首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The selectivity of the hemocyanin channel was measured for alkali metal ions and ammonium. Permeability ratios relative to K+ measured from biionic potentials were: NH 4 + (1.52)>Rb+ (1.05)>K+ (1.0)>Cs+ (0.89)>Na+ (0.81)>Li+ (0.35). Single-channel ion conductance was a saturating function of ion concentration regardless of the cation present in the bathing medium. Maximal conductances were 270, 267, 215, 176, 170 and 37 ps for K+, Rb+, NH 4 + , Cs+, Na+ and Li+, respectively. Current-voltage curves for the different monovalent cations were measured and described using a threebarrier model previously used to explain the voltage dependence of the instantaneous channel conductance (Cecchi, Alvarez & Latorre, 1981). In this way, binding and peak energies were estimated for the different ions. Considering the energy peaks as transition states between the ion and the channel, it is concluded that they follow Eisenman's selectivity sequences XI (cis peak, i.e., Li+>Na+>K+>Rb+>Cs+; highest field strength), VII (central peak) and II (trans peak). The cis side was that to which hemocyanin was added and was electrically ground. The binding energies, on the other hand, follow Eisenman's series XI for strong electric field sites. Binding of NH 4 + to the cis-well suggests that the orientation of the ligands in the site is tetrahedric.  相似文献   

2.
3.
The present study evaluates how four key amino acid residue positions (- 4' to - 1') within the M1-M2 linker of the GABA(A) receptor beta subunit influences ion selectivity of a cation-conducting GABA receptor. Cation selectivity was found to be highly dependent on the side-chains of the amino acid residues present. The critical factor for cation selectivity was the presence of a negatively charged Glu or Asp residue in the -1' position. Receptors containing the neutral amino acids Gln or Asn or a positively charged Arg residue were anion selective. In the presence of a -1' Glu residue, the amino acids in adjacent positions were also found to be important determinants of cation selectivity. Moreover, the length of the M1-M2 linker as well as the presence of a Pro residue within this segment also affected ion selectivity, suggesting that the local environment and three-dimensional position of the -1' Glu are essential determinants of cation permeation. Conversely, no specific amino acid residues were found to be essential for anion selectivity, suggesting that the basic architecture of the selectivity segment of this class of receptor channels is optimally suited for anion conduction.  相似文献   

4.
Most ion channel proteins exhibit some degree of charge selectivity, that is, an ability to conduct ions of one charge more efficiently than ions of the opposite charge. The structural origins of charge selectivity remain incompletely understood despite recent advances in the determination of cation-selective and anion-selective channel protein structures. Helix bundle channels formed via self-assembly of the peptide alamethicin provide a tractable model system for exploring the structural basis of charge selectivity. We synthesized covalently-linked alamethicin dimers, with amino acid substitutions at position 18 [lysine (Lys), arginine (Arg), glutamine (Gln), 2,3-diaminopropionic acid (Dpr)] in each helix, to assess the role of this position as a charge-selectivity determinant in alamethicin channels. Of the position 18 substitutions investigated, the Lys derivative exhibited the greatest degree of anion selectivity. Arg-containing channels were slightly less anion-selective than Lys. Interestingly, Dpr channels showed cation selectivity nearly equivalent to that exhibited by the neutral Gln derivative. We suggest that this result is due to a wider pore diameter that permits a greater number of counter-ions leading to enhanced charge screening and a lower effective side-chain positive charge.  相似文献   

5.
Anion/cation selectivity is a critical property of ion channels and underpins their physiological function. Recently, there have been numerous mutagenesis studies, which have mapped sites within the ion channel-forming segments of ligand-gated ion channels that are determinants of the ion selectivity. Site-directed mutations to specific amino acids within or flanking the M2 transmembrane segments of the anion-selective glycine, GABA(A) and GABA(C) receptors and the cation-selective nicotinic acetylcholine and serotonin (type 3) receptors have revealed discrete, equivalent regions within the ion channel that form the principal selectivity filter, leading to plausible molecular mechanisms and mathematical models to describe how ions preferentially permeate these channels. In particular, the dominant factor determining anion/cation selectivity seems to be the sign and exposure of charged amino acids lining the selectivity filter region of the open channel. In addition, the minimum pore diameter, which can be influenced by the presence of a local proline residue, also makes a contribution to such ion selectivity in LGICs with smaller diameters increasing anion/cation selectivity and larger ones decreasing it.  相似文献   

6.
The determinants of charge selectivity of the Cys-loop family of ligand-gated ion channels have been studied for more than a decade. The investigations have mainly covered homomeric receptors e.g. the nicotinic acetylcholine receptor alpha7, the glycine receptor alpha1 and the serotonin receptor 5-HT(3A). Only recently, the determinants of charge selectivity of heteromeric receptors have been addressed for the GABA(A) receptor alpha2beta3gamma2. For all receptor subtypes, the selectivity determinants have been located to an intracellular linker between transmembrane domains M1 and M2. Two features of the M1-M2 linker appear to control ion selectivity. A central role for charged amino acid residues in selectivity has been almost universally observed. Furthermore, recent studies point to an important role of the size of the narrowest constriction in the pore. In the present review, these determinants of charge selectivity of the Cys-loop family of ligand-gated ion channels will be discussed in detail.  相似文献   

7.
Summary The ion selectivity of the apical membrane Na channel in the toad urinary bladder was investigated. The electrical potential difference and resistance across the basal-lateral membrane were reduced using high concentrations of KCl in the serosal bathing medium, and gradients for various ions were imposed across the apical membrane by altering the composition of the mucosal bathing medium. Ion fluxes through the channel were measured as the transepithelial current inhibited by amiloride, a specific blocker of the channel's Na conductance. The selectivity sequence for alkali metal cations was H>Li>NaK. K, permeability was barely detectable; the selectivity for Na over K was about 1000:1. Ammonium, hydroxyl ammonium and hydrazinium ions were, like K, virtually impermeant. The results suggest that the size of the unhydrated ion is an important factor in determining permeability in this channel.  相似文献   

8.
Summary It has been reported that cAMP controls the transepithelial Cl conductance in fish intestine (Bakker, R., Groot, J.A., 1984,Am. J. Physiol.246:G213–G217; Krasny, E.J., Madara, J.L., DiBona, D.L., Frizzell, R.A., 1983,Fed. Proc.42:1100). In both studies, the cAMP effect was interpreted as an increase in tight junction Cl conductance, because cAMP did not change the membrane potential or membrane resistance ratio. However, the activation of a Cl conductance in the membranes of a subset of the epithelial cells might be difficult to discern from an increase in tight junction Cl conductance. Here we report experiments that were designed to distinguish a tight junction Cl conductance from a membrane Cl conductance in a subpopulation of the epithelial cells. The effect of hypotonicity on the cAMP-induced increase in transepithelial conductance showed that cAMP-induced conductance is located in series with the lateral intercellular spaces. Transepithelial serosa to mucosa direct current caused an increase in resistance due to so-called transport number effects. Forskolin abolished the transport number effects, indicating that cAMP increases the Cl conductance of the tight junctions. Increasing cAMP did not change mannitol fluxes, whereas Cl fluxes more than doubled. Changes in dilution potential and transepithelial resistance demonstrated that the cAMP-induced conductance is specific for Cl and Br as opposed to I, NO3, SO42– and gluconate. In contranst, cytochalasin D also decreased the transepithelial resistance and dilution potential in Nagluconate Ringer's. This demonstrates that cAMP acts on the tight junctions in a more specific manner than cytochalasin D.  相似文献   

9.
The ion selectivity of the bacterial potassium channel KCSA is explained upon comparing the energy characteristics of the interaction of cations (Li+, Na+, K+) with atoms of the selectivity filter of the protein pore. Quantum-chemical calculations reveal a deeper potential well for potassium ions, which accounts for preferred K+ permeation. It is shown that the conventional methods with AMBER, CHARMM, OPLS force fields in standard parametrization as well as partial re-parametrization give incorrect estimates of ion energy distribution in the channel.  相似文献   

10.
A model based on the solution of the electrostatic potential for a geometry of three dielectric regions associated with a gramicidin A channel (GA) is presented. The model includes a cylindrical dielectric layer to represent the peptide backbone and dipole rings to account for dipolar side chains. Image potential and dipolar contributions for different orientations and positions along the channel are analyzed. The conductance of GA and two analogues obtained by substituting the amino acid at position 1 are studied. The numerical simulation reproduces experimental results (Barrett et al. 1986, Biophys J 49, 673–686) and supports the idea that electrostatic dipole-ion interactions are of primary importance in gramicidin channel function.Correspondence to: G. Martinez  相似文献   

11.
A model recently used to study lipid-protein interactions in one-component lipid bilayers (Sperotto and Mouritsen, 1991 a, b) has been extended in order to include two different lipid species characterized by different acyl-chain lengths. The model, which is a statistical mechanical lattice model, assumes that hydrophobic matching between lipid-bilayer hydrophobic thickness and hydrophobic length of the integral protein is an important aspect of the interactions. By means of Monte Carlo simulation techniques, the lateral distribution of the two lipid species near the hydrophobic protein-lipid interface in the fluid phase of the bilayer has been derived. The results indicate that there is a very structured and heterogeneous distribution of the two lipid species near the protein and that the protein-lipid interface is enriched in one of the lipid species. Out of equilibrium, the concentration profiles of the two lipid species away from the protein interface are found to develop a long-range oscillatory behavior. Such dynamic membrane heterogeneity may be of relevance for determining the physical factors involved in lipid specificity of protein function.  相似文献   

12.
The selectivity filter of K(+) channels is comprised of a linear queue of four equal-spaced ion-binding sites spanning a distance of 12A. Each site is formed of eight oxygen atoms from the protein. The first three sites, numbered 1-3 from the extracellular side, are made of exclusively main-chain carbonyl oxygen atoms. The fourth site, closest to the intracellular side, is made of four main-chain carbonyl oxygen atoms and four threonine side-chain hydroxyl oxygen atoms. Here we characterize the effects of mutating the threonine to cysteine on the distribution of ions in the selectivity filter and on the conduction of ions through the filter. The mutation influences the occupancy of K(+) at sites 2 and 4 and it reduces the maximum rate of conduction in the limit of high K(+) concentration. The mutation does not affect the conduction of Rb(+). These results can be understood in the context of a conduction mechanism in which a pair of K ions switch between energetically balanced 1,3 and 2,4 configurations.  相似文献   

13.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   

14.
We report herein, for the first time, that Europium ion (Eu3+) binds to the “apo” form of Escherichia coli methionine aminopeptidase (EcMetAP), and such binding results in the activation of the enzyme as well as enhancement in the luminescence intensity of the metal ion. Due to competitive displacement of the enzyme-bound Eu3+ by different metal ions, we could determine the binding affinities of both “activating” and “non-activating” metal ions for the enzyme via fluorescence spectroscopy. The experimental data revealed that among all metal ions, Fe2+ exhibited the highest binding affinity for the enzyme, supporting the notion that it serves as the physiological metal ion for the enzyme. However, the enzyme-metal binding data did not adhere to the Irving-William series. On accounting for the binding affinity vis a vis the catalytic efficiency of the enzyme for different metal ions, it appears evident that that the “coordination states” and the relative softness” of metal ions are the major determinants in facilitating the EcMetAP catalyzed reaction.  相似文献   

15.
The selectivity for Ca(2+) over Na(+), PCa/PNa, is higher in cGMP-gated (CNG) ion channels of retinal cone photoreceptors than in those of rods. To ascertain the physiological significance of this fact, we determined the fraction of the cyclic nucleotide-gated current specifically carried by Ca(2+) in intact rods and cones. We activated CNG channels by suddenly (<5 ms) increasing free 8Br-cGMP in the cytoplasm of rods or cones loaded with a caged ester of the cyclic nucleotide. Simultaneous with the uncaging flash, we measured the cyclic nucleotide-dependent changes in membrane current and fluorescence of the Ca(2+)-binding dye, Fura-2, also loaded into the cells. The ratio of changes in fura-2 fluorescence and the integral of the membrane current, under a restricted set of experimental conditions, is a direct measure of the fractional Ca(2+) flux. Under normal physiological salt concentrations, the fractional Ca(2+) flux is higher in CNG channels of cones than in those of rods, but it differs little among cones (or rods) of different species. Under normal physiological conditions and for membrane currents 相似文献   

16.
Colicin E1 is a plasmid-encoded bacteriocidal protein which, though water soluble when secreted by its host bacterium, spontaneously interacts with planar lipid bilayers to form voltage-gated ion channels. In asolectin bilayers, the preference for anions over cations exhibited by these channels at low pH can be reversed by raising the pH on either side of the membrane. When incorporated into membranes composed of either of the two zwitterionic lipids, bacterial phosphatidylethanolamine and diphytanoyl phosphatidylcholine, colicin E1 channels were nearly ideally anion selective in the limit of low pH and moderately cation selective at the high pH limit. In phosphatidylcholine membranes, however, the response of these channels to changes in pH exhibited a pattern of behavior peculiar to this lipid. If the side of the membrane on which the protein had been introduced (the cis side) was exposed to pH 4.0, all the channels in the bilayer, whether opened or closed, became refractory to further changes in pH. This irreversibility has been interpreted as evidence that the selectivity of colicin E1 is under the control of a pH-sensitive conformational change. Protonation of groups on the cis side of the membrane appear to be essential to the conversion to the anion-selective state. These groups are rendered kinetically inaccessible to the aqueous phase when the transition takes place in phosphatidylcholine membranes.  相似文献   

17.
Microscopic calculation of ion-transport rates in membrane channels   总被引:4,自引:0,他引:4  
A method, based on rate theory, is described by which transport rates in ion channels can be calculated using only microscopic parameters, such as atomic coordinates, force constants and intermolecular energy parameters. The channel is treated as a system of elastically bound ligands interacting with the ion by coulombic and Lennard-Jones forces. Jump frequencies of the ion are obtained from the potential mean force which represents a thermal average over the different configurations of the ligand system. The method is illustrated by application to a special channel model, helical arrangement of dipolar ligands, which can be tilted toward the channel axis against harmonic restoring force. The jump frequency is found to be a non-monotonous function of ion radius. Furthermore, the ion specificity of the channel strongly depends on whether the ligand system is 'hard' or 'soft', i.e., on the extent to which the interaction with the ion can lead to a reorientation of the ligand groups.  相似文献   

18.
Ion channels can function in three physiological modes through their ability to: 1) accommodate osmotically significant fluxes over short periods; 2) propagate signals along or across membranes; 3) control the membrane potential. With respect to mineral nutrition it is via the control of the membrane potential that ion channels are probably most significant. In this paper the physiology and prospects for molecular biology of plant ion channels are discussed. It is concluded that identifying and altering the primary structures that determine functional characteristics of plant ion channel genes could result in changes in the transport characteristics of higher plants.  相似文献   

19.
In principle, an ion channel needs no more than a single gate, but a pump requires at least two gates that open and close alternately to allow ion access from only one side of the membrane at a time. In the Na+,K+-ATPase pump, this alternating gating effects outward transport of three Na+ ions and inward transport of two K+ ions, for each ATP hydrolysed, up to a hundred times per second, generating a measurable current if assayed in millions of pumps. Under these assay conditions, voltage jumps elicit brief charge movements, consistent with displacement of ions along the ion pathway while one gate is open but the other closed. Binding of the marine toxin, palytoxin, to the Na+,K+-ATPase uncouples the two gates, so that although each gate still responds to its physiological ligand they are no longer constrained to open and close alternately, and the Na+,K+-ATPase is transformed into a gated cation channel. Millions of Na+ or K+ ions per second flow through such an open pump-channel, permitting assay of single molecules and allowing unprecedented access to the ion transport pathway through the Na+,K+-ATPase. Use of variously charged small hydrophilic thiol-specific reagents to probe cysteine targets introduced throughout the pump's transmembrane segments allows mapping and characterization of the route traversed by transported ions.  相似文献   

20.
We have examined the voltage dependence of external TEA block of Shaker K(+) channels over a range of internal K(+) concentrations from 2 to 135 mM. We found that the concentration dependence of external TEA block in low internal K(+) solutions could not be described by a single TEA binding affinity. The deviation from a single TEA binding isotherm was increased at more depolarized membrane voltages. The data were well described by a two-component binding scheme representing two, relatively stable populations of conducting channels that differ in their affinity for external TEA. The relative proportion of these two populations was not much affected by membrane voltage but did depend on the internal K(+) concentration. Low internal K(+) promoted an increase in the fraction of channels with a low TEA affinity. The voltage dependence of the apparent high-affinity TEA binding constant depended on the internal K(+) concentration, becoming almost voltage independent in 5 mM. The K(+) sensitivity of these low- and high-affinity TEA states suggests that they may represent one- and two-ion occupancy states of the selectivity filter, consistent with recent crystallographic results from the bacterial KcsA K(+) channel. We therefore analyzed these data in terms of such a model and found a large (almost 14-fold) difference between the intrinsic TEA affinity of the one-ion and two-ion modes. According to this analysis, the single ion in the one-ion mode (at 0 mV) prefers the inner end of the selectivity filter twofold more than the outer end. This distribution does not change with internal K(+). The two ions in the two-ion mode prefer to occupy the inner end of the selectivity filter at low K(+), but high internal K(+) promotes increased occupancy of the outer sites. Our analysis further suggests that the four K(+) sites in the selectivity filter are spaced between 20 and 25% of the membrane electric field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号