首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sequence of the ribosomal spacer region of soybean chloroplast DNA including the 3 end of the 16S rRNA gene, the tRNAAla and tRNAIle genes (but not their introns), the three intergenic regions and the 5 end of the 23S rRNA gene, has been determined. This sequence has been compared to corresponding regions of other angiosperm chloroplast DNAs. Secondary structure models are proposed for the entirety of the intergenic regions a, b and c and for the flanking rRNA regions. A model for a common secondary structure of the ribosomal spacer intergenic regions from chloroplasts of higher plants is proposed, which is supported by comparative evidence.  相似文献   

2.
Thirty‐one strains of Microcoleus were isolated from desert soils in the United States. Although all these taxa fit the broad definition of Microcoleus vaginatus (Vaucher) Gomont in common usage by soil algal researchers, sequence data for the 16S rRNA gene and 16S–23S internal transcribed spacer (ITS) region indicated that more than one species was represented. Combined sequence and morphological data revealed the presence of two morphologically similar taxa, M. vaginatus and Microcoleus steenstrupii Boye‐Petersen. The rRNA operons of these taxa were sufficiently dissimilar that we suspect the two taxa belong in separate genera. The M. vaginatus clade was most similar to published sequences from Trichodesmium and Arthrospira. When 16S sequences from the isolates we identified as M. steenstrupii were compared with published sequences, our strains grouped with M. chthonoplastes (Mertens) Zanardini ex Gomont and may have closest relatives among several genera in the Phormidiaceae. Organization within the 16S–23S ITS regions was variable between the two taxa. Microcoleus vaginatus had either two tRNA genes (tRNAIle and tRNAAla) or a fragment of the tRNAIle gene in its ITS regions, whereas M. steenstrupii had rRNA operons with either the tRNAIle gene or no tRNA genes in its ITS regions. Microcoleus vaginatus showed no subspecific variation within the combined morphological and molecular characterizations, with 16S similarities ranging from 97.1% to 99.9%. Microcoleus steenstrupii showed considerable genetic variability, with 16S similarities ranging from 91.5% to 99.4%. In phylogenetic analyses, we found that this variability was not congruent with geography, and we suspect that our M. steenstrupii strains represent several cryptic species.  相似文献   

3.
The nucleotide sequences of the plastid 16S rDNA of the multicellular red alga Antithamnion sp. and the 16S rDNA/23S rDNA intergenic spacers of the plastid DNAs of the unicellular red alga Cyanidium caldarium and of Antithamnion sp. were determined. Sequence comparisons support the idea of a polyphyletic origin of the red algal and the higher-plant chloroplasts. Both spacer regions include the unsplit tRNAIle (GAU) and tRNAAla (UGC) genes and so the plastids of both algae form a homogeneous group with those of chromophytic algae and Cyanophora paradoxa characterized by small-sized rDNA spacers in contrast to green algae and higher plants. Nevertheless, remarkable sequence differences within the rRNA and the tRNA genes give the plastids of Cyanidium caldarium a rather isolated position.  相似文献   

4.
The nucleotide sequences of all three rRNA operons (rrnA, rrnB, and rrnC) of Sphingobium chungbukense DJ77 were determined. The three rrn operons have the same gene order (16S rRNA-tRNAIle-tRNAAla-23S rRNA-5S rRNA-tRNAfMet). The nucleotide sequences were identical over a 5,468 bp region spanning the 16S rRNA gene to the 5S rRNA gene. Variability was observed in the 5S rRNA-tRNAfMet spacer sequence of rrnB. The tRNAfMet gene sequences were identical except for two bases (T5794 and A5871 in rrnB, T5942 and A5956 in rrnA, but C5942 and G5956 in rrnC). Comparative sequence analyses of ribosomal RNA operons from DJ77 with those of the class Alphaproteobacteria, to which the genus Sphingobium belongs, reveal close evolutionary relationships with other members of the order Sphingomonadales.  相似文献   

5.
We have cloned and sequenced rRNA operons of Clostridium perfringens strain 13 and analyzed the sequence structure in view of the phylogenesis. The organism had ten copies of rRNA operons all of that comprised of 16S, 23S and 5S rDNAs except for one operon. The operons clustered around the origin of replication, ranging within one-third of the whole genome sequence as it is arranged in a circle. Seven operons were transcribed in clockwise direction, and the remaining three were transcribed in counter clockwise direction assuming that the gyrA was transcribed in clockwise direction. Two of the counter clockwise operons contained tRNAIle genes between the 16S and 23S rDNAs, and the other had a tRNAIle genes between the 16S and 23S rDNAs and a tRNAAsn gene in the place of the 5S rDNA. Microheterogeneity was found within the rRNA structural genes and spacer regions. The length of each 16S, 23S and 5S rDNA were almost identical among the ten operons, however, the intergenic spacer region of 16S-23S and 23S-5S were variable in the length depending on loci of the rRNA operons on the chromosome. Nucleotide sequences of the helix 19, helix 19a, helix 20 and helix 21 of 23S rDNA were divergent and the diversity appeared to be correlated with the loci of the rRNA operons on the chromosome.  相似文献   

6.
Summary The genes coding for rRNAs from mustard chloroplasts were mapped within the inverted repeat regions of intact ctDNA and on ctDNA fragments cloned in pBR322. R-loop analysis and restriction endonuclease mapping show that the genes for 16S rRNA map at distances of 17 kb from the junctions of the repeat regions with the large unique region. The genes for 23S rRNA are located at distances of 2.8 kb from the junctions with the small unique region. Genes for 4.5S and 5S rRNA are located in close proximity to the 23S rRNA genes towards the small unique region. DNA sequencing of portions of the 5 terminal third from the mustard 16S rRNA gene shows 96–99% homology with the corresponding regions of the maize, tobacco and spinach chloroplast genes. Sequencing of the region proximal to the 16S rRNA gene reveals the presence of a tRNAVal gene in nearly the same position and with identical sequence as in maize, tobacco and spinach. Somewhat less but still strong homology is also observed for the tDNA Val/16S rDNA intercistronic regions and for the regions upstream of the tRNAVal gene. However, due to many small and also a few larger deletions and insertions in the leader region, common reading frames coding for homologous peptides larger than 44 amino acids can not be detected; it is therefore unlikely that this region contains a protein coding gene.  相似文献   

7.
The nucleotide sequences of the rRNA genes and the 5 flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5 leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S–23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S–5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries.  相似文献   

8.
Summary The nucleotide sequence of an entire spacer region between the 16S and 23S rRNA genes of the rrnA operon from a blue-green alga, Anacystis nidulans, has been determined. The spacer region is 545 base pairs long and encodes tRNAfle and tRNAAla in the order of 16S rRNA-tRNAfle-tRNAAla-23S rRNA. A striking feature is that the A. nidulans tRNAfle gene contains no 3-CCA sequence while the tRNAAla gene does. These spacer tRNA genes show strong sequence homology with those of chloroplasts and bacteria.  相似文献   

9.
Hybridization studies of Euglena chloroplast 125I-labeled tRNAs to restriction fragments of Euglena chloroplast DNA have shown that the spacer between the 16S and 23S rRNA genes, in two and possibly all three of the ribosomal DNA units, contains genes for tRNAIle and tRNAAla, whereas a tRNA gene (for either tRNATrp or tRNAGlu) is located before probably all four 16S rRNA genes present on the chloroplast DNA molecule.  相似文献   

10.
Summary A complete physical map of the Codium fragile chloroplast genome was constructed and the locations of a number of chloroplast genes were determined. Several features of this circular genome are unusual. At 89 kb in size, it is the smallest chloroplast genome known. Unlike most chloroplast genomes it lacks any large repeat elements. The 8 kb spacer region between the 16 S and 23 S rRNA genes is the largest such spacer characterized to date in chloroplast DNA. This spacer region is also unusual in that it contains the rps12 gene or at least a portion thereof. Three regions polymorphic for size are present in the Codium chloroplast genome. The psbA and psbC genes map closely to one of these regions, another region is in the spacer between the 16 S and 23 S rRNA genes and the third is very close to or possibly within the 16 S rRNA gene. The gene order in the Codium genome bears no marked resemblance to either the consensus vascular plant order or to that of any green algal or bryophyte genome. Present address: Department of Biology, Texas A&M University, College Station, TX 77843; USA  相似文献   

11.
The 2201-bp spacer between the chloroplast ribosomal 16S and 23S genes ofSpinacia oleracea was sequenced. It contains the genes of the tRNAIle (GAU) and tRNAAla (UGC) which are both interrupted by introns of respectively 728 and 816 bp. These introns belong to the class II according to the classfication of Michel and Dujon [17]. Comparison of the rDNA spacer sequence of maize, tobacco and spinach indicates that no conserved polypeptide is encoded within the introns of the two tRNA genes and that the two main insertions/deletions between the three plants are located within two loops of the class II introns secondary structure, which is therefore conserved. Based on the sequence complementarity observed between the upstream and downstream parts, of the 16S and 23S rRNA genes, RNase III-like secondary structures involved in the processing of the rRNA precursor are proposed.  相似文献   

12.
FiveP. bryantii B14 16S rRNA gene copies and their flanking regions were cloned and analyzed. A genomic library was constructed and screened with oligonucleotide DNA probe specific for 16S rRNA gene ofP. bryantii. Five out of six different copies of 16S RNA gene were recovered and sequenced. Only minor differences (0.3–1.2%) between copies were detected within the 1541 bp long sequence. The impact of the sequence variability of 16S rRNA gene copies on phylogenetic positioning ofP. bryantii was determined. All five sequences from clonedP. bryantii B14 16S rRNA genes were placed in the same operational taxonomy unit. Control regions of all five analyzed rRNA operatons were almost identical and three candidate for promoter sequences were identified by Neutral Network Promoter Prediction. Spacer regions between 16S-rRNA and 23S rRNA genes in all five cloned copies were 543 bp long and genes for tRNAlle and tRNAAla were identified inside this regions.  相似文献   

13.
14.
Summary Eight transfer RNA (tRNA) genes which were previously mapped to five regions of the Pisum sativum (pea) chloroplast DNA (ctDNA) have been sequenced. They have been identified as tRNAVal(GAC), tRNAAsn(GUU), tRNAArg(ACG), tRNALeu(CAA), tRNATyr(GUA), tRNAGlu(UUC), tRNAHis(GUG), and tRNAArg(UCU) by their anticodons and by their similarity to other previously identified tRNA genes from the chloroplast DNAs of higher plants or from E. gracilis. In addition,two other tRNA genes, tRNAGly (UCC) and tRNAIle(GAU), have been partially sequenced. The tRNA genes are compared to other known chloroplast tRNA genes from higher plants and are found to be 90–100% homologous. In addition there are similarities in the overall arrangement of the individual genes between different plants. The 5 flanking regions and the internal sequences of tRNA genes have been studied for conserved regions and consensus sequences. Two unusual features have been found: there is an apparent intron in the D-loop of the tRNAGly(UCC), and the tRNAGlu(UUC) contains GATTC in its T-loop.  相似文献   

15.
The nucleotide sequence of a 7.4 kb region containing the entire plastid ribosomal RNA operon of the nongreen parasitic plant Epifagus virginiana has been determined. Analysis of the sequence indicates that all four rRNA genes are intact and almost certainly functional. In contrast, the split genes for tRNAIle and tRNAAla present in the 16S-23S rRNA spacer region have become pseudogenes, and deletion upstream of the 16S rRNA gene has removed a tRNAVal gene and most of the promoter region for the rRNA operon. The rate of nucleotide substitution in 16S and 23S rRNAs is several times higher in Epifagus than in tobacco, a related photosynthetic plant. Possible reasons for this, including relaxed translational constraints, are discussed.  相似文献   

16.
Summary We have determined the nucleotide sequence of an unlinked 5 S rRNA gene region from a thermophilic archaebacterium, Thermococcus celer. This 5 S rRNA gene is flanked by a single tRNAAsp sequence and appears to be transcribed as part of a very short operon consisting of only two gene sequences. Comparative studies indicate features in the 5 and 3 flanking sequences, which bear similarity with promoter and termination signals in eubacteria, but also reflect unusual features found in at least some archaebacteria. The evolution of this unlinked operon and the unusual features are discussed.  相似文献   

17.
Chloroplast DNA base substitutions: an experimental assessment   总被引:1,自引:0,他引:1  
An experimental assessment was carried out to determine directly the frequency and types of spontaneous base substitutions that occur in chloroplast DNA. A target site within the chloroplast 16S rRNA gene of the green alga Chlamydomonas reinhardtii was chosen for the assay. Mutations at this site were known to confer spectinomycin resistance and simultaneously result in the loss of an AatII cleavage site. In the experiments reported here, base substitutions at any individual base occurred at a frequency in the range of 0.9–11 per 109 viable cells plated. Four new mutations that confer resistance to spectinomycin were identified at the target site in the Chlamydomonas chloroplast 16S rRNA gene. When the relative rates of transition and transversion mutations were quantified, a bias toward transversions was observed. The prominence of A/T C/G transversions in the observed mutation spectrum suggests that oxidative damage may be the major cause of base substitution mutations within the chloroplast.  相似文献   

18.
The phylogenetic interrelationships of members of theClostridium botulinum complex of species was investigated by direct sequencing of their 16S rRNA genes. Comparative analysis of the 16S rRNA sequences demonstrated the presence of four phylogenetically distinct lineages corresponding to: i) proteolyticC. botulinum types A, B, and F, andC. sporogenes, ii) saccharolytic types B, E and F, iii) types C and D andC. novyi type A, and iv) type G andC. subterminale. The phylogenetic groupings obtained from the 16S rRNA were in complete agreement with the four divisions recognised within the species complex on the basis of phenotypic criteria.  相似文献   

19.
Stenomitos terricola FBCC-A190 was collected from soils around the trees of Mt. Gwanggyo, located in Yeongtong-gu, Suwon-si, Gyeonggi-do. S. terricola FBCC-A190 is a thin and simple filament with a cell length that is longer than its width. It has a thin and firm sheath, exhibiting a blue-green color. Species belonging to genus Stenomitos is semi-cryptic species with slight morphological differences from each other. They were confirmed as Stenomitos species by analysis using 16S rRNA and 16S–23S ITS. A monophyletic cluster was formed with the previously reported genus Stenomitos, with 16S rRNA gene sequences sharing similarities of 95.9–97.9% except for S. pantisii TAU-MAC 4318. In addition, 16S–23S ITS gene sequencing showed tRNAAla, tRNAIle and V2, similar to the previously reported genus Stenomitos. From these results, Stenomitos terricola sp. nov. was proposed as a new species belonging to genus Stenomitos.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号