首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Exposure to microgravity in humans causes cardiovascular deconditioning affecting blood pressure, heart rate and vascular responsiveness. This study investigated cardiac output, arterial blood pressure and regional blood flows [radioactive microspheres: 57Co, 15.5 (SEM 0.1) μm in diameter] in conscious and freely moving rats subjected to 14 days of simulated microgravity (head-down suspension, HDS) in male Wistar rats: control (horizontally attached, n = 7), suspended for 14 days (n = 8) and suspended/allowed to recover for 10 min (R10min, n = 5) or 24 h (n = 9). Compared to the control group, 14 days of HDS resulted in reduced total peripheral resistance (37%); an increased cardiac index (65%) was associated with no significant change in the mean arterial pressure . There were elevated brain (63%), visceral (>20%), hindlimb (>80%) and forelimb (>215%) muscle blood flows. In the R10min group, the decreased (18%) and the regional blood flows returned to control values. Within 24 h the as well as cardiac index and total peripheral resistance were restored. In conclusion, 14 days of HDS engendered local circulatory changes resulting in transient blood pressure instability during recovery. Accepted: 26 March 1998  相似文献   

4.
5.
The aim of the study was to evaluate whether a selective increase in portal vein blood glucose concentration can affect pancreatic islet blood flow. Anesthetized rats were infused (0.1 ml/min for 3 min) directly into the portal vein with saline, glucose, or 3-O-methylglucose. The infused dose of glucose (1 mg. kg body wt(-1). min(-1)) was chosen so that the systemic blood glucose concentration was unaffected. Intraportal infusion of D-glucose increased insulin release and islet blood flow; the osmotic control substance 3-O-methylglucose had no such effect. A bilateral vagotomy performed 20 min before the infusions potentiated the islet blood flow response and also induced an increase in whole pancreatic blood flow, whereas the insulin response was abolished. Administration of atropine to vagotomized animals did not change the blood flow responses to intraportal glucose infusions. When the vagotomy was combined with a denervation of the hepatic artery, there was no stimulation of islet blood flow or insulin release after intraportal glucose infusion. We conclude that a selective increase in portal vein blood glucose concentration may participate in the islet blood flow increase in response to hyperglycemia. This effect is probably mediated via periarterial nerves and not through the vagus nerve. Furthermore, this blood flow increase can be dissociated from changes in insulin release.  相似文献   

6.
The aim of the study was to evaluate effects of cardiac natriuretic peptides on splanchnic circulation, especially to the pancreatic islets. Pentobarbital-anesthetized rats were infused intravenously (0.01 ml/min for 20 min) with saline, atrial natriuretic peptide (ANP; 0.25 or 0.5 microg/kg BW/min), brain natriuretic peptide (BNP; 0.5 microg/kg BW/min) or C-type natriuretic peptide (CNP; 0.5 or 2.0 microg/kg BW/min). Splanchnic blood perfusion was then measured with a microsphere technique. Mean arterial blood pressure was decreased by ANP and BNP, but not by CNP. The animals given the highest dose of ANP became markedly hypoglycemic, whilst no such effects were seen in any of the other groups of animals. Total pancreatic blood flow was decreased by the highest dose of CNP, whereas no change was seen after administration of the other peptides. Islet blood flow was increased by the highest dose of ANP. Neither BNP nor CNP affected islet blood flow. None of the natriuretic peptides influenced duodenal, colonic or arterial hepatic blood flow. It is concluded that cardiac natriuretic peptides exert only minor effects on splanchnic blood perfusion in anesthetized rats. However, islet blood perfusion may be influenced by ANP.  相似文献   

7.
8.
9.
10.
11.
12.
To determine whether renal blood flow is reduced or redistributed during exercise, we measured total renal flow (TRF) and intrarenal flow distribution (IRFD) in nine dogs. They ran on a motor-driven treadmill at 3-8 mph at grades of 8-15% for an average of 35 min. We measured aortic pressure, heart rate, stroke volume, and cardiac output (CO) via chronically implanted catheters and an electromagnetic flow probe. We injected 15-mum radiolabeled microspheres (85Sr, 141Ce, and 51Cr) via a left atrial catheter during resting control, steady state (SS) and exhaustive (EE) exercise; measured their distribution by gamma spectrometry; and determined TRF as % CO and as ml/100 g per min. We determined IRFD for the outer and inner cortex and the outer medulla. TRF as %CO dropped (P less than 0.05) during both levels of exercise: from 10.2 +/- 0.7% to 3.9 +/- 0.4% (SS) and 3.4 +/- 0.6% (EE). TRF in ml/100 g per min did not change significantly from control (228 +/- 30 ml/100 g per min). IRFD was unchanged with exercise, remaining at about 80, 20, and 3% of TRF for the outer and inner cortex and outer medulla, respectively. We conclude that blood flow is not diverted from the kidneys during severe exercise in the dog.  相似文献   

13.
14.
The effects of acute hypoxia on regional pulmonary perfusion have been studied previously in anesthetized, artificially ventilated sheep (J. Appl. Physiol. 56: 338-342, 1984). That study indicated that a rise in pulmonary arterial pressure was associated with a shift of pulmonary blood flow toward dorsal (nondependent) areas of the lung. This study examined the relationship between the pulmonary arterial pressor response and regional pulmonary blood flow in five conscious, standing ewes during 96 h of normobaric hypoxia. The sheep were made hypoxic by N2 dilution in an environmental chamber [arterial O2 tension (PaO2) = 37-42 Torr, arterial CO2 tension (PaCO2) = 25-30 Torr]. Regional pulmonary blood flow was calculated by injecting 15-micron radiolabeled microspheres into the superior vena cava during normoxia and at 24-h intervals of hypoxia. Pulmonary arterial pressure increased from 12 Torr during normoxia to 19-22 Torr throughout hypoxia (alpha less than 0.049). Pulmonary blood flow, expressed as %QCO or ml X min-1 X g-1, did not shift among dorsal and ventral regions during hypoxia (alpha greater than 0.25); nor were there interlobar shifts of blood flow (alpha greater than 0.10). These data suggest that conscious, standing sheep do not demonstrate a shift in pulmonary blood flow during 96 h of normobaric hypoxia even though pulmonary arterial pressure rises 7-10 Torr. We question whether global hypoxic pulmonary vasoconstriction is, by itself, beneficial to the sheep.  相似文献   

15.
16.
This study investigated the mechanisms for glucose-induced islet blood flow increase in rats. The effects of adenosine, adenosine receptor antagonists, and vagotomy on islet blood flow were evaluated with a microsphere technique. Vagotomy prevented the islet blood flow increase expected 3, 10, and 20 min after injection of glucose, whereas theophylline (a nonspecific adenosine receptor antagonist) prevented the islet blood flow increase from occurring 10 and 20 min after glucose administration. Administration of selective adenosine receptor antagonists suggested that the response to theophylline was mediated by A1 receptors. Exogenous administration of adenosine did not affect islet blood flow, but local accumulation of adenosine, induced by the adenosine uptake inhibitor dipyridamole, caused a doubling of islet blood flow. In conclusion, the increased islet blood flow seen 3 min after induction of hyperglycemia is caused by the vagal nerve, whereas the increase in islet blood perfusion seen at 10 and 20 min after glucose administration is caused by both the vagal nerve and adenosine.  相似文献   

17.
18.
19.
The aim of the study was to characterize the effects of induced moderate hypothermia on splanchnic blood flow, with particular reference to that of the pancreas and the islets of Langerhans. We also investigated how interference with the autonomic nervous system at different levels influenced the blood perfusion during hypothermia. For this purpose, hypothermia (body temperature of 28 degrees C) was induced by external cooling, whereas normothermic (37.5 degrees C) anesthetized Sprague-Dawley rats were used as controls. Some rats were pretreated with either propranolol, yohimbine, atropine, hexamethonium, or a bilateral abdominal vagotomy. Our findings suggest that moderate hypothermia elicits complex, organ-specific circulatory changes, with increased perfusion noted in the pylorus, as well as the whole pancreas and the pancreatic islets. The pancreatic islets maintain their high blood perfusion through mechanisms involving both sympathetic and parasympathetic mediators, whereas the increased pyloric blood flow is mediated through parasympathetic mechanisms. Renal blood flow was decreased, and this can be prevented by ganglionic blockade and is also influenced by beta-adrenoceptors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号