首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Testosterone (Te) concentrations fall gradually in healthy aging men. Postulated mechanisms include relative failure of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and/or gonadal Te secretion. Available methods to test Leydig cell Te production include pharmacological stimulation with human chorionic gonadotropin (hCG). We reasoned that physiological lutropic signaling could be mimicked by pulsatile infusion of recombinant human (rh) LH during acute suppression of LH secretion. To this end, we studied eight young (ages 19-30 yr) and seven older (ages 61-73 yr) men in an experimental paradigm comprising 1) inhibition of overnight LH secretion with a potent selective GnRH-receptor antagonist (ganirelix, 2 mg sc), 2) intravenous infusion of consecutive pulses of rh LH (50 IU every 2 h), and 3) chemiluminometric assay of LH and Te concentrations sampled every 10 min for 26 h. Statistical analyses revealed that 1) ganirelix suppressed LH and Te equally (> 75% median inhibition) in young and older men, 2) infused LH pulse profiles did not differ by age, and 3) successive intravenous pulses of rh LH increased concentrations of free Te (ng/dl) to 4.6 +/- 0.38 (young) and 2.1 +/- 0.14 (older; P < 0.001) and bioavailable Te (ng/dl) to 337 +/- 20 (young) and 209 +/- 16 (older; P = 0.002). Thus controlled pulsatile rh LH drive that emulates physiological LH pulses unmasks significant impairment of short-term Leydig cell steroidogenesis in aging men. Whether more prolonged pulsatile LH stimulation would normalize this inferred defect is unknown.  相似文献   

2.
Pulsatile and thus total testosterone (Te) secretion declines in older men, albeit for unknown reasons. Analytical models forecast that aging may reduce the capability of endogenous luteinizing hormone (LH) pulses to stimulate Leydig cell steroidogenesis. This notion has been difficult to test experimentally. The present study used graded doses of a selective gonadotropin releasing hormone (GnRH)-receptor antagonist to yield four distinct strata of pulsatile LH release in each of 18 healthy men ages 23-72 yr. Deconvolution analysis was applied to frequently sampled LH and Te concentration time series to quantitate pulsatile Te secretion over a 16-h interval. Log-linear regression was used to relate pulsatile LH secretion to attendant pulsatile Te secretion (LH-Te drive) across the four stepwise interventions in each subject. Linear regression of the 18 individual estimates of LH-Te feedforward dose-response slopes on age disclosed a strongly negative relationship (r = -0.721, P < 0.001). Accordingly, the present data support the thesis that aging in healthy men attenuates amplitude-dependent LH drive of burst-like Te secretion. The experimental strategy of graded suppression of neuroglandular outflow may have utility in estimating dose-response adaptations in other endocrine systems.  相似文献   

3.
Testosterone (T) secretion declines in the aging male, albeit for unknown reasons. From an ensemble perspective, repeated incremental signaling among gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), and T is required to maintain physiological androgen availability. Pattern-regularity statistics, such as univariate approximate entropy (ApEn) and bivariate cross-ApEn, provide specific and sensitive model-free measurement of altered multi-pathway control. The present study exploits partial muting of one pathway (GnRH drive) to appraise adaptive regulation of LH and T secretion in young and aging individuals. Analyses comprised 100 paired 18-h LH and T concentration time series obtained in 25 healthy men ages 20-72 yr each administered placebo and three graded doses of a specific GnRH-receptor antagonist. Graded blockade of GnRH drive increased the individual regularity of LH and T secretion and the synchrony of LH-T feedforward and T-LH feedback in the cohort as a whole (P<0.001 for each). However, age markedly attenuated ganirelix-induced enhancement of univariate T orderliness and bivariate LH-T feedback and T-LH feedback synchrony (P 相似文献   

4.
The salmon gonadotropin-releasing hormone (sGnRH) is considered to be involved in gonadal maturation via gonadotropin (GTH) secretion in salmonid fishes. However, there is no direct evidence for endogenous sGnRH-stimulated GTH secretion in salmonids. In this study, to clarify whether endogenous sGnRH stimulates GTH secretion, we examined the effects of the mammalian GnRH (mGnRH) antagonist [Ac-Delta(3)-Pro(1), 4FD-Phe(2), D-Trp(3,6)]-mGnRH on luteinizing hormone (LH) levels in 0-year-old masu salmon Oncorhynchus masou and sockeye salmon Oncorhynchus nerka. First, the effects of the GnRH antagonist on LH release were examined in 0-year-old precocious male masu salmon. GnRH antagonist treatment for 3 hr significantly inhibited an increase in plasma LH levels that was artificially induced by exogenous sGnRH administration, indicating that the GnRH antagonist is effective in inhibiting LH release from the pituitary. Subsequently, we examined the effect of the GnRH antagonist on LH synthesis in 0-year-old immature sockeye salmon that were pretreated with exogenous testosterone for 42 days to increase the pituitary LH contents; the testosterone treatment did not affect the plasma LH levels. GnRH antagonist treatment slightly but significantly inhibited an increase in the testosterone-stimulated pituitary LH content levels. However, no significant differences in the plasma LH levels were observed between the GnRH antagonist-treated and control groups. These results suggest that endogenous sGnRH is involved in LH secretion in salmonid fishes.  相似文献   

5.
The present study extends a recent composite model of in vivo interglandular signaling to assess the impact of age on 1) nonequilibrium exchange among diffusible and protein-bound testosterone (Te); 2) elimination of total and free Te; 3) basal and pulsatile Te secretion (sec); 4) the implicit feedforward function mediating luteinizing hormone (LH) concentration (con) drive of instantaneous Te sec; and 5) possible stochastic variability of the predicted LH con-Te sec dose-response linkage. To this end, we measured LH and Te con every 10 min for 24 h in healthy young (n = 13) and older men (n = 13). Statistical comparisons of analytic estimates revealed that elderly subjects manifest 1) reduced maximal burstlike LH-stimulated Te sec (impaired stimulus efficacy); 2) depressed half-maximally LH-stimulated Te sec (lower Leydig-cell responsivity); 3) decreased pulsatile and total Te sec; 4) elevated basal Te sec; 5) a prolonged half-life of total but not free Te con; and 6) delayed time evolution of LH and Te sec bursts. In contradistinction, age did not influence estimated LH-pulse potency (ED50), steroidogenic sensitivity (slope term), or stochastic variability of LH-Te coupling. On the basis of these data, we postulate that aging in the human male alters specific dose-response attributes linking LH con and Te sec and disrupts the time waveform of LH and Te sec bursts.  相似文献   

6.
Current evidence suggests that endogenous opioid peptides (EOPs) tonically inhibit secretion of luteinizing hormone (LH) by modulating the release of gonadotropin-releasing hormone (GnRH). Because of their apparent inhibitory actions, EOPs have been assumed to alter both pulse frequency and amplitude of LH in the rat; and it has been hypothesized that EOP pathways mediate the negative feedback actions of steroids on secretion of GnRH. In order to better delineate the role of EOPs in regulating secretion of LH in the male rat, we assessed the effects of a sustained blockade of opiate receptors by naloxone on pulsatile LH release in four groups: intact male rats, acutely castrated male rats implanted for 20 h with a 30-mm capsule made from Silastic and filled with testosterone, acutely castrated male rats implanted for 20 h with an osmotic minipump dispensing 10 mg morphine/24 h, and male rats castrated approximately 20 h before treatment with naloxone. We hypothesized that if EOPs tonically inhibited pulsatile LH secretion, a sustained blockade of opiate receptors should result in a sustained increase in LH release. We found that treatment with naloxone resulted in an immediate but transient increase in LH levels in intact males compared to controls treated with saline. Even though mean levels of LH increased from 0.15 +/- 0.04 to a high of 0.57 +/- 0.14 ng/ml, no significant difference was observed between the groups in either frequency or amplitude of LH pulses across the 4-h treatment period. The transient increase in LH did result in a 3- to 4-fold elevation in levels of plasma testosterone over baseline. This increase in testosterone appeared to correspond with the waning of the LH response to naloxone. The LH response to naloxone was eliminated in acutely castrated rats implanted with testosterone. Likewise, acutely castrated rats treated with morphine also failed to respond to naloxone with an increase in LH. These observations suggest that chronic morphine and chronic testosterone may act through the same mechanism to modulate secretion of LH, or once shut down, the GnRH pulse-generating system becomes refractory to stimulation by naloxone. In acutely castrated male rats, levels of LH were significantly increased above baseline throughout the period of naloxone treatment; this finding supports the hypothesis that the acute elevation in testosterone acting through mechanism independent of opioid is responsible for the transient response of LH to naloxone in the intact rat.  相似文献   

7.
This study examined the effect of 17 beta-estradiol (E2) on basal and luteinizing hormone (LH)-releasing hormone (LHRH)-stimulated gonadotropin secretion in 9 patients with Klinefelter's syndrome. Intramuscular injection of E2 (10 micrograms/kg/day during 5 days) induced a rapid decrease in follicle-stimulating hormone (FSH) and LH levels. The maximum suppression was observed on day 7 (D7) for FSH [median 9.7 mIU/ml (range 4.6-37.8) vs. 21.7 mIU/ml (range 12.2-56.9)] and on D2 for LH [median 13.6 mIU/ml (range 6.8-25.2) vs. 21.2 mIU/ml (range 13-54.7)]. E2 concentrations rose and reached their peak values on D3 [median 723 pmol/l (range 517-1,247.8) vs. 110.1 pmol/l (range 68.6-227.5) on D0]. These changes were followed by a subsequent rise in LH on D4 [36.7 mIU/ml (range 19.4-77.7)]. LH response to LHRH was higher during E2 treatment: median value of absolute peaks: 156.3 mIU/ml (range 56.7-188.6) on D4 vs. 64 mIU/ml (range 38.9-131) on DO. These results demonstrate the presence of a positive feedback in patients with Klinefelter's syndrome.  相似文献   

8.
Experiments were performed to study the responsiveness of the pituitary to gonadotropin-releasing hormone (GnRH) during the dynamic changes in gonadotropin secretion associated with the estrogen-induced luteinizing hormone (LH) surge in the ovariectomized (OVX) rhesus monkey. Silastic capsules filled with estradiol-17-beta were implanted subcutaneously in ovariectomized rhesus monkeys, resulting in an initial lowering of circulating LH and follicle-stimulating hormone (FSH) concentrations followed by an LH-FSH surge. GnRH was injected intravenously just before estrogen implantation, during the negative feedback response and during the rising, the peak, and the declining phases of the LH surge. The LH and FSH responses during the negative feedback phase were as large as those before estrogen treatment (control responses). During the rising phase of the LH surge, the acute response to GnRH injection did not differ significantly from the control response, but the responses 60 and 120 min after injection were somewhat increased. During the declining phase of the LH surge, the pituitary was not responsive to exogenous GnRH, although LH probably continued to be secreted at this time since the LH surge decreased more slowly than predicted by the normal rate of disappearance of LH in the monkey. We conclude that an increased duration of response to GnRH may be an important part of the mechanism by which estrogen induces the LH surge, but we do not see evidence of increased sensitivity of the pituitary to GnRH as an acute releasing factor at that time.  相似文献   

9.
A photoreactive derivative of the highly potent gonadotropin releasing hormone (GnRH) agonist, D-Lys6-GnRH(1-9)-ethylamide, was prepared by selective modification of the epsilon-amino group with 2-nitro-4-azidophenyl sulfenyl chloride (2,4-NAPS C1). The modified peptide [D-Lys(NAPS)]6-GnRH-(1-9)-ethylamide was found to be a full agonist of LH release from rat pituitary cells with a relative potency 23 compared to GnRH. Covalent attachment of the photoreactive analog to rat pituitary cells resulted in prolonged activation of LH secretion which could not be inhibited by a potent GnRH antagonist. Persistent stimulation of pituitary gonadotrophs caused by covalently bound hormone led to desensitization of the LH releasing mechanism.  相似文献   

10.
11.
To investigate the site of action of glucocorticoids in modulating secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) from pituitaries of male rats, we implanted intact male rats with 250-mg pellets of cortisol (F) or cholesterol (C). Four days later, we collected and enzymatically dispersed the pituitaries. After the dispersed pituitaries had been in culture for 2 days, we treated the cells with gonadotropin-releasing hormone (GnRH) (0-150 nM) and determined the concentrations of LH and FSH in the medium after 6 h of incubation. Cells from donor animals pretreated with F secreted 30-60% more LH approximately 75% more FSH than cells from donor animals pretreated with C. This increase occurred regardless of the presence of F or C in the incubation medium in vitro. The slopes and ED50s of the GnRH dose-response curves were not altered. These data show that glucocorticoids have stimulatory effects on both LH and FSH. The inhibitory effects observed in vivo must be exerted by some mechanism that is not carried over to the in vitro model, and perhaps involve sites of action in addition to the pituitary.  相似文献   

12.
In African catfish, two gonadotropin-releasing hormone (GnRH) peptides have been identified: chicken GnRH (cGnRH)-II and catfish GnRH (cfGnRH). The GnRH receptors on pituitary cells producing gonadotropic hormone signal through inositol phosphate (IP) elevation followed by increases in intracellular calcium concentration (?Ca(2+)(i)). In primary pituitary cell cultures of male African catfish, both cGnRH-II and cfGnRH dose dependently elevated IP accumulation, ?Ca(2+)(i), and the release of the luteinizing hormone (LH)-like gonadotropin. In all cases, cGnRH-II was more potent than cfGnRH. The GnRH-stimulated LH release was not associated with elevated cAMP levels, and forskolin-induced cAMP elevation had no effect on LH release. With the use of pituitary tissue fragments, however, cAMP was elevated by GnRH, and forskolin was able to stimulate LH secretion. Incubating these fragments with antibodies against cfGnRH abolished the forskolin-induced LH release but did not compromise the forskolin-induced cAMP elevation. This suggests that cfGnRH-containing nerve terminals are present in pituitary tissue fragments and release cfGnRH via cAMP signaling on GnRH stimulation, whereas the GnRH receptors on gonadotrophs use IP/?Ca(2+)(i) to stimulate the release of LH.  相似文献   

13.
ABSTRACT: When hormones during the ovulatory cycle are shown in phase plane graphs, reported FSH and estrogen values form a specific pattern that resembles the leaning "&" symbol, while LH and progesterone (Pg) values form a "boomerang" shape. Graphs in this paper were made using data reported by Stricker et al. [Clin Chem Lab Med 2006;44:883-887]. These patterns were used to construct a simplistic model of the ovulatory cycle without the conventional "positive feedback" phenomenon. The model is based on few well-established relations: - hypothalamic GnRH secretion is increased under estrogen exposure during two weeks that start before the ovulatory surge and lasts till lutheolysis. - the pituitary GnRH receptors are so prone to downregulation through ligand binding that this must be important for their function. - in several estrogen target tissue progesterone receptor (PgR) expression depends on previous estrogen binding to functional estrogen receptors (ER), while Pg binding to the expressed PgRs reduces both ER and PgR expression. Some key features of the presented model are here listed: - High GnRH secretion induced by the recovered estrogen exposure starts in the late follicular phase and lasts till lutheolysis. The LH and FSH surges start due to combination of accumulated pituitary GnRH receptors and increased GnRH secretion. The surges quickly end due to partial downregulation of the pituitary GnRH receptors (64% reduction of the follicular phase pituitary GnRH receptors is needed to explain the reported LH drop after the surge). A strong increase in the lutheal Pg blood level, despite modest decline in LH levels, is explained as delayed expression of pituitary PgRs. Postponed pituitary PgRs expression enforces a negative feedback loop between Pg levels and LH secretions not before the mid lutheal phase. - Lutheolysis is explained as a consequence of Pg binding to hypothalamic and pituitary PgRs that reduces local ER expression. When hypothalamic sensitivity to estrogen is diminished due to lack of local ERs, hypothalamus switches back to the low GnRH secretion rate, leading to low secretion of gonadotropins and to lutheolysis. During low GnRH secretion rates, previously downregulated pituitary GnRH receptors recover to normal levels and thus allow the next cycle.  相似文献   

14.
The role of diacylglycerol (DG) as a source of arachidonic acid during gonadotropin-releasing hormone (GnRH) stimulation of gonadotropin secretion was analyzed in primary cultures of rat anterior pituitary cells. An inhibitor of DG lipase (RHC 80267, RHC) caused dose-dependent blockade of GnRH-stimulated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion. The DG lipase inhibitor did not alter gonadotropin responses to arachidonic acid, and addition of arachidonic acid reversed its inhibition of GnRH-stimulated LH and FSH release. In [3H]arachidonic acid-prelabeled cells, incubation with RHC increased the accumulation of [3H]DG. These results suggest that DG lipase participates in GnRH action and that arachidonic acid mobilization from DG is involved in the mechanism of gonadotropin release. Gonadotropin responses to tetradecanoyl phorbol acetate and dioctanoyl glycerol were not altered by RHC, and the addition of these activators of protein kinase C (Ca2+- and phospholipid-dependent enzyme) did not prevent the inhibition of GnRH-induced gonadotropin release by RHC. Activation of phospholipase A2 by melittin increased LH and FSH secretion, whereas blockade of this enzyme by quinacrine reduced GnRH-stimulated hormone release. However, RHC did not diminish the gonadotropin response to melittin. The inhibitory actions of RHC and quinacrine were additive and were reversed by concomitant treatment with arachidonic acid. Ionomycin also increased LH and FSH release, and the gonadotropin responses to the ionophore were unaltered by RHC but were reduced by quinacrine. Incubation of cells in Ca2+-depleted (+/- [ethylenebis(oxyethylenenitrilo)]tetraacetic acid) medium reduced but did not abolish the LH and FSH releasing activity of GnRH. Treatment with RHC also reduced the gonadotropin responses to GnRH under Ca2+-depleted conditions. These observations indicate that RHC inhibition of GnRH action is not due to nonspecific actions on Ca2+ entry, protein kinase C activation and actions, nor phospholipase A2 enzyme activity. The results of this study provide further evidence for an extracellular Ca2+-independent mechanism of GnRH action, and suggest that GnRH causes mobilization of arachidonic acid by two distinct lipases, namely, phospholipase A2 and DG lipase, during stimulation of gonadotropin secretion.  相似文献   

15.
The timed secretion of the luteinizing hormone (LH) and follicle stimulating hormone (FSH) from pituitary gonadotrophs during the estrous cycle is crucial for normal reproductive functioning. The release of LH and FSH is stimulated by gonadotropin releasing hormone (GnRH) secreted by hypothalamic GnRH neurons. It is controlled by the frequency of the GnRH signal that varies during the estrous cycle. Curiously, the secretion of LH and FSH is differentially regulated by the frequency of GnRH pulses. LH secretion increases as the frequency increases within a physiological range, and FSH secretion shows a biphasic response, with a peak at a lower frequency. There is considerable experimental evidence that one key factor in these differential responses is the autocrine/paracrine actions of the pituitary polypeptides activin and follistatin. Based on these data, we develop a mathematical model that incorporates the dynamics of these polypeptides. We show that a model that incorporates the actions of activin and follistatin is sufficient to generate the differential responses of LH and FSH secretion to changes in the frequency of GnRH pulses. In addition, it shows that the actions of these polypeptides, along with the ovarian polypeptide inhibin and the estrogen-mediated variations in the frequency of GnRH pulses, are sufficient to account for the time courses of LH and FSH plasma levels during the rat estrous cycle. That is, a single peak of LH on the afternoon of proestrus and a double peak of FSH on proestrus and early estrus. We also use the model to identify which regulation pathways are indispensable for the differential regulation of LH and FSH and their time courses during the estrous cycle. We conclude that the actions of activin, inhibin, and follistatin are consistent with LH/FSH secretion patterns, and likely complement other factors in the production of the characteristic secretion patterns in female rats.  相似文献   

16.
Regulation of the human menstrual cycle is a frequency dependent process controlled in part by the pulsatile release of gonadotropin releasing hormone (GnRH) from the hypothalamus. The binding of GnRH to gonadotroph cells in the pituitary stimulates inositol 1,4,5-trisphosphate (IP3) mediated release of calcium from the endoplasmic reticulum, resulting in calcium oscillations and the secretion of luteinizing hormone (LH). A sudden increase in serum LH concentrations known as the LH surge triggers ovulation. Here we model the intracellular calcium dynamics of gonadotroph cells by adapting the model of Li and Rinzel (J. Theor. Biol. 166 (1994) 461) to include the desensitization of IP3 receptors to IP3. Allowing the resensitization rate of these receptors to vary over the course of the cycle suffices to explain the LH surge in both the normal menstrual cycle, and in the treatment of Kallmann's syndrome (a condition where endogenous production of GnRH is absent).  相似文献   

17.
The gonadotrope is a complex cell that expresses receptors for gonadotropin releasing hormone (GnRH) and estrogen. It has synthetic machinery for the production of 3 gonadotropin subunits which are assembled into two gonadotropins, luteinising hormone (LH) and follicle stimulating hormone (FSH). The production and secretion of LH and FSH are differentially regulated by GnRH and estrogen. Patterns of secretion of LH are dictated by the pulsatile release of GnRH from the median eminence as well as the feedback effects of estrogen. The means by which estrogen plays such an important role in the regulation of LH and FSH is reviewed in this chapter, with emphasis on work that has been done in the sheep. Estrogen regulates the second messenger systems in the gonadotrope as well as the number of GnRH receptors and the function of ion channels in the plasma membrane. Estrogen also regulates gene expression in these cells. Additionally, GnRH appears to regulate the level of estrogen receptor in the ovine gonadotrope, so there is substantial cross-talk between the signalling pathways for GnRH and estrogen. No clear picture has emerged as to how estrogen exerts a positive feedback effect on the gonadotrope and it is suggested that this might be forthcoming from more definitive studies on the way that estrogen regulates the second messenger systems and the trafficking of secretory vesicles.  相似文献   

18.
Photoreactive derivatives of GnRH and its analogues were prepared by incorporation of the 2-nitro-4(5)-azidophenylsulfenyl [2,4(5)-NAPS] group into amino acid residues at positions 1, 3, 6, or 8 of the decapeptide sequence. The modification of Trp3 by the 2,4-NAPS group led to a complete loss of the luteinizing hormone (LH) releasing as well as LH-release-inhibiting activity of the peptide. The [D-Lys(2,4-NAPS)]6 analogue was a very potent agonist that, after covalent attachment by photoaffinity labeling, caused prolonged LH secretion at a submaximal rate. [Orn(2,4-NAPS)]8-GnRH, a full agonist with a relative potency of 7% of GnRH, after photoaffinity labeling caused prolonged maximal LH release from cultured pituitary cells. In contrast, [Orn(2,5-NAPS)]8-GnRH, although being equipotent with the 2,4-NAPS isomer in terms of LH releasing ability, was unable to cause prolonged LH release after photoaffinity labeling. Thus, [Orn(2,4-NAPS)]8-GnRH is a very effective photolabeling ligand of the functionally significant pituitary GnRH receptor. Based on this compound, a pituitary peptidase resistant derivative, D-Phe6,[Orn(2,4-NAPS)]8-GnRH-(1-9)-ethylamide, was synthesized. This derivative showed high-affinity binding to pituitary membranes with a Kd comparable to those of other GnRH analogues. A radioiodinated form of this peptide was used for pituitary GnRH-receptor labeling. This derivative labeled 59- and 57-kDa proteins in rat and 58- and 56-kDa proteins in bovine pituitary membrane preparations, respectively. This peptide also labeled pituitary GnRH receptors in the solubilized state and therefore appears to be a suitable ligand for the isolation and further characterization of the receptor.  相似文献   

19.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

20.
The effects of exogenous gonadal steroids, testosterone (T), and 17beta-estradiol (E(2)) upon the hypothalamo-pituitary-gonadal axis were reported to be different between prepubertal and adult Siberian hamsters. Utilizing an in vitro static culture system, we investigated if age-related differences in steroid responsiveness occurs at the pituitary. Prepubertal (20 days old) or adult (140 days old) male Siberian hamsters were implanted with 1 mm silastic capsules containing undiluted T, E(2) or cholesterol (Ch, control). After 15 days, pituitaries were removed, incubated in vitro, and subjected to the following treatments: two baseline measurements, one challenge with 10ng/ml of D-Lys(6)-gonadotropin-releasing hormone (GnRH), and three post-challenge washes. Fractions were collected every 30 minutes and measured for follicle-stimulating hormone (FSH) and luteinizing hormone (LH). T and E(2 )reduced basal secretion of LH and FSH in juveniles but not adults. In juveniles, E(2) increased GnRH-induced FSH and LH secretion, while T augmented GnRH-induced FSH secretion but attenuated GnRH-induced LH secretion. Steroid treatment had no effect on GnRH-stimulated LH or FSH release in adults. The only effect of steroid hormones upon adult pituitaries was the more rapid return of gonadotropin secretion to baseline levels following a GnRH challenge. These data suggest both basal and GnRH-induced gonadotropin secretion are more sensitive to steroid treatment in juvenile hamsters than adults. Further, differential steroidal regulation of FSH and LH at the level of the pituitary in juveniles might be a mechanism for the change in sensitivity to the negative effects of steroid hormones that occurs during the pubertal transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号