) wk, n = 11] or unchanged physical activity (38 +/- 2 wk, n = 8) (controls) to determine the influence of physical training on cardiac parasympathetic (vagal) tone and baroreflex control of heart rate (HR) and limb vascular resistance (VR) at rest in middle-aged and older men. Training resulted in a marked increase in maximal O2 uptake (31.6 +/- 1.2 vs. 41.0 +/- 1.8 ml.kg-1.min-1, 2.56 +/- 0.16 vs. 3.20 +/- 0.18 l/min, P less than 0.05) and small (P less than 0.05) reductions in body weight (81.2 +/- 3.5 vs. 78.7 +/- 4.0 kg) and body fat (23.8 +/- 1.3 vs. 20.9 +/- 1.3%). HR at rest was slightly, but consistently, lower after training (63 +/- 2 vs. 58 +/- 1 beats/min, P less than 0.05). In general, HR variability (index of cardiac vagal tone) was greater after training. Chronotropic responsiveness to either brief carotid baroreflex stimulation (neck suction) or inhibition (neck pressure), or to non-specific arterial baroreflex inhibition induced by a hypotensive level of lower body suction, was unchanged after training. In contrast, the magnitude of the reflex increase in forearm VR in response to three levels of lower body suction was markedly attenuated after training (38-59%; P less than 0.05 at -10 and -30 mmHg; P = 0.07 at -20 mmHg). None of these variables or responses was altered over time in the controls. These findings indicate that in healthy, previously sedentary, middle-aged and older men, strenuous and prolonged endurance training 1) elicits large increases in maximal exercise capacity and small reductions in HR at rest, 2) may increase cardiac vagal tone at rest, 3) does not alter arterial baroreflex control of HR, and 4) results in a diminished forearm vasoconstrictor response to reductions in baroreflex sympathoinhibition.  相似文献   

13.
We determined the effect of microinjection of ANG-(1-7) and ANG II into two key regions of the medulla that control the circulation [rostral and caudal ventrolateral medulla (RVLM and CVLM, respectively)] on baroreflex control of heart rate (HR) in anesthetized rats. Reflex bradycardia and tachycardia were induced by increases and decreases in mean arterial pressure produced by intravenous phenylephrine and sodium nitroprusside, respectively. The pressor effects of ANG-(1-7) and ANG II (25 pmol) after RVLM microinjection (11 +/- 0.8 and 10 +/- 2 mmHg, respectively) were not accompanied by consistent changes in HR. In addition, RVLM microinjection of these angiotensin peptides did not alter the bradycardic or tachycardic component of the baroreflex. CVLM microinjections of ANG-(1-7) and ANG II produced hypotension (-11 +/- 1.5 and -11 +/- 1.9 mmHg, respectively) that was similarly not accompanied by significant changes in HR. However, CVLM microinjections of angiotensins induced differential changes in the baroreflex control of HR. ANG-(1-7) attenuated the baroreflex bradycardia (0.26 +/- 0.06 ms/mmHg vs. 0.42 +/- 0.08 ms/mmHg before treatment) and facilitated the baroreflex tachycardia (0.86 +/- 0.19 ms/mmHg vs. 0.42 +/- 0.10 ms/mmHg before treatment); ANG II produced the opposite effect, attenuating baroreflex tachycardia (0.09 +/- 0.06 ms/mmHg vs. 0.31 +/- 0.07 ms/mmHg before treatment) and facilitating the baroreflex bradycardia (0.67 +/- 0.16 ms/mmHg vs. 0.41 +/- 0.05 ms/mmHg before treatment). The modulatory effect of ANG II and ANG-(1-7) on baroreflex sensitivity was completely abolished by peripheral administration of methylatropine. These results suggest that ANG II and ANG-(1-7) at the CVLM produce a differential modulation of the baroreflex control of HR, probably through distinct effects on the parasympathetic drive to the heart.  相似文献   

14.
This study tested whether leptin restores sympathetic-vagal balance, heart rate (HR) variability, and cardiac baroreflex sensitivity (BRS) in streptozotocin (STZ)-induced diabetes. Sprague-Dawley rats were instrumented with arterial and venous catheters, and a cannula was placed in the lateral ventricle for intracerebroventricular (ICV) leptin infusion. Blood pressure (BP) and HR were monitored by telemetry. BRS and HR variability were estimated by linear regression between HR and BP responses to phenylephrine or sodium nitroprusside and autoregressive spectral analysis. Measurements were made during control period, 7 days after induction of diabetes, and 7 days after ICV leptin infusion. STZ diabetes was associated with hyperglycemia (422 +/- 17 mg/dl) and bradycardia (-79 +/- 4 beats/min). Leptin decreased glucose levels (165 +/- 16 mg/dl) and raised HR to control values (303 +/- 10 to 389 +/- 10 beats/min). Intrinsic HR (IHR) and chronotropic responses to a full-blocking dose of propranolol and atropine were reduced during diabetes (260 +/- 7 vs. 316 +/- 6, -19 +/- 2 vs. -43 +/- 6, and 39 +/- 3 vs. 68 +/- 8 beats/min), and leptin treatment restored these variables to normal (300 +/- 7, -68 +/- 10, and 71 +/- 8 beats/min). Leptin normalized BRS (bradycardia, -2.6 +/- 0.3, -1.7 +/- 0.2, and -3.0 +/- 0.5; and tachycardia, -3.2 +/- 0.4, -1.9 +/- 0.3, and -3.4 +/- 0.3 beats.min(-1).mmHg(-1) for control, diabetes, and leptin) and HR variability (23 +/- 4 to 11 +/- 1.5 ms2). Chronic glucose infusion to maintain hyperglycemia during leptin infusion did not alter the effect of leptin on IHR but abolished the improved BRS. These results show rapid impairment of autonomic nervous system control of HR after the induction of diabetes and that central nervous system actions of leptin can abolish the hyperglycemia as well as the altered IHR and BRS in STZ-induced diabetes.  相似文献   

15.
Sex has an important influence on blood pressure (BP) regulation. There is increasing evidence that sex hormones interfere with the renin-angiotensin system. Thus the purpose of this study was to determine whether there are sex differences in the development of ANG II-induced hypertension in conscious male and female mice. We used telemetry implants to measure aortic BP and heart rate (HR) in conscious, freely moving animals. ANG II (800 ng.kg(-1).min(-1)) was delivered via an osmotic pump implanted subcutaneously. Our results showed baseline BP in male and female mice to be similar. Chronic systemic infusion of ANG II induced a greater increase in BP in male (35.1 +/- 5.7 mmHg) than in female mice (7.2 +/- 2.0 mmHg). Gonadectomy attenuated ANG II-induced hypertension in male mice (15.2 +/- 2.4 mmHg) and augmented it in female mice (23.1 +/- 1.0 mmHg). Baseline HR was significantly higher in females relative to males (630.1 +/- 7.9 vs. 544.8 +/- 16.2 beats/min). In females, ANG II infusion significantly decreased HR. However, the increase in BP with ANG II did not result in the expected decrease in HR in either intact male or gonadectomized mice. Moreover, the slope of the baroreflex bradycardia to phenylephrine was blunted in males (-5.6 +/- 0.3 to -2.9 +/- 0.5) but not in females (-6.5 +/- 0.5 to -5.6 +/- 0.3) during infusion of ANG II, suggesting that, in male mice, infusion of ANG II results in a resetting of the baroreflex control of HR. Ganglionic blockade resulted in greater reduction in BP on day 7 after ANG II infusion in males compared with females (-61.0 +/- 8.9 vs. -36.6 +/- 6.6 mmHg), suggesting an increased contribution of sympathetic nerve activity in arterial BP maintenance in male mice. Together, these data indicate that there are sex differences in the development of chronic ANG II-induced hypertension in conscious mice and that females may be protected from the increases in BP induced by ANG II.  相似文献   

16.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Dynamic exercise attenuates spontaneous baroreflex sensitivity (SBRS) in the control of heart rate (HR) during rapid, spontaneous changes in blood pressure (BP). Our objective was to determine whether muscle metaboreflex activation (MRA) further diminishes SBRS. Conscious dogs were chronically instrumented for measurement of HR, cardiac output, mean arterial pressure, and left ventricular systolic pressure (LVSP) at rest and during mild (3.2 km/h) or moderate (6.4 km/h at 10% grade) dynamic exercise before and after MRA (via partial reduction of hindlimb blood flow). SBRS was evaluated as the slopes of the linear relations (LRs) between HR and LVSP during spontaneous sequences of at least three consecutive beats when HR changed inversely vs. pressure (expressed as beats x min(-1) x mmHg(-1)). During mild exercise, these LRs shifted upward, with a significant decrease in SBRS (-3.0 +/- 0.4 vs. -5.2 +/- 0.4, P<0.05 vs. rest). MRA shifted LRs upward and rightward and decreased SBRS (-2.1 +/- 0.1, P<0.05 vs. mild exercise). Moderate exercise shifted LRs upward and rightward and significantly decreased SBRS (-1.2 +/- 0.1, P<0.05 vs. rest). MRA elicited further upward and rightward shifts of the LRs and reductions in SBRS (-0.9 +/- 0.1, P<0.05 vs. moderate exercise). We conclude that dynamic exercise resets the arterial baroreflex to higher BP and HR as exercise intensity increases. In addition, increases in exercise intensity, as well as MRA, attenuate SBRS.  相似文献   

17.
To better understand the pathophysiological significance of high plasma norepinephrine (NE) concentration in regulating heart rate (HR), we examined the interactions between high plasma NE and dynamic vagal control of HR. In anesthetized rabbits with sinoaortic denervation and vagotomy, using a binary white noise sequence (0-10 Hz) for 10 min, we stimulated the right vagus and estimated the transfer function from vagal stimulation to HR response. The transfer function approximated a first-order low-pass filter with pure delay. Infusion of NE (100 microg. kg(-1) x h(-1) iv) attenuated the dynamic gain from 6.2 +/- 0.8 to 3.9 +/- 1.2 beats x min(-1) x Hz(-1) (n = 7, P < 0.05) without affecting the corner frequency or pure delay. Simultaneous intravenous administration of phentolamine (1 mg x kg(-1) x h(-1)) and NE (100 microg x kg(-1) x h(-1)) abolished the inhibitory effect of NE on the dynamic gain (6.3 +/- 0.8 vs. 6.4 +/- 1.3 beats x min(-1) x Hz(-1), not significant, n = 7). The inhibitory effect of NE at infusion rates of 10, 50, and 100 microg x kg(-1) x h(-1) on dynamic vagal control of HR was dose-dependent (n = 5). In conclusion, high plasma NE attenuated the dynamic HR response to vagal stimulation, probably via activation of alpha-adrenergic receptors on the preganglionic and/or postganglionic cardiac vagal nerve terminals.  相似文献   

18.
The effect of atrial natriuretic factor (ANF) on baroreflex sensitivity was determined in unanesthetized normotensive (Wistar-Kyoto, WKY) or spontaneously hypertensive rats (SHR) during acute hypertensive stimuli (phenylephrine) or hypotensive stimuli (sodium nitroprusside). The i.v. dose of rat ANF [( Ser99,Tyr126]ANF) was 50 ng/min per rat, sufficient to decrease mean arterial blood pressure (ABP) by about 6 mmHg (1 mmHg = 133.3 Pa) in WKY. SHR showed no change in ABP with this ANF dose. During a control infusion of physiological saline, the mean heart rate (HR) response to increases in ABP was -1.30 +/- 0.27 beats/min (bpm)/mmHg in WKY and -0.37 +/- 0.22 in SHR (p less than 0.05). These values were not affected significantly by ANF. However, ANF blunted chronotropic responses to ABP decreases. The control values of the delta HR/delta ABP slope in WKY and SHR were -2.34 +/- 0.57 and -2.01 +/- 0.37 bpm/mmHg, respectively. In the presence of ANF, the slope changed to -0.36 +/- 0.43 (i.e., bradycardia in response to hypotension) in WKY and to +0.20 +/- 0.21 in SHR (p less than 0.005 for the difference from control for both). This ANF-induced loss of baroreflex sensitivity was reversed in WKY by the addition of angiotensin I (sufficient to increase ABP by 5 mmHg in control rats). Angiotensin did not restore baroreflex sensitivity in ANF-infused SHR, and ANF had no effect on the ABP increase caused by angiotensin in either group. The data suggest that ANF does not act on baroreceptor structures directly, but inhibits mechanisms involved in efferent sympathetic activation. Parasympathetic responses do not appear to be compromised.  相似文献   

19.
We have reported that baroreflex bradycardia by stimulation of the aortic depressor nerve is blunted at the onset of voluntary static exercise in conscious cats. Central command may contribute to the blunted bradycardia, because the most blunted bradycardia occurs immediately before exercise or when a forelimb is extended before force development. However, it remained unknown whether the blunted bradycardia is due to either reduced sensitivity of the baroreflex stimulus-response curve or resetting of the curve toward a higher blood pressure. To determine this, we examined the stimulus-response relationship between systolic (SAP) or mean arterial pressure (MAP) and heart rate (HR) at the onset of and during the later period of static exercise in seven cats (n = 348 trials) by changing arterial pressure with infusion of nitroprusside and phenylephrine or norepinephrine. The slope of the MAP-HR curve decreased at the onset of exercise to 48% of the preexercise value (2.9 +/- 0.4 beats x min(-1) x mmHg(-1)); the slope of the SAP-HR curve decreased to 59%. The threshold blood pressures of the stimulus-response curves, at which HR started to fall due to arterial baroreflex, were not affected. In contrast, the slopes of the stimulus-response curves during the later period of exercise returned near the preexercise levels, whereas the threshold blood pressures elevated 6-8 mmHg. The maximal plateau level of HR was not different before and during static exercise, denying an upward shift of the baroreflex stimulus-response curves. Thus central command is likely to attenuate sensitivity of the cardiac component of arterial baroreflex at the onset of voluntary static exercise without shifting the stimulus-response curve.  相似文献   

20.
This study reports the effects of angiotensin II (ANG II), arginine vasopression (AVP), phenylephrine (PE), and sodium nitroprusside (SNP) on baroreflex control of heart rate in the presence and absence of the area postrema (AP) in conscious mice. In intact, sham-lesioned mice, baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of ANG II were significantly less than those observed with similar increases in arterial pressure with PE (slope: -3.0 +/- 0.9 vs. -8.1 +/- 1.5 beats x min(-1) x mmHg(-1)). Baroreflex-induced decreases in heart rate due to increases in arterial pressure with intravenous infusions of AVP were the same as those observed with PE in sham animals (slope: -5.8 +/- 0.7 vs. -8.1 +/- 1.5 beats x min(-1) x mmHg(-1)). After the AP was lesioned, the slope of baroreflex inhibition of heart rate was the same whether pressure was increased with ANG II, AVP, or PE. The slope of the baroreflex-induced increases in heart rate due to decreases in arterial blood pressure with SNP were the same in sham- and AP-lesioned animals. These results indicate that, similar to other species, in mice the ability of ANG II to acutely reset baroreflex control of heart rate is dependent on an intact AP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号