首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Tachykinin neurokinin 3 receptor (NK3R) signaling has a broad role in vasopressin (VP) and oxytocin (OT) release. Hydralazine (HDZ)-induced hypotension activates NK3R expressed by magnocellular neurons, increases plasma VP and OT levels, and induces c-Fos expression in VP and OT neurons. Intraventricular pretreatment with the specific NK3R antagonist, SB-222200, eliminates the HDZ-stimulated VP and OT release. NK3R are distributed in the central pathways conveying hypotension information to the magnocellular neurons, and the NK3R antagonist could act anywhere in the pathways. Alternatively, the antagonist could act at the NK3R expressed by the magnocellular neurons. To determine whether blockade of NK3R on magnocellular neurons impairs VP and OT release to HDZ, rats were pretreated with a unilateral PVN injection of 0.15 M NaCl or SB-222200 prior to an intravenous injection of 0.15 M NaCl or HDZ. Blood samples were taken, and brains were processed for VP/c-Fos and OT/c-Fos immunohistochemistry. Intravenous injection of 0.15 M NaCl did not alter plasma hormone levels, and little c-Fos immunoreactivity was present in the PVN. Conversely, intravenous injection of HDZ increased plasma VP and OT levels and c-Fos expression in VP and OT magnocellular neurons. Intra-PVN injection of SB-222200 prior to an intravenous injection of HDZ significantly decreased c-Fos expression in both VP and OT neurons by approximately 70% and attenuated plasma VP and OT levels by 33% and 35%, respectively. Therefore, NK3R signaling in magnocellular neurons has a critical role for the release of VP and OT in response to hypotension.  相似文献   

2.
Central angiotensin II (ANG II) regulates thirst. Because thromboxane A2-prostaglandin H2 (TP) receptors are expressed in the brain and mediate some of the effects of ANG II in the vasculature, we investigated the hypothesis that TP receptors mediate the drinking response to intracerebroventricular (icv) injections of ANG II. Pretreatment with the specific TP-receptor antagonist ifetroban (Ifet) decreased water intake with 50 ng/kg icv ANG II (ANG II + Veh, 7.2 +/- 0.7 ml vs. ANG II + Ifet, 2.8 +/- 0.8 ml; n = 5 rats; P < 0.001) but had no effect on water intake induced by hypertonic saline (NaCl + Veh, 8.4 +/- 1.1 ml vs. NaCl + Ifet, 8.9 +/- 1.8 ml; n = 5 rats; P = not significant). Administration of 0.6 microg/kg icv of the TP-receptor agonist U-46,619 did not induce drinking when given alone but did increase the dipsogenic response to a near-threshold dose of 15 ng/kg icv ANG II (ANG II + Veh, 1.1 +/- 0.7 vs. ANG II + U-46,619, 4.5 +/- 0.9 ml; n = 5 rats; P < 0.01). We conclude that central TP receptors contribute to the dipsogenic response to ANG II.  相似文献   

3.
Aversive properties of lithium chloride (LiCl) are mediated via pathways comprising neurons of the nucleus of the solitary tract (NTS) and oxytocin (OT) and vasopressin (VP) cells in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei. Because opioids act on brain regions that mediate effects of LiCl, we evaluated whether administration of opioids shortly before LiCl in rats influences 1) development of conditioned taste aversion (CTA) and 2) activation of NTS neurons and OT/VP cells. Neuronal activation was assessed by applying c-Fos immunohistochemical staining. Three opioids were used: morphine (MOR), a mu-agonist, butorphanol tartrate (BT), a mixed mu/kappa-agonist, and nociceptin/orphanin FQ (N/OFQ), which binds to an ORL1 receptor. BT and N/OFQ completely blocked acquisition of CTA. MOR alleviated but did not eliminate the aversive effects. Each of the opioids decreased LiCl-induced activation of NTS neurons as well as OT and VP cells in the PVN and SON. We conclude that opioids antagonize aversive properties of LiCl, presumably by suppressing activation of pathways that encompass OT and VP cells and NTS neurons.  相似文献   

4.
Prior studies utilizing neurons cultured from the hypothalamus and brain stem of newborn rats have demonstrated that ANG II-induced modulation of neuronal firing involves activation of both protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase II (CaMKII). The present studies were performed to determine whether these signaling molecules are also involved in physiological responses elicited by ANG II in the brain in vivo. Central injection of ANG II (10 ng/2 microl) into the lateral cerebroventricle (icv) of Sprague-Dawley rats increased water intake in a time-dependent manner. This ANG II-mediated dipsogenic response was attenuated by central injection of the PKC inhibitors chelerythrine chloride (0.5-50 microM, 2 microl) and Go-6976 (2.3 nM, 2 microl) and by the CaMKII inhibitor KN-93 (10 microM, 2 microl). Conversely, icv injection of chelerythrine chloride (50 microM, 2 microl) and KN-93 (10 microM, 2 microl) had no effect on the dipsogenic response elicited by central injection of carbachol (200 ng/2 microl). Furthermore, injection of ANG II (10 ng/2 microl) icv increases the activity of both PKC-alpha and CaMKII in rat septum and hypothalamus. These data suggest that signaling molecules involved in ANG II-induced responses in vitro are also relevant in physiological responses elicited by ANG II in the whole animal model.  相似文献   

5.
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.  相似文献   

6.
《Hormones and behavior》2010,57(5):532-538
Glucocorticoids have major effects on food intake, as demonstrated by the decrease of food intake following adrenalectomy (ADX); however, the mechanisms leading to these effects are not well understood. Oxytocin (OT) has been shown to reduce food intake. We evaluated the effects of glucocorticoids on OT neuron activation and OT mRNA expression in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei induced by feeding. We also evaluated the effect of pretreatment with OT-receptor antagonist ([d(CH2)5,Tyr(Me)2,Orn8]-vasotocin, OVT) on food intake in ADX rats. Fos/OT neurons in the posterior parvocellular subdivision of the PVN were increased after refeeding, with a higher number in the ADX group, compared with sham and ADX+corticosterone (B) groups, with no difference in the medial parvocellular and magnocellular subdivisions of the PVN. ADX increased OT mRNA expression in the PVN both in fasting and refeeding condition, compared with sham and ADX+B groups. In the SON, refeeding increased the number of Fos/OT neurons, with a higher number in the ADX+B group. In fasted condition, OT mRNA expression in the SON was increased in ADX and ADX+B, compared with sham group. Pretreatment with OVT reversed the ADX-induced hypophagia, with no difference between sham and ADX+B animals. The present results show that glucocorticoid withdrawal induces a higher activation of PVN OT neurons in response to feeding, and an increase of OT mRNA expression in the PVN and OT-receptor antagonist reverses the anorexigenic effect induced by ADX. These data indicate that PVN OT neurons might mediate the hypophagic effect induced by adrenalectomy.  相似文献   

7.
Summary The effects of intracerebroventricular (icv) injections of angiotensin II (ANG II) on water intake, blood pressure, heart rate, and plasma arginine-vasopressin (AVP) concentration were studied in chronically instrumented adult male Syrian golden hamsters (Mesocricetus auratus). Furthermore, the effects of pharmacological ganglionic blockade, and of vascular AVP receptor blockade, on central ANG II-induced cardiovascular responses were investigated. ANG II (1, 10, and 100 ng, icv) elicited dose-dependent increases in water intake and arterial blood pressure. Heart rate showed a biphasic response with a short initial non dose-dependent tachycardic and a subsequent longer lasting bradycardic phase. Plasma AVP concentration was increased two and a half fold with 100 ng ANG II icv. Both ganglionic blockade and vascular AVP receptor blockade significantly attenuated the central ANG II-induced pressor response. The tachycardic phase of the heart rate response was abolished by ganglionic blockade and the bradycardic phase was significantly diminished by AVP receptor blockade. The results support the hypothesis that brain ANG II may participate in the central control of body fluid volume and in central cardiovascular regulation in conscious hamsters.  相似文献   

8.
Mineralocorticoids play a predominant role in development of salt appetite and hypertension. Since vasoactive peptides could mediate the central effects of mineralocorticoids, we evaluated changes of immunoreactive (IR) arginine vasopressin (AVP) in the paraventricular (PVN) and supraoptic (SON) hypothalamic nucleus during DOCA-induced salt appetite. In one model, rats having free access to water and 3% NaCl during 9 (prehypertensive stage) or 21 days (hypertensive stage) received DOCA (s.c., 10 mg/rat/in alternate days). A decrease in the IR cell area, number of IR cells and staining intensity was obtained in magnocellular PVN of rats treated during 9 days. After 21 days IR cell area and number of cells in the PVN also decreased, but staining intensity of remaining cells was normal. The same parameters were unchanged in the SON. In another model, animals treated with DOCA during 9 days had only access to 3% NaCl or water. The IR cell area in PVN and SON significantly increased in mineralocorticoid-treated and control animals, both drinking 3% NaCl. Staining intensity (PVN and SON) and number of IR cells (PVN) also augmented in DOCA-treated animals drinking salt respect of a group drinking water. Plasma AVP in rats treated with DOCA and offered salt and water, exhibited a 2-2.5 fold increase at the time of salt appetite induction. Plasma AVP was substantially higher in rats drinking salt only, while the highest levels were present in salt-drinking DOCA-treated rats. Thus, peptide depletion in the PVN may be due to increased release, because reduced levels of hypothalamic and posterior pituitary AVP were measured in this model. In rats drinking salt only the substantial increase of IR AVP in the PVN and SON, may be due to dehydration and hyperosmosis. Because DOCA-salt treated rats showed higher AVP levels in the PVN compared to untreated rats drinking salt only, it is possible that DOCA sensitized PVN cells to increase AVP production. The results suggest the vasopressinergic system could mediate some central functions of mineralocorticoids.  相似文献   

9.
10.
The epithelial Na? channels (ENaCs) are present in kidney and contribute to Na? and water homeostasis. All three ENaC subunits (α, β, and γ) were demonstrated in the cardiovascular regulatory centers of the rat brain, including the magnocellular neurons (MNCs) in the supraoptic nucleus (SON) and the paraventricular nucleus (PVN). However, the functional significance of ENaCs in vasopressin (VP) and oxytocin (OT) synthesizing MNCs is completely unknown. In this study, we show with immunocytochemical double-labeling that the α-ENaC is colocalized with either VP or OT in MNCs in the SON and PVN. In addition, parvocellular neurons in the dorsal, ventrolateral, and posterior subregions of the PVN (not immunoreactive to VP or OT) are also immunoreactive for α-ENaC. In contrast, immunoreactivity to β- and γ-ENaC is colocalized with VP alone within the MNCs. Furthermore, immunoreactivity for a known target for ENaC expression, the mineralcorticoid receptor (MR), is colocalized with both VP and OT in MNCs. Using single-cell RT-PCR, we detected mRNA for all three ENaC subunits and MR in cDNA libraries derived from single MNCs. In whole cell voltage clamp recordings, application of the ENaC blocker benzamil reversibly reduced a steady-state inward current and decreased cell membrane conductance approximately twofold. Finally, benzamil caused membrane hyperpolarization in a majority of VP and about one-half of OT neurons in both spontaneously firing and quiet cells. These results strongly suggest the presence of functional ENaCs that may affect the firing patterns of MNCs, which ultimately control the secretion of VP and OT.  相似文献   

11.
Although numerous data showing severe morphological impairment of magnocellular and parvocellular hypothalamic neurons due to chronic alcoholic consumption have been gathered from animal experiments, only one study (Harding et al., 1996) was performed on POST MORTEM human brain. This study showed a reduction in the number of vasopressin (VP)-immunoreactive neurons in the supraoptic (SON) and paraventricular (PVN) nuclei, but did not provide any data regarding the effect of chronic alcohol intake on human parvocellular neurons. In order to assess whether the changes observed in the animal model also occur in humans and provide a structural basis for the results of clinical tests, we performed immunohistochemical and morphometric analysis of magnocellular (VP and oxytocin, OT) and parvocellular (corticotropin-releasing hormone, CRH) neurons in post-mortem brains of patients afflicted with chronic alcoholic disease. We analyzed 26-male alcoholics and 22 age-matched controls divided into two age groups--"young" (< 40 yr) and "old" (> 40 yr). Hypothalamic sections were stained for OT, VP, and CRH. The analysis revealed: 1) decrease in VP-immunoreactivity in the SON and PVN as well as OT-immunoreactivity in the SON in alcoholic patients; 2) increase in OT-immunoreactivity in the PVN; 3) increase in CRH-immunoreactivity in parvocellular neurons in the PVN. Furthermore, the proportion of cells containing CRH and VP was increased in alcoholics. These findings indicate that chronic alcohol consumption does indeed impair the morphology of magnocellular neurons. The enhancement of CRH-immunoreactivity and increased co-production of CRH and VP in parvocellular neurons may be due to a decline in glucocorticoid production, implied by the hypoplasic impairment of adrenal cortex we observed in alcoholics during the course of this study.  相似文献   

12.
Ji YP  Mei J 《生理学报》2000,52(1):29-33
在乌拉坦麻醉的成年SD大鼠上,用玻璃微电极细胞外记录的方法,观察了脑室内注射一氧化氮供体及一氧化氮合酶抑制剂对室旁核大细胞自发电活动的作用。结果发现:脑室内注射一氧化氮供体硝普钠对下丘脑室旁核中的加压素神经元产生剂量依赖性抑制作用;脑室内注射一氧化氮合酶抑制剂对加压素神经元也产生抑制作用。上述两种药物对催产素神经元均无作用。这些结果提示:一氧化氮可能在调节加压素和催产素神经元活动中起着不同的作用。  相似文献   

13.
In adults, hyperosmolality stimulates central osmoreceptors, resulting in arginine vasopressin (AVP) secretion. Near-term fetal sheep have also developed mechanisms to respond to intravascular hypertonicity with stimulation of in utero AVP release. However, prior studies demonstrating fetal AVP secretion have utilized plasma tonicity changes greater than those required for adult osmotically induced AVP stimulation. We sought to examine near-term fetal plasma osmolality threshold and sensitivity for stimulation of AVP secretion and to correlate plasma hormone levels with central neuronal responsiveness. Chronically instrumented ovine fetuses (130 +/- 2 days) and maternal ewes simultaneously received either isotonic or hypertonic intravascular NaCl infusions. Maternal and fetal plasma AVP and angiotensin II (ANG II) levels were examined at progressively increasing levels of plasma hypertonicity. Intravenous hypertonic NaCl gradually elevated plasma osmolality and sodium levels. Both maternal and fetal plasma AVP increased during hypertonicity, whereas ANG II levels were not changed. Maternal AVP levels significantly increased with a 3% increase in plasma osmolality, whereas fetal plasma AVP significantly increased only at higher plasma osmolality levels (over 6%). Thus the slope of the regression of AVP vs. osmolality was greater for ewes than for fetuses (0.232 vs. 0.064), despite similar maternal and fetal plasma osmolality thresholds for AVP secretion (302 vs. 304 mosmol/kg). Hyperosmolality induced Fos immunoreactivity (FOS-ir) in the circumventricular organs of the fetal brain. FOS-ir was also demonstrated in the fetal supraoptic and paraventricular nuclei (SON and PVN), and double labeling demonstrated that AVP-containing neurons in the SON and PVN expressed Fos in response to intravenous NaCl. These results demonstrate that, in the ovine fetus at 130 days of gestation, neuroendocrine responses to cellular dehydration are functional, although they evidence a relatively reduced sensitivity for AVP secretion compared with the adult.  相似文献   

14.
The objective was to determine the central nervous system (CNS) responses to dehydration (c-Fos and vasopressin mRNA) in mice lacking the ANG AT(1a) receptor [ANG AT(1a) knockout (KO)]. Control and AT(1a) KO mice were dehydrated for 24 or 48 h. Baseline plasma vasopressin (VP) was not different between the groups; however, the response to dehydration was attenuated in AT(1a) KO (24 +/- 11 vs. 10.6 +/- 2.7 pg/ml). Dehydration produced similar increases in plasma osmolality and depletion of posterior pituitary VP content. Neuronal activation was observed as increases in c-Fos protein and VP mRNA. The supraoptic responses were not different between groups. In the paraventricular nucleus (PVN), c-Fos-positive neurons (57.4 +/- 10.7 vs. 98.4 +/- 7.4 c-Fos cells/PVN, control vs. AT(1a) KO) and VP mRNA levels (1.0 +/- 0.1 vs. 1.4 +/- 0.1 microCi, control vs. AT(1a) KO) were increased with greater responses in AT(1a) KO. A comparison of 1- to 2-day water deprivation showed that plasma VP, brain c-Fos, and VP mRNA returned toward control on day 2, although plasma osmolality remained high. Data demonstrate that AT(1a) KO mice show a dichotomous response to dehydration, reduced for plasma VP and enhanced for PVN c-Fos protein and VP mRNA. The results illustrate the importance of ANG AT(1a) receptors in the regulation of osmotic and endocrine balance.  相似文献   

15.
Concentrations of vasopressin (VP) precursor and oxytocin (OT) precursor mRNA were measured in magnocellular cell groups of the rat hypothalamus by newly developed solution hybridization assays. The assays employed single-stranded 35S-labeled VP-specific and OT-specific DNA probes that were prepared by primer extension on recombinant M13 DNA templates. Solution hybridization assays were standardized by known amounts of cloned DNA. The detection limit was less than 1 pg DNA equivalent of the respective mRNA. In total RNA preparations of microdissected supraoptic nucleus (SON) mean (+/- SEM) basal levels of 1.37 +/- 0.18 pg VP mRNA and 1.95 +/- 0.14 pg OT mRNA were measured. RNA of the microdissected paraventricular nucleus (PVN) contained 0.35 +/- 0.02 pg VP mRNA and 1.77 +/- 0.15 pg OT mRNA. Elevation of plasma osmolality induced by drinking of 2% saline for 25 days resulted in a 1.85-fold increase in VP mRNA levels of the SON and a 1.6-fold increase in VP mRNA levels of the PVN. The solution hybridization assays are suitable tools to study the regulation of VP and OT mRNAs in magnocellular neurons of the brain.  相似文献   

16.
The role of the noradrenergic nucleus Locus Coeruleus (LC) on hemorrhage-induced vasopressin (AVP) and oxytocin (OT) secretion was examined. Rats with LC lesion were submitted to three 1-min hemorrhage sessions at 5-min intervals; 15% of the total blood volume was withdrawn in each session. OT and AVP were measured in plasma, paraventricular (PVN) and supraoptic (SON) nuclei and in posterior pituitary (PP). LC Lesion did not affect basal plasma AVP or OT levels, but partly blocked the increase in plasma AVP and OT induced by hemorrhage. Hemorrhage produced decreases in content of AVP and OT in the PVN and SON and increased levels in the PP. These responses were attenuated in the lesioned group, but only in the PVN and PP. Data suggest a stimulatory role of the inputs from LC to PVN neurons on hemorrhage-induced OT and AVP secretion and that, this pathway is critical in the hypo-volemic neuroendocrine reflex.Special Issue Dedicated to Miklós Palkovits.  相似文献   

17.
These studies examined the receptors involved in angiotensin II (Ang II) stimulated secretion of systemic oxytocin (OT) and the role of this peptide in release of OT during suckling. Plasma OT concentrations were measured following intracerebroventricular (icv) injection of vehicle, Ang II, or Ang II following pretreatment with a selective AT1 (Losartan) or AT2 (PD 123319) receptor antagonist. Furthermore, we measured Ang II-induced OT release during central alpha-adrenergic receptor blockade (phentolamine). Finally, plasma OT concentrations before and during suckling were evaluated following central administration of Ang II receptor antagonists. The increase in systemic OT following central Ang II was abolished by AT1 receptor blockade and inhibited by the AT2 receptor antagonist. Furthermore, pretreatment with phentolamine significantly diminished systemic OT release in response to icv Ang II. Finally, central Ang II receptor blockade did not alter the increase in circulating OT during suckling. These data demonstrate that Ang II evoked OT release is mediated through activation of both AT1 and AT2 receptors and suggest that a component of Ang II-induced OT stimulation is due to norepinephrine release. Furthermore, central angiotensin systems do not have a direct role in stimulating OT release during suckling.  相似文献   

18.
Estrogen receptors are located in important brain areas that integrate cardiovascular and hydroelectrolytic responses, including the subfornical organ (SFO) and supraoptic (SON) and paraventricular (PVN) nuclei. The aim of this study was to evaluate the influence of estradiol on cardiovascular and neuroendocrine changes induced by hemorrhagic shock in ovariectomized rats. Female Wistar rats (220-280 g) were ovariectomized and treated for 7 days with vehicle or estradiol cypionate (EC, 10 or 40 μg/kg, sc). On the 8th day, animals were subjected to hemorrhage (1.5 ml/100 g for 1 min). Hemorrhage induced acute hypotension and bradycardia in the ovariectomized-oil group, but EC treatment inhibited these responses. We observed increases in plasma angiotensin II concentrations and decreases in plasma atrial natriuretic peptide levels after hemorrhage; EC treatment produced no effects on these responses. There were also increases in plasma vasopressin (AVP), oxytocin (OT), and prolactin levels after the induction of hemorrhage in all groups, and these responses were potentiated by EC administration. SFO neurons and parvocellular and magnocellular AVP and OT neurons in the PVN and SON were activated by hemorrhagic shock. EC treatment enhanced the activation of SFO neurons and AVP and OT magnocellular neurons in the PVN and SON and AVP neurons in the medial parvocellular region of the PVN. These results suggest that estradiol modulates the cardiovascular responses induced by hemorrhage, and this effect is likely mediated by an enhancement of AVP and OT neuron activity in the SON and PVN.  相似文献   

19.
Rats with chronic nucleus of the solitary tract lesions (NTS-X) drink water and release vasopressin (VP) in response to reduced blood volume despite an absence of neural signals from cardiac and arterial baroreceptors. The present study determined whether rats with NTS-X have a greater sensitivity to circulating ANG II, which may contribute to the drinking and VP responses to hypovolemia. In conscious control rats and rats with NTS-X, ANG II was infused intravenously for 1 h at 10, 100, or 250 ng. kg(-1). min(-1). At the two higher doses, ANG II stimulated more water intake with a shorter latency to drink in rats with NTS-X than in control rats. In contrast, infusion of ANG II produced comparable increases in plasma VP in the two groups. At the two higher doses, ANG II produced an enhanced increase in arterial pressure (AP) in rats with NTS-X, and the bradycardia seen in control rats was reversed to a tachycardia. Infusion of hypertonic saline, which did not alter AP or heart rate, produced comparable drinking and VP release in the two groups. These results demonstrate that chronic NTS-X increases the dipsogenic response of rats to systemic ANG II but has no effect on ANG II-induced VP release or the osmotic stimulation of these responses.  相似文献   

20.
Peptide histidine isoleucine (PHI) and VIP are derived from the same precursor. While central VIP decreases food intake, potential effects of PHI on feeding have not been studied. In the current study, we found that PHI administered intracerebroventricularly (ICV) or into the hypothalamic paraventricular nucleus (PVN) or central nucleus of the amygdala (CeA) decreased food consumption in overnight-deprived rats. The magnitude of an anorexigenic response to PHI differed depending on the injection route: ICV-infused peptide evoked the most potent effect. We determined that that only PVN- and CeA-injected PHI did not have aversive consequences. In addition, we infused anorexigenic doses of PHI via the same routes and assessed Fos immunoreactivity of PVN oxytocin (OT) and vasopressin (VP) neurons using double immunohistochemistry. OT and VP are thought to promote feeding termination. PHI increased the percentage of Fos-positive OT neurons regardless of the injection route. PVN- and ICV-infused PHI induced activation of VP cells. We conclude that central PHI has an inhibitory influence on food intake in rats. The PVN, with OT and VP neurons, and CeA may be involved in the mediation of anorexigenic effects of PHI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号