首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The baculovirus expression system was used to generate recombinant Alzheimer's amyloid precursor (AAP) proteins. Recombinant baculoviruses were constructed, designed to express full-length 695-, 751-, and 770-amino acid forms. Recombinant baculoviruses designed for constitutive secretion were engineered by placing a termination codon between the beta-protein domain and cytoplasmic anchor of the full-length forms. Insect cells infected with each of these baculoviruses produced both secreted and cell-associated AAPs. Full-length constructs produced secreted derivatives which were COOH-terminally cleaved within the beta-protein domain at Gln15 or Lys16, essentially identical to previous reports utilizing mammalian cell systems. Rare secreted forms (less than 5%) appeared to extend to Lys28. Secretion constructs produced these same forms, but in different ratios. Most (approximately 60%) terminated at Gln15 or Lys16, while the remainder apparently extended to Lys28. AAPs containing the Kunitz-type serine protease inhibitory domain (AAP-751 and -770) were shown to be active inhibitors. No differences were observed in the inhibitors activities of these two forms. The similarities in AAP processing by insect and mammalian systems, together with the large amounts of recombinant protein produced by baculovirus expression, make this an attractive system for studies of AAP processing and biochemical properties.  相似文献   

2.
3.
The baculovirus group of insect viruses is widely used for foreign gene introduction into mammalian cells for gene expression and protein production; however, the efficiency of baculovirus entry into mammalian cells is in general still low. In this study, two recombinant baculoviruses were engineered and their ability to improve viral entry was examined: (1) cytoplasmic transduction peptide (CTP) was fused with baculovirus envelope protein, GP64, to produce a cytoplasmic membrane penetrating baculovirus (vE-CTP); and (2) the protein transduction domain (PTD) of HIV TAT protein was fused with the baculovirus capsid protein VP39 to form a nuclear membrane penetrating baculovirus (vE-PTD). Transduction experiments showed that both viruses had better transduction efficiency than vE, a control virus that only expresses EGFP in mammalian cells. Interestingly, vE-CTP and vE-PTD were also able to improve the transduction efficiency of a co-transduced baculovirus, resulting in higher levels of gene expression. Our results have described new routes to further enhance the development of baculovirus as a tool for gene delivery into mammalian cells.  相似文献   

4.
Infection of insect cells with baculovirus expression constructs is commonly used to produce recombinant proteins that require post-translational modifications for their activity, such as mammalian proteins. However, technical restraints limit the capacity of insect cell-based culture systems to be scaled up to produce the large amounts of recombinant protein required for human pharmaceuticals. In this study, we designed an automated insect rearing system and whole insect baculovirus expression system (PERLXpress™) for the expression and purification of recombinant proteins on a large scale. As a test model, we produced a recombinant mouse anti-botulinum antibody fragment (Fab) in Trichoplusia ni larvae. A recombinant baculovirus co-expressing the Fab heavy and light chains together with N-terminal sequences from the silkworm hormone bombyxin, to direct proteins into the secretory pathway, was constructed. Fifth instar larvae were reared and infected orally with recombinant (pre- occluded) baculovirus using the automated system and harvested approximately after 4 days. The total yield of recombinant Fab was 1.1 g/kg of larvae, resulting in 127 mg of pure Fab in one production run. The Fab was purified to homogeneity using immobilized metal affinity chromatography, gel filtration, and anion exchange chromatography. The identity of the purified protein was verified by Western blots and size-exclusion chromatography. Purified recombinant Fab was used to detect botulinum toxin in ELISA experiments, demonstrating that the heavy and light chains were properly assembled and folded into functional heterodimers. We believe that this is the first demonstration of the expression of a recombinant antibody in whole insect larvae. Our results demonstrate that a baculovirus-whole larvae expression system can be used to express functionally active recombinant Fab fragments. As the PERLXpress™ system is an automated and linearly scalable technology, it represents an attractive alternative to insect cell culture for the production of large amounts of human pharmaceuticals.  相似文献   

5.
The baculovirus–insect cell expression system is widely used to produce recombinant proteins for various biomedical applications. Our previous study demonstrated that EpCAM, a colorectal cancer vaccine candidate protein, can be expressed in the baculovirus–insect cell expression system. However, its functionality (the ability to elicit an immune response), which is important for its possible use as a colorectal cancer vaccine for immunotherapy, still needed to be confirmed. In this study, we examined the ability of recombinant EpCAM to induce maturation of immature dendritic cells (DCs) derived from CD34+ cells isolated from human umbilical cord blood. We demonstrated that EpCAM induces the expression of four DC maturation markers: CD80, CD83, CD86 and MHC II. These results suggest that EpCAM produced in the baculovirus–insect cell expression system is functional in terms of its ability to trigger maturation of human DCs.  相似文献   

6.
Today, many thousands of recombinant proteins, ranging from cytosolic enzymes to membrane-bound proteins, have been successfully produced in baculovirus-infected insect cells. Yet, in addition to its value in producing recombinant proteins in insect cells and larvae, this viral vector system continues to evolve in new and unexpected ways. This is exemplified by the development of engineered insect cell lines to mimic mammalian cell glycosylation of expressed proteins, baculovirus display strategies and the application of the virus as a mammalian-cell gene delivery vector. Novel vector design and cell engineering approaches will serve to further enhance the value of baculovirus technology.  相似文献   

7.
Constructs containing cDNA encoding human pyruvate carboxylase (PC) with and without a hexahistidine (6x His) tag at the N-terminal of the mature enzyme have been cloned under the control of the polyhedrin promoter. These two constructs were co-transfected with the baculovirus genome into Sf9 cells to produce recombinant baculoviruses harbouring human PC cDNA. The expression of human PC under the control of the polyhedrin promoter was found to be at its highest level at 4 days post-infection. The expressed material accounted for up to 70% of total cellular protein with 5% of this expressed material being found in the soluble fraction. The recombinant human 6x His-PC isolated with a purity of approximately 50% using a Ni-NTA agarose column was found to have the specific activity of 7U/mg, which was similar to that produced from a 293T stable line [Biochem. Biophys. Res. Commun. 266 (1999) 512]. This is the first report of a heterologous expression system for recombinant human PC.  相似文献   

8.
Three different human immunodeficiency virus type I (HIV-1) envelope derived recombinant proteins and the full length human CD4 polypeptide were expressed in Spodoptera frugiperda (Sf9) cells. DNA constructs encoding CD4, gp120, gp160, and gp160 delta (full length gp160 minus the transmembrane and cytoplasmic region of gp41) were cloned into the baculovirus expression vector pVL941 or a derivative and used to generate recombinant viruses in a cotransfection with DNA from Autographa californica nuclear polyhedrosis virus (AcMNPV). Western blotting of cell extracts of the recombinant HIV-1 proteins showed that for each construct two major bands specifically reacted with anti-HIV-1 envelope antiserum. These bands corresponded to glycosylated and nonglycosylated versions of the HIV proteins as determined by 3H-mannose labeling and tunicamycin treatment of infected cells. A time course of HIV envelope expression revealed that at early times post-infection (24 hours) the proteins were fully glycosylated and soluble in nonionic detergents. However, at later times postinfection (48 hours), expression levels of recombinant protein reached a maximum but most of the increase was due to a rise in the level of the nonglycosylated species, which was largely insoluble in nonionic detergents. Thus, it appears that Sf9 cells cannot process large amounts of glycosylated recombinant proteins efficiently. As a measure of biological activity, the CD4 binding ability of both glycosylated and nonglycosylated recombinant HIV envelope proteins was tested in a coimmunoprecipitation assay. The results showed that CD4 and the glycosylated versions of recombinant gp120 or gp160 delta specifically associated with one another in this analysis. Nonglycosylated gp120 or gp160 delta proteins from tunicamycin-treated cultures did immunoprecipitate with anti-HIV-1 antiserum but did not interact with CD4. We conclude that production of native HIV envelope proteins, as measured by addition of carbohydrate side chains and ability to bind CD4, peaks early after infection in baculovirus-infected insect cells.  相似文献   

9.
The leukocyte beta2 integrin CR3 (CD11/CD18), is a surface heterodimeric glycoprotein that functions as a divalent cation-dependent adhesive complex. It mediates several important cell-substrate and cell-cell adhesive interactions among which the interaction with vascular endothelial cells that lead to leukocyte transmigration. We have isolated cDNA clones-coding for the rat complement receptor type 3 (CR3) alphaM subunit (CD11b) from a cDNA library. The cDNA sequence showed respectively 89.4% and 74.6% homology with its mouse and human counterpart. We have expressed the sequence coding for the VA module or Von Willebrand type domain (A-domain) and produced it in E. coli as a soluble recombinant fusion protein with GST. Simultaneously, we have cloned DNA fragments specific to the rat ICAM-1 domain 1 and domain 3 and expressed each clone in E. coli as recombinant soluble (rs) fusion proteins with GST. Recombinant CD11b A-domain was released from the fusion protein by thrombin cut. Purified ICAM-1 fusion peptides and CD11b A-domain were used to develop a direct binding assay that showed a specific binding between the rat ICAM-1 Ig like domain 3 and CD11b A-domain. These data demonstrate that the IgSF modules can be produced as a soluble recombinant fusion protein and used to study direct binding to the VA module displayed by members of the integrin superfamily.  相似文献   

10.
The assembly pathway of the insect cell Spodoptera frugiperda (Sf-9) was engineered to include expression of the murine chaperone immunoglobulin heavy chain binding protein (BiP) using the baculovirus vector. The impact of BiP coexpression on the production and secretion of functional and soluble recombinant immunoglobulin IgG levels was evaluated. Recombinant BiP was found to associate specifically with immunoglobulins in immunoprecipitation studies. Coinfection of insect cells with a BiP-containing baculovirus and baculoviruses coding for two different murine IgG proteins increased intracellular functional antibody activity levels substantially above the levels observed in the absence of BiP. Soluble intracellular immunoglobulin levels were found to increase as well. However, secreted functional antibody levels did not increase significantly. Also, degradation of heavy chain immunoglobulin in insect cells was indicated by the accumulation of lower molecular weight immunoglobulins at 4 days postinfection. Coexpression of light chains reduced the level of these lower molecular weight immunoglobulins while BiP coexpression led to enhanced levels. These findings suggest that coexpressed BiP can increase intracellular soluble and functional antibody yields but that secretion in the baculovirus-insect cell system must be limited at some post-translational step.  相似文献   

11.
The rat and human recombinant soluble and membrane-bound catechol O-methyltransferase (S- and MB-COMT, respectively) were expressed using mammalian and baculovirus vectors. Low levels of rat and human S-COMT polypeptides were detected by immunoprecipitation in K-562 cell lines transfected with the S-COMT vectors. From K-562 cells transfected with the rat MB-COMT construct, both S- and MB-COMT recombinant proteins were detected by a rat COMT-specific anti-serum. Infection of lepidopteran Spodoptera frugiperda cells with recombinant S- or MB-COMT baculovirus constructs yielded high amounts of enzymically active and immunoreactive S- or MB-COMT proteins, respectively. Pulse/chase experiments with [35S]methionine-labelled insect cells infected with the MB-COMT baculovirus showed that the 30-kDa recombinant human MB-COMT polypeptide was not processed into the 25-kDa S-COMT form. Subcellular fractionations of insect cells, followed by immunoblotting with COMT antiserum, showed that recombinant S-COMT was found only in the soluble, cytoplasmic fraction, whereas MB-COMT resided both in soluble and membrane fractions. The recombinant MB-COMT sedimented in Percoll gradients at the density of 1.042 g/ml cosedimenting with the plasma-membrane marker. Fractionation and immunoblotting experiments on homogenized total rat brains indicated that the rat S-COMT (24 kDa) and some of the rat MB-COMT (28 kDa) was recovered in soluble fractions, whereas the microsomal material having COMT activity contained the MB-COMT polypeptide. The rat brain microsomal MB-COMT had a density of 1.042 g/ml in Percoll gradients, cosedimenting with the plasma-membrane and rough-endoplasmic-reticulum marker enzymes. The meta/para methylation ratio of dihydroxybenzoic-acid substrate by different recombinant and rat brain COMT-containing subcellular fractions was analysed.  相似文献   

12.
Xu R  Liu D  Cowburn D 《Molecular bioSystems》2012,8(7):1878-1885
A great portion of tyrosine kinases are involved in cell development and their structural alteration is intimately involved in associated pathologies of development and oncology. These kinases are one of the major groups of targets under investigation for molecular therapeutics. To carry out biochemical and structural biological studies on these kinases, economical production of their purified forms is highly desirable. However over-expressing tyrosine kinases as recombinant forms in bacterial systems and their purification is a significant challenge. Abelson kinase (Abl) has previously been expressed on a large scale to facilitate X-ray crystallography and NMR structure studies mainly in baculovirus infected insect cells. Even though success has been achieved in expression of soluble tyrosine kinases in E. coli with chaperones to improve correct folding, low expression levels of kinases are intrinsic in such systems because of diversion of resources to produce chaperones. Here we present a straightforward method to express and purify isolated Abl kinase domain and SH3-SH2-kinase multi-domain structures. The expressed Abl protein retains its correct folding and biological function. The yield of soluble protein is in a several mg L(-1) range in minimal media. Furthermore we demonstrate that segmental isotopic labelling using expressed protein ligation can be achieved using bacterial expressed Abl kinase domain constructs, which is especially useful in NMR structure-activity studies.  相似文献   

13.
吕利群  徐鸿绪  王浩 《微生物学报》2009,49(9):1253-1258
摘要:【目的】构建携带有受杆状病毒多角体启动子控制的疱疹性口腔炎病毒糖蛋白(vesicular stomatitis virus glycoprotein, VSV G)和受白斑综合症病毒极早期基因(immediately-early gene 1,ie1)启动子控制的绿色荧光蛋白(enhanced green fluorescent protein, EGFP)两个表达阅读框的新型重组病毒vAc-G-EGFP,分析其在无脊椎动物和脊椎动物细胞系中表达报道基因的能力。【方法】 利用Bac-To-Bac 系统构建重组杆状病毒,利用病毒感染或转导实验介导报道基因在待测细胞系中的表达,用荧光显微镜和免疫印迹技术分析报道基因在待测细胞系中的实时表达情况。 【结果】成功构建了分别含VSV G 和 ie1启动子两个阅读框的重组杆状病毒vAc-G-EGFP,发现vAc-G-EGFP可以在无脊椎和脊椎动物细胞系中有效表达报道基因EGFP,免疫印迹实验显示,在不同时间点EGFP于这两类细胞中的表达存在差异。【结论】 基于白斑综合症病毒ie1启动子并携带有VSV G表达框的单一杆状病毒载体可以实现同时在不同种类细胞系中有效表达外源基因。本文构建的新型杆状病毒表达载体有希望普遍应用于基础和应用生物学研究。  相似文献   

14.
目的:利用Bac-to-Bac Baculovirus Expression System表达重组HA蛋白,Western blot及IFA方法鉴定其表达。方法:采用PCR方法扩增A/California/04/2009(H1N1)HA基因,将其克隆到pFastBacHT A载体上,重组质粒pFastBacHT-HA经双酶切及测序鉴定正确后,转化阳性重组载体进入E.coli DH10Bac感受态细胞中,通过Bluo-gal蓝白斑筛选、PCR鉴定获得重组转座子rBacmid-HA。从重组转座子中提取rBacmid-HA质粒DNA转染sf 9昆虫细胞,制备重组杆状病毒。重组杆状病毒感染sf 9细胞表达重组蛋白,Western blot及IFA鉴定重组蛋白表达情况。结论:成功构建了甲型H1N1流感病毒HA基因的昆虫杆状病毒表达载体,该表达载体转染昆虫细胞后制备的重组杆状病毒病毒滴度较高,重组杆状病毒表达的重组蛋白经Western blot 及IFA 鉴定后具有良好的免疫反应原性。  相似文献   

15.
A two-stage bioreactor scheme was developed for the large-scale production of recombinant proteins using a genetically engineered baculovirus/insect cell system. The first bioreactor was employed for cell growth and the second for cell infection. Silkworm Bm5 cells were infected with a recombinant baculovirus, BmNPV/P5.cat, containing a bacterial chloramphenicol acetyltransferase (CAT) gene under the control of the polyhedrin gene promoter of Bombyx mori nuclear polyhedrosis virus (BmNPV). This recombinant baculovirus has been used as an expression vector for the production of recombinant CAT enzyme. A specific productivity of 82 to 90 mug CAT/(10(6) cells) was obtained using the BmNPV/Bm5 expression system, a yield similar to that achieved using the AcNPV/Sf expression system. Repeated infection of high-density cell cultures did not reduce the specific productivity of the CAT enzyme. Most importantly, the problems associated with the infection of high-density cell cultures were resolved by means of controlled infection conditions and appropriate replenishment of spent culture medium following infection. The glucose uptake rate by the cells following infection was 50% higher than that by the cells before infection. Not only did the infection of high-density cell cultures result in consistent yields of 250 mg/L of CAT enzyme, but also the two-stage bioreactor system was proven to be reliable for a long-term operation beyond 600 h. (c) 1993 John Wiley & Sons, Inc.  相似文献   

16.
We have previously described the production of a recombinant melittin-based cytolytic immunotoxin (IT), scFv-mel-FLAG, in bacterial cells. While the IT exhibited specific cytotoxicity for a human lymphoblastoid cell line, HMy2, yields from expression were low. Here, we describe a baculovirus expression system for the overexpression and secretion of scFv-mel-FLAG. A novel snake phospholipase A2 inhibitor signal peptide was used to aid in the secretion of the immunotoxin. Sf21 insect cells infected with the recombinant virus secreted soluble scFv-mel-FLAG into the culture medium from which it was purified directly on an affinity column. The final yield of scFv-mel-FLAG was estimated at 3-5 mg/L, which was an improvement of 30-fold compared to expression in the prokaryotic system. The cell binding characteristics of the recombinant IT were assessed by flow cytometry using the antigen expressing cell line HMy2. ScFv-mel-FLAG bound specifically to HMy2 cells in direct binding assays and this binding was completely inhibited in the presence of an excess of soluble antigen. Significant cytotoxicity for HMy2 cells, measured by leakage of cytosolic LDH, was also observed for the IT at a concentration of 60 pmol/10(4) cells. Cytotoxicity was concentration dependent and was specific for antigen-positive cells. Thus the baculovirus expression system, under the control of a novel secretion signal, can be used for the production of soluble and functional recombinant cytolytic immunotoxins. To our knowledge, this is the first report of expression of a recombinant immunotoxin in the baculovirus expression vector system.  相似文献   

17.
We sought to develop a platform for simultaneous, regulatable expression of double foreign protein types in cell culture. Drosophila melanogaster Schneider line 2 (S2) insect cells that stably express human erythropoietin (hEPO) were infected with a recombinant baculovirus containing the green fluorescent protein (GFP) gene. Since baculovirus cannot replicate in nonpermissive S2 cells, baculovirus infection did not affect cell growth or viability. Expression of each foreign protein was under the control of the inducible metallothionein (MT) promoter. Addition of copper sulfate to infected, stably transfected cells resulted in simultaneous expression of both GFP and hEPO. Induced hEPO expression profile and levels were similar in both control and infected cells, indicating that baculovirus infection also did not affect expression of stably introduced foreign gene. GFP protein levels were regulated by the infection dose of recombinant baculovirus, while hEPO expression remained constant. hEPO levels were much higher (30-fold) than GFP, indicating plasmid-based introduced gene copies have higher expression than baculovirus-based introduced genes. These data suggest the baculovirus/stable S2 cell system can be used to produce a major target protein by plasmid-based stable transfection, and assistant proteins by recombinant baculovirus infection. Such a system appears to be very attractive as a multiple protein expression platform for engineering metabolic pathways in cell culture.  相似文献   

18.
The baculovirus expression vector system (BEVS) is a widely used platform for the production of recombinant eukaryotic proteins. However, the BEVS has limitations in comparison to other higher eukaryotic expression systems. First, the insect cell lines used in the BEVS cannot produce glycoproteins with complex‐type N‐glycosylation patterns. Second, protein production is limited as cells die and lyse in response to baculovirus infection. To delay cell death and lysis, we transformed several insect cell lines with an expression plasmid harboring a vankyrin gene (P‐vank‐1), which encodes an anti‐apoptotic protein. Specifically, we transformed Sf9 cells, Trichoplusia ni High FiveTM cells, and SfSWT‐4 cells, which can produce glycoproteins with complex‐type N‐glycosylation patterns. The latter was included with the aim to increase production of glycoproteins with complex N‐glycans, thereby overcoming the two aforementioned limitations of the BEVS. To further increase vankyrin expression levels and further delay cell death, we also modified baculovirus vectors with the P‐vank‐1 gene. We found that cell lysis was delayed and recombinant glycoprotein yield increased when SfSWT‐4 cells were infected with a vankyrin‐encoding baculovirus. A synergistic effect in elevated levels of recombinant protein production was observed when vankyrin‐expressing cells were combined with a vankyrin‐encoding baculovirus. These effects were observed with various model proteins including medically relevant therapeutic proteins. In summary, we found that cell lysis could be delayed and recombinant protein yields could be increased by using cell lines constitutively expressing vankyrin or vankyrin‐encoding baculovirus vectors. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:1496–1507, 2017  相似文献   

19.
The extracellular domain of the mouse interferon gamma receptor comprising amino acids 17-243 of the protein was produced in Spodoptera frugiperda cells infected with a recombinant baculovirus. The receptor was mainly secreted into the culture medium and was purified to homogeneity in several hundred milligram amounts. The purification procedure involved four chromatography steps and delivered a soluble and active receptor with an overall recovery of 30%. From each purification run, two pools of soluble receptor with the same interferon gamma binding capacity were isolated. Under reducing electrophoretic conditions the protein of pool I migrates as two bands of molecular masses 32 and 34 kDa and of pool II as two bands of 30 and 32 kDa. The soluble receptor of both pools carries a heterogeneous glycosylation. After deglycosylation it appears as one protein band of 27 kDa. N-linked carbohydrates contribute about 6 kDa and O-linked carbohydrates 1 kDa to its molecular mass. The nonreduced protein specifically binds interferon gamma on ligand blots and in a solid-phase binding system and competes for the binding of radiolabeled interferon gamma to the cell surface receptor. The soluble mouse interferon gamma receptor exists as a monomer in physiological buffer and binds interferon gamma in its dimeric form. It is stable at room temperature and against tryptic digestion, but is very sensitive to proteinase K digestion. The soluble mouse interferon gamma receptor produced in the insect/baculovirus expression system may prove useful to study the function of interferon gamma receptor as an antagonist of endogenous interferon gamma in the treatment of immunological and inflammatory disorders.  相似文献   

20.
The inability to sialylate recombinant glycoproteins is a critical limitation of the baculovirus-insect cell expression system. This limitation is due, at least in part, to the absence of detectable sialyltransferase activities and CMP-sialic acids in the insect cell lines routinely used as hosts in this system. SfSWT-1 is a transgenic insect cell line encoding five mammalian glycosyltransferases, including sialyltransferases, which can contribute to sialylation of recombinant glycoproteins expressed by baculovirus vectors. However, sialylation of recombinant glycoproteins requires culturing SfSWT-1 cells in the presence of fetal bovine serum or another exogenous source of sialic acid. To eliminate this requirement and extend the utility of SfSWT-1 cells, we have isolated a new baculovirus vector, AcSWT-7B, designed to express two mammalian enzymes that can convert N-acetylmannosamine to CMP-sialic acid during the early phase of infection. AcSWT-7B was also designed to express a model recombinant glycoprotein during the very late phase of infection. Characterization of this new baculovirus vector showed that it induced high levels of intracellular CMP-sialic acid and sialylation of the recombinant N-glycoprotein upon infection of SfSWT-1 cells cultured in serum-free medium supplemented with N-acetylmannosamine. In addition, co-infection of SfSWT-1 cells with AcSWT-7B plus a conventional baculovirus vector encoding human tissue plasminogen activator resulted in sialylation of this recombinant N-glycoprotein under the same culture conditions. These results demonstrate that AcSWT-7B can be used in two different ways to support recombinant N-glycoprotein sialylation by SfSWT-1 cells in serum-free medium. Thus, AcSWT-7B can be used to extend the utility of this previously described transgenic insect cell line for recombinant sialoglycoprotein production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号