首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
This paper describes a novel evolutionary algorithm for regulatory motif discovery in DNA promoter sequences. The algorithm uses data clustering to logically distribute the evolving population across the search space. Mating then takes place within local regions of the population, promoting overall solution diversity and encouraging discovery of multiple solutions. Experiments using synthetic data sets have demonstrated the algorithm's capacity to find position frequency matrix models of known regulatory motifs in relatively long promoter sequences. These experiments have also shown the algorithm's ability to maintain diversity during search and discover multiple motifs within a single population. The utility of the algorithm for discovering motifs in real biological data is demonstrated by its ability to find meaningful motifs within muscle-specific regulatory sequences.  相似文献   

6.
7.
8.
9.
10.

Background  

Biological networks are widely used to represent processes in biological systems and to capture interactions and dependencies between biological entities. Their size and complexity is steadily increasing due to the ongoing growth of knowledge in the life sciences. To aid understanding of biological networks several algorithms for laying out and graphically representing networks and network analysis results have been developed. However, current algorithms are specialized to particular layout styles and therefore different algorithms are required for each kind of network and/or style of layout. This increases implementation effort and means that new algorithms must be developed for new layout styles. Furthermore, additional effort is necessary to compose different layout conventions in the same diagram. Also the user cannot usually customize the placement of nodes to tailor the layout to their particular need or task and there is little support for interactive network exploration.  相似文献   

11.
Buhler and Tompa (2002) introduced the random projection algorithm for the motif discovery problem and demonstrated that this algorithm performs well on both simulated and biological samples. We describe a modification of the random projection algorithm, called the uniform projection algorithm, which utilizes a different choice of projections. We replace the random selection of projections by a greedy heuristic that approximately equalizes the coverage of the projections. We show that this change in selection of projections leads to improved performance on motif discovery problems. Furthermore, the uniform projection algorithm is directly applicable to other problems where the random projection algorithm has been used, including comparison of protein sequence databases.  相似文献   

12.
Chromosomal inversions are common in natural populations and are believed to be involved in many important evolutionary phenomena, including speciation, the evolution of sex chromosomes and local adaptation. While recent advances in sequencing and genotyping methods are leading to rapidly increasing amounts of genome-wide sequence data that reveal interesting patterns of genetic variation within inverted regions, efficient simulation methods to study these patterns are largely missing. In this work, we extend the sequential Markovian coalescent, an approximation to the coalescent with recombination, to include the effects of polymorphic inversions on patterns of recombination. Results show that our algorithm is fast, memory-efficient and accurate, making it feasible to simulate large inversions in large populations for the first time. The SMC algorithm enables studies of patterns of genetic variation (for example, linkage disequilibria) and tests of hypotheses (using simulation-based approaches) that were previously intractable.  相似文献   

13.
14.
15.
16.
17.
18.
This paper describes a generic algorithm for finding restrictionsites within DNA sequences. The ‘genericity’ ofthe algorithm is made possible through the use of set theory.Basic elements of DNA sequences, i.e. nucleotides (bases), arerepresented in sets, and DNA sequences, whether specific, ambiguousor even protein-coding, are represented as sequences of thosesets. The set intersection operation demonstrates its abilityto perform pattern-matching correctly on various DNA sequences.The performance analysis showed that the degree of complexityof the pattern matching is reduced from exponential to linear.An example is given to show the actual and potential restrictionsites, derived by the generic algorithm, in the DNA sequencetemplate coding for a synthetic calmodulin. Received on October 2, 1990; accepted on December 18, 1990  相似文献   

19.
20.
A boosting approach for motif modeling using ChIP-chip data   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号