首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Phytotoxic Compounds produced by Fusarium equiseti   总被引:2,自引:0,他引:2  
Culture filtrates of several strains of Fusarium equiseti (Corda)Sacc. were found to be highly phytotoxic. Several phytotoxicsubstances were isolated; the most important of these was acolourless crystalline compound, diacetoxyscirpenol, m.p. 161-2°,C19H26O7. Though highly phytotoxic in many respects, it markedlystimulates elongation of cress roots at 0.01–0.5 µg./ml.This is not an anti-auxin effect. Diacetoxyscirpenol is at mostonly slightly inhibitory to fungi and bacteria, but is highlytoxic to rats. Two minor metabolic products, m.p. 135-6°and 185-8° respectively, are also described. They, too,were highly phytotoxic, though their spectra of activity weresomewhat different from that of diacetoxyscirpenol. They alsowere highly toxic to rats. Production of these substances isprobably not important in the aetiology of disease symptomsin plants parasitized by F. equiseti, but may be significantin cases of toxicosis of animals fed with grain infected byFusaria. Scirpentriol, a hydrolysis product of diacetoxyscirpenol,is much less phytotoxic but of equal toxicity to rats.  相似文献   

2.
One fluorescent compound previously named TDP-2 was isolated and purified from a rice culture of Fusarium equiseti (Alaska 2-2). Mass spectral and nuclear magnetic resonance data indicated that it is a C-3'-N-acetyl derivative of fusarochromanone, a newly discovered mycotoxin. Time course studies of synthesis of these two compounds on autoclaved rice and Czapek-Dox medium enriched with soybean peptone indicated that fusarochromanone was converted to TDP-2 in the cultures. A high concentration of peptone in the liquid medium may stimulate both fusarochromanone synthesis and its conversion to TDP-2.  相似文献   

3.
A fungus identified as Fusarium equiseti was isolated from soil and found to carry out 7β-hydroxylation of lithocholic acid to ursodeoxycholic acid (35% yield; 350 mg/liter) in 112 h.  相似文献   

4.
Contamination of small-grain cereals with the fungal species Fusarium graminearum, F. culmorum, F. poae, F. sporotrichioides and F. equiseti is an important source of trichothecenes, Zearalenone and other mycotoxins which cause serious diseases in human and animals. Additionally, these species contribute to Fusarium Head Blight, a disease which produces important losses in cereal yield. Early detection and control of these Fusarium species is crucial to prevent toxins entering the food chain and a useful tool in disease management practices. We describe the development of specific PCR assays to F. graminearum, F. culmorum, F. poae, F. sporotrichioides and F. equiseti using DNA from pure fungal cultures as well as from naturally infected wheat seeds, using in this case a rapid and easy protocol for DNA isolation. The specific primers were designed on the basis of IGS sequences (Intergenic Spacer of rDNA), a multicopy region in the genome that permits to enhance the sensitivity of the assay in comparison with PCR assays based on single-copy sequences.  相似文献   

5.
Ursodeoxycholic acid dissolves cholesterol gallstones in humans. In the present study optimum conditions for ursodeoxycholic acid production by Fusarium equiseti M41 were studied. Resting mycelia of F. equiseti M41 showed maximum conversion at 28 degrees C, pH 8.0, and dissolved oxygen tension of higher than 60% saturation. Monovalent cations, such as Na+, K+, and Rb+, stimulated the conversion rate more than twofold. In the presence of 0.5 M KCl, the initial uptake rate and equilibrium concentration of lithocholic acid (substrate) were enhanced by 5.7- and 1.7-fold, respectively. We confirmed that enzyme activity catalyzing 7 beta-hydroxylation of lithocholic acid was induced by substrate lithocholic acid. The activity in the mycelium was controlled by dissolved oxygen tension during cultivation: with a dissolved oxygen tension of 15% and over, the activity peak appeared at 25 h of cultivation, whereas the peak was delayed to 34 and 50 h with 5 and 0% dissolved oxygen tension, respectively. After reaching the maximum, the 7 beta-hydroxylation activity in the mycelium declined rapidly at pH 7.0, but the decline was retarded by increasing the pH to 8.0. Several combinations of operations, such as pH shift (from pH 7 to 8), addition of 0.5 M KCl, and dissolved oxygen control, were applied to the production of ursodeoxycholic acid in a jar fermentor, and a much larger amount of ursodeoxycholic acid (1.2 g/liter) was produced within 96 h of cultivation.  相似文献   

6.
Ursodeoxycholic acid dissolves cholesterol gallstones in humans. In the present study optimum conditions for ursodeoxycholic acid production by Fusarium equiseti M41 were studied. Resting mycelia of F. equiseti M41 showed maximum conversion at 28 degrees C, pH 8.0, and dissolved oxygen tension of higher than 60% saturation. Monovalent cations, such as Na+, K+, and Rb+, stimulated the conversion rate more than twofold. In the presence of 0.5 M KCl, the initial uptake rate and equilibrium concentration of lithocholic acid (substrate) were enhanced by 5.7- and 1.7-fold, respectively. We confirmed that enzyme activity catalyzing 7 beta-hydroxylation of lithocholic acid was induced by substrate lithocholic acid. The activity in the mycelium was controlled by dissolved oxygen tension during cultivation: with a dissolved oxygen tension of 15% and over, the activity peak appeared at 25 h of cultivation, whereas the peak was delayed to 34 and 50 h with 5 and 0% dissolved oxygen tension, respectively. After reaching the maximum, the 7 beta-hydroxylation activity in the mycelium declined rapidly at pH 7.0, but the decline was retarded by increasing the pH to 8.0. Several combinations of operations, such as pH shift (from pH 7 to 8), addition of 0.5 M KCl, and dissolved oxygen control, were applied to the production of ursodeoxycholic acid in a jar fermentor, and a much larger amount of ursodeoxycholic acid (1.2 g/liter) was produced within 96 h of cultivation.  相似文献   

7.
A fluorescent compound was isolated and purified from rice cultures of Fusarium equiseti (Alaska 2-2). Mass spectrometry and nuclear magnetic resonance data indicated that its structure is 2,2-dimethyl-5-amino-6-(3′-hydroxyl-4′-methoxyl-butyryl)-4-chromone. It is an analog of the mycotoxin fusarochromanone, in which the amino group on C-3′ is replaced by a hydroxyl group and the hydroxyl group on C-4′ is replaced by a methoxyl group.  相似文献   

8.
One fluorescent compound previously named TDP-2 was isolated and purified from a rice culture of Fusarium equiseti (Alaska 2-2). Mass spectral and nuclear magnetic resonance data indicated that it is a C-3'-N-acetyl derivative of fusarochromanone, a newly discovered mycotoxin. Time course studies of synthesis of these two compounds on autoclaved rice and Czapek-Dox medium enriched with soybean peptone indicated that fusarochromanone was converted to TDP-2 in the cultures. A high concentration of peptone in the liquid medium may stimulate both fusarochromanone synthesis and its conversion to TDP-2.  相似文献   

9.
10.
11.
Colonisation of plant roots by endophytic fungi may confer benefits to the host such as protection against abiotic or biotic stresses or plant growth promotion. The exploitation of these properties is of great relevance at an applied level, either to increase yields of agricultural crops or in reforestation activities. Fusarium equiseti is a naturally occurring endophyte in vegetation under stress in Mediterranean ecosystems. Pochonia chlamydosporia is a nematode egg-parasitic fungus with a worldwide distribution. Both fungi have the capacity to colonise roots of non-host plants endophytically and to protect them against phytopathogenic fungi under laboratory conditions. The aim of this study was to evaluate the root population dynamics of these fungi under non-axenic practical conditions. Both fungal species were inoculated into barley roots. Their presence in roots and effects on plant growth and incidence of disease caused by the pathogen Gaeumannomyces graminis var. tritici were monitored periodically. Both fungi colonised barley roots endophytically over the duration of the experiment and competed with other existing fungal root colonisers. Furthermore, colonisation of roots by P. chlamydosporia promoted plant growth. Although a clear suppressive effect on disease could not be detected, F. equiseti isolates reduced the mean root lesion length caused by the pathogen. Results of this work suggest that both F. equiseti and P. chlamydosporia are long-term root endophytes that confer beneficial effects to the host plant.  相似文献   

12.
The increase of Mg2+, from 1.3 to 3 microM, in growth medium of F. equiseti and F. acuminatum increased intracellular magnesium levels from 0.83 and 0.81 microM to 1.75 and 1.42 microM on the 12th day, respectively. Intracellular magnesium levels also elevated depending upon the number of incubation days. The maximum manganese levels of F. equiseti and F. acuminatum obtained in 1.6 microM Mg2+ culture medium were 0.67 and 1.23 microM, while maximum iron levels were determined to be 1.3 microM Mg2+ as 0.51 and 0.29 microM, respectively. The maximum intracellular iron and manganese levels were decreased significantly with increasing Mg2+ concentration in the culture medium and were increased depending upon the incubation period. However, intracellular zinc levels of these strains didn't change with Mg2+ concentration and incubation period.The maximum superoxide dismutase (MnSOD) activities of F. equiseti and F. acuminatum, related to increased intracellular manganese levels up to 1.6 microM Mg2+ in growth medium, were determined to be 78 and 110 IU/mg, respectively. CAT activity variations showed agreement with SOD activity and reached a maximum at 320 and 225 IU/mg under the same conditions. The minimum LPO levels of the Fusarium strains with the maximum MnSOD and CAT activities were determined as 1.2 and 0.9 nmol MDA/g., wet weight. The higher LPO level of F. equiseti grown at the same condition, in spite of 1.42-fold higher CAT activity due to the 1.41-fold lower SOD activity, as well as a 2.0-fold higher iron level, indicated increases in the generation of reactive oxygen species via the Fenton reaction.  相似文献   

13.
The mycotoxin fusarochromanone, a metabolite of Fusarium fungi, is able to induce tibial dyschondroplasia (TD) in chickens under experimental conditions. On the basis of health surveillance data on TD, two broiler farms with TD prevalence rates of up to 56% were identified. In the corresponding pelleted feed samples, fusarochromanone was detected in all 12 samples analyzed by column purification and TLC, with concentrations 4 to 59 micrograms/kg. No Fusarium fungi were available from the feed because of the pelleting process, but seven Fusarium equiseti strains previously isolated from Danish cereals were checked for fusarochromanone production, and all produced fusarochromanone at 57 to 1,435 mg/kg. Thus, the potential for fusarochromanone production by F. equiseti is considerable. The identification of fusarochromanone from feed and F. equiseti was confirmed by mass, infrared, and nuclear magnetic resonance spectral analyses. This is the first report of fusarochromanone as a naturally occurring contaminant.  相似文献   

14.
Fusarium equiseti M41 converts lithocholic acid to ursodeoxycholic acid. Adsorption of lithocholic acid particles to mycelia of F. equiseti M41 is essential in the conversion of lithocholic acid to ursodeoxycholic acid. Production of ursodeoxycholic acid was negligible when particles of lithocholic acid were absent. As the concentration of lithocholic acid particles increased, both the amount of mycelium-bound lithocholic acid and the production of ursodeoxycholic acid increased hyperbolically (K1/2 = 1.9 g/liter and Kmapparent = 1.9 g/liter. A fluorescent lithocholic acid derivative was used to confirm that insoluble particles of lithocholic acid attached to the surface of the mycelia. The hydrophobic nature of this binding was estimated from the close relationship observed between the hydrophobicity of bile acids and their binding capacity to the mycelia. By repeated washing with 30% dimethyl sulfoxide, two binding modes of lithocholic acid were distinguished, i.e., surface binding (59% of bound lithocholic acid) and tight binding (41% of bound lithocholic acid). From the amount of tightly bound lithocholic acid, the intracellular concentration of lithocholic acid was calculated to be 1,433-fold higher than its saturating concentration in the reaction mixture, thus promoting effective conversion to ursodeoxycholic acid in the mycelia. Several lines of evidence indicated that glycoproteins of the cell wall participated in the binding of lithocholic acid.  相似文献   

15.
L-Asparaginase is an antileukemic agent that depletes L-asparagine “an important nutrient for cancer cells” through the hydrolysis of L-asparagine into L-aspartic acid and ammonia leading to leukemia cell starvation and apoptosis in susceptible leukemic cell populations. Moreover currently, bacterial L-asparaginase has been limited by problems of lower productivity, stability, selectivity and a number of toxicities along with the resistance towards bacterial L-asparaginase. Then the current work aimed to provide pure L-asparaginase with in-vitro efficacy against various human carcinomas without adverse effects related to current L-asparaginase formulations. Submerged fermentation (SMF) bioprocess was applied and improved to maximize L-asparaginase production from Fusarium equiseti AHMF4 as alternative sources of bacteria. The enzyme production in SMF was maximized to reach 40.78 U mL−1 at the 7th day of fermentation with initial pH 7.0, incubation temperature 30 °C, 1.0% glucose as carbon source, 0.2% asparagine as nitrogen source, 0.1% alanine as amino acid supplement and 0.1% KH2PO4. The purification of AHMF4 L-asparaginase yielded 2.67-fold purification and 48% recovery with final specific activity of 488.1 U mg−1 of protein. Purified L-asparaginase was characterized as serine protease enzyme with molecular weight of 45.7 kDa beside stability at neutral pH and between 20 and 40 °C. Interestingly, purified L-asparaginase showed promising DPPH radical scavenging activity (IC50 69.12 μg mL−1) and anti-proliferative activity against cervical epitheloid carcinoma (Hela), epidermoid larynx carcinoma (Hep-2), hepatocellular carcinoma (HepG-2), Colorectal carcinoma (HCT-116), and breast adenocarcinoma (MCF-7) with IC50 equal to 2.0, 5.0, 12.40, 8.26 and 22.8 μg mL−1, respectively. The enzyme showed higher activity, selectivity and anti-proliferative activity against cancerous cells along with tiny cytotoxicity toward normal cells (WI-38) which indicates that it has selective toxicity and it could be applied as a less toxic alternative to the current formulations.  相似文献   

16.
The mycotoxin fusarochromanone, a metabolite of Fusarium fungi, is able to induce tibial dyschondroplasia (TD) in chickens under experimental conditions. On the basis of health surveillance data on TD, two broiler farms with TD prevalence rates of up to 56% were identified. In the corresponding pelleted feed samples, fusarochromanone was detected in all 12 samples analyzed by column purification and TLC, with concentrations 4 to 59 micrograms/kg. No Fusarium fungi were available from the feed because of the pelleting process, but seven Fusarium equiseti strains previously isolated from Danish cereals were checked for fusarochromanone production, and all produced fusarochromanone at 57 to 1,435 mg/kg. Thus, the potential for fusarochromanone production by F. equiseti is considerable. The identification of fusarochromanone from feed and F. equiseti was confirmed by mass, infrared, and nuclear magnetic resonance spectral analyses. This is the first report of fusarochromanone as a naturally occurring contaminant.  相似文献   

17.
Linamarase (EC. 3.2.1.21) was purified from different tissues of cassava (leaf, rind and tuber) to compare the kinetic properties and characteristics of the enzyme in these tissues. Purified enzyme preparation appeared as single band of average molecular size 70 kD in SDS-PAGE gels. The kinetic properties of linamarase with respect to pH and temperature indicated that tuber linamarase possessed a broader pH optimum and higher temperature stability as compared to leaf and rind enzymes. Differences in Km values for linamarin were observed with leaf linamarase having the highest Km value (500 μM) followed by rind (400 μM) and then tuber (250 μM) linamarases. Rind enzyme appeared to be less susceptible to urea denaturation than the leaf enzyme. Comparison of elution profiles from DEAE-Cellulose indicated that the relative amounts of the various ionic forms of the enzyme differed in the case of each tissue. Elution patterns of the enzyme from Con A-Sepharose also differed, suggesting difference in glycosylation among leaf, rind and tuber enzymes. This was confirmed by carbohydrate analysis which showed that the tuber linamarase contained significantly higher amount of protein bound carbohydrate. These results suggest the possible occurrence of different forms of linamarase in cassava.  相似文献   

18.
《Process Biochemistry》2004,39(11):1519-1524
Changes in pyruvate and ascorbate production and antioxidant enzyme activities together with lipid peroxidation levels in Fusarium equiseti were investigated in relation to changes in the concentrations of glucose and maltose as carbon sources in the range of 5–25 g/l in Armstrong Fusarium Medium (AFM). The highest pyruvate concentration obtained at 20 g/l maltose was 67.5 ± 0.69 μg/ml while ascorbic acid reached a maximum value at 25 g/l glucose of 1866±26.1 μg/ml The maximum superoxide dismutas (SOD) activities related to increased pyruvate production were determined in AFM medium containing 20 g/l glucose as 41.49±0.65 and maltose as 61.12±0.8 IU/mg. Catalase (CAT) activity variations showed coherence with SOD activity in a medium containing maltose and reached 219.11±2.8 IU/mg while they were decreased with increasing glucose concentration. glutathione peroxidase (GSH-Px) activities in F. equiseti did not change significantly with glucose and maltose concentration and were determined to be 1.21±0.22 and 1.67±0.15 IU/mg, respectively. Minimum lipid peroxidation levels for each carbon source were determined in both 20 g/l maltose and glucose concentrations as 0.9 and 1.62 nmol MDA/g wet weight.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号