首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A selection system has been devised for isolating hexokinase PII structural gene mutants that cause defects in carbon catabolite repression, but retain normal catalytic activity. We used diploid parental strains with homozygotic defects in the hexokinase PI structural gene and with only one functional hexokinase PII allele. Of 3,000 colonies tested, 35 mutants (hex1r) did not repress the synthesis of invertase, maltase, malate dehydrogenase, and respiratory enzymes. These mutants had additional hexokinase PII activity. In contrast to hex1 mutants (Entian et al., Mol. Gen. Genet. 156:99-105, 1977; F.K. Zimmermann and I. Scheel, Mol. Gen. Genet. 154:75-82, 1977), which were allelic to structural gene mutants of hexokinase PII and had no catalytic activity (K.-D. Entian, Mol. Gen. Gent. 178:633-637, 1980), the hex1r mutants sporulated hardly at all or formed aberrant cells. Those ascospores obtained were mostly inviable. As the few viable hex1r segregants were sterile, triploid cells were constructed to demonstrate allelism between hex1r mutants and hexokinase PII structural gene mutants. Metabolite concentrations, growth rate, and ethanol production were the same in hex1r mutants and their corresponding wild-type strains. Recombination of hexokinase and glucokinase alleles gave strains with different specific activities. The defect in carbon catabolite repression was strongly associated with the defect in hexokinase PII and was independent of the glucose phosphorylating capacity. Hence, a secondary effect caused by reduced hexose phosphorylation was not responsible for the repression defect in hex1 mutants. These results, and those with the hex1r mutants isolated, strongly supported our earlier hypothesis that hexokinase PII is a bifunctional enzyme with (i) catalytic activity and (ii) a regulatory component triggering carbon catabolite repression (Entian, Mol. Gen. Genet. 178:633-637, 1980; K.-D. Entian and D. Mecke, J. Biol. Chem. 257:870-874, 1982).  相似文献   

2.
Summary Hexokinase isoenzyme PI was cloned using a gene pool obtained from a yeast strain having only one functional hexokinase, isoenzyme PI. The gene was characterized using 20 restriction enzymes and located within a region of 2.0 kbp. The PI plasmid strongly hybridized with the PII plasmids isolated previously (Fröhlich et al. 1984). Hence there was a close relationship between the two genes, one of which must have been derived from the other by gene duplication. In conrrast, glucose repression was restored only in hexokinase PII transformants; PI transformants remained non-repressible. This observation provided additional evidence for the hypothesis of Entian (1980) that only hexokinase PII is necessary for glucose repression. Furthermore, glucose phosphorylating activity in PI transformants exceeded that of wild-type cells, giving clear evidence that the phosphorylating capacity is not important for glucose repression.  相似文献   

3.
Summary Mutants with reduced hexokinase activity previously isolated as resistant to carbon catabolite repression of invertase and maltase (Zimmermann and Scheel, 1977) were allele tested with mutant strains of Lobo and Maitra (1977) which had defects in one or several of the genes coding for glucokinase and the two unspecific hexokinases. It could be demonstrated, that the mutation abolishing carbon catabolite repression had occurred in a gene allelic to the structural gene of hexokinase PII. Moreover, the defective mutant allele for hexokinase PII isolated by Lobo and Maitra (1977) was also defective in carbon catabolite repression. Neither glucokinase nor hexokinase PI showed any effect on this regulatory system. Biochemical analysis in crude extracts also showed altered kinetic properties of hexokinases in the hex1 mutants. The results directly support the hypothesis previously put forward, that one of the hexokinases is not only active as a catalytic, but also as a regulatory protein.  相似文献   

4.
Summary Carbon catabolite repression in yeast depends on catalytic active hexokinase isoenzyme PII (Entian 1980a). A yeast strain lacking hexokinase isoenzymes PI and PII was transformed, using a recombinant pool with inserts of yeast nuclear DNA up to 10 kbp in length. One hundred transformants for hexokinase were obtained. All selected plasmids coded for hexokinase isoenzyme PII, none for hexokinase isoenzyme PI, and carbon catabolite repression was restored in the transformants. Thirty-five independently isolated stable plasmids were investigated further. Analysis with the restriction enzyme EcoRI showed that these plasmids fell into two classes with different restriction behaviour. One representative of each class was amplified in Escherichia coli and transferred back into the yeast hexokinase-deficient strain with concomitant complementation of the nuclear mutation. The two types of insert were analysed in detail with 16 restriction enzymes, having 0–3 cleavage sites on transformant vector YRp7. The plasmids differed from each other by the orientation of the yeast insert in the vector. After yeast transformation with fragments of one plasmid the hexokinase PII gene was localised within a region of 1.65 kbp.  相似文献   

5.
Genetic and biochemical analyses showed that hexokinase PII is mainly responsible for glucose repression in Saccharomyces cerevisiae, indicating a regulatory domain mediating glucose repression. Hexokinase PI/PII hybrids were constructed to identify the supposed regulatory domain and the repression behavior was observed in the respective transformants. The hybrid constructs allowed the identification of a domain (amino acid residues 102-246) associated with the fructose/glucose phosphorylation ratio. This ratio is characteristic of each isoenzyme, therefore this domain probably corresponds to the catalytic domain of hexokinases PI and PII. Glucose repression was associated with the C-terminal part of hexokinase PII, but only these constructs had high catalytic activity whereas opposite constructs were less active. Reduction of hexokinase PII activity by promoter deletion was inversely followed by a decrease in the glucose repression of invertase and maltase. These results did not support the hypothesis that a specific regulatory domain of hexokinase PII exists which is independent of the hexokinase PII catalytic domain. Gene disruptions of hexokinases further decreased repression when hexokinase PI was removed in addition to hexokinase PII. This proved that hexokinase PI also has some function in glucose repression. Stable hexokinase PI overproducers were nearly as effective for glucose repression as hexokinase PII. This showed that hexokinase PI is also capable of mediating glucose repression. All these results demonstrated that catalytically active hexokinases are indispensable for glucose repression. To rule out any further glycolytic reactions necessary for glucose repression, phosphoglucoisomerase activity was gradually reduced. Cells with residual phosphoglucoisomerase activities of less than 10% showed reduced growth on glucose. Even 1% residual activity was sufficient for normal glucose repression, which proved that additional glycolytic reactions are not necessary for glucose repression. To verify the role of hexokinases in glucose repression, the third glucose-phosphorylating enzyme, glucokinase, was stably overexpressed in a hexokinase PI/PII double-null mutant. No strong effect on glucose repression was observed, even in strains with 2.6 U/mg glucose-phosphorylating activity, which is threefold increased compared to wild-type cells. This result indicated that glucose repression is only associated with the activity of hexokinases PI and PII and not with that of glucokinase.  相似文献   

6.
Summary Mutants were investigated that had elevated hexokinase activity and had been isolated previously as resistant to carbon catabolite repression (Zimmermann and Scheel 1977). They were allele tested with mutant strains of Lobo and Maitra (1977), which had defects in one or more of the genes coding for glucokinase and unspecific hexokinases. It was shown, that the mutation abolishing carbon catabolite repression had occured in a gene that was not allelic to any of the structural genes coding for hexokinases. This indicated that a regulatory defect was responsible for elevated hexokinase activity. This agreed with observations that hexokinase activities were like wild-type during growth on non-fermentable carbon sources in hex2 mutants. Recombination between the mutant allele hex2 and mutant alleles hxk1 and hxk2, coding for hexokinase PI and PII respectively, clearly demonstrated that only hexokinase PII was elevated in hex2 mutants. When hex2 mutant cells grown on YEP ethanol were shifted to YEP glucose media, hexokinase activity increased after 30min. This increase depended on de novo protein synthesis. hex2 mutants provide evidence, that carbon catabolite repression and synthesis of hexokinase PII are under common regulatory control.  相似文献   

7.
8.
Abstract Hexose phosphorylation was studied in Aspergillus nidulans wild-type and in a fructose non-utilising mutant ( frA ). The data indicate the presence of at least one hexokinase and one glucokinase in wild-type A. nidulans , while the fr A1 mutant lacks hexokinase activity. The A. nidulans gene encoding hexokinase was isolated by complementation of the fr A1 mutation. The absence of hexokinase activity in the fr A1 mutant did not interfere with glucose repression of the enzymes involved in alcohol and l-arabinose catabolism. This suggests that, unlike the situation in yeast where mutation of hexokinase PII abolishes glucose repression, the A. nidulans hexokinase might not be involved in glucose repression.  相似文献   

9.
Summary The HEX2 gene which is necessary for glucose repression and is involved in the regulation of hexokinase PII synthesis and maltose uptake, has been cloned by complementation of a hex2 mutant, and selection for restored growth on maltose. Glucose repression in the transformants was like that in the wild type. The HEX2 gene was localized within a 2.15 kb fragment. The restriction map was confirmed by Southern hybridization of genomic DNA. Based on 30 tetrads, the linkage between HEX2 and TRP1 was determined as 10 cM. Plasmid integration directed to the genomic site of the cloned gene also gave a similar linkage distance between the amino acid auxotroph plasmid marker and genomic TRP1. Gene disruption of HEX2 yielded nonrepressible transformants with elevated hexokinase PII activity showing inhibition by maltose; this provides clear evidence that the HEX2 gene has been isolated.  相似文献   

10.
The HXK2 gene product has an important role in controlling carbon catabolite repression in Saccharomyces cerevisiae. We have raised specific antibodies against the hexokinase PII protein and have demonstrated that it is a 58 kDa phosphoprotein with protein kinase activity. The predicted amino acid sequence of the HXK2 gene product has significant homology to the conserved catalytic domain of mammalian and yeast protein kinases. Protein kinase activity was located in a different domain of the protein from the hexose-phosphorylating activity. The hexokinase PII protein level remained unchanged in P2T22D mutant cells (hxk1 HXK2 glk1) growing in a complex medium with glucose. The protein kinase activity of hexokinase PII is regulated by the glucose concentration of the culture medium. Exit from the carbon catabolite repression phase and entry into derepression phase may be controlled, in part, by modulation of the 58 kDa protein kinase activity by changes in cyclic AMP concentration.  相似文献   

11.
The HXK2 gene is required for a variety of regulatory effects leading to an adaptation for fermentative metabolism in Saccharomyces cerevisiae. However, the molecular basis of the specific role of Hxk2p in these effects is still unclear. One important feature in order to understand the physiological function of hexokinase PII is that it is a phosphoprotein, since protein phosphorylation is essential in most metabolic signal transductions in eukaryotic cells. Here we show that Hxk2p exists in vivo in a dimeric-monomeric equilibrium which is affected by phosphorylation. Only the monomeric form appears phosphorylated, whereas the dimer does not. The reversible phosphorylation of Hxk2p is carbon source dependent, being more extensive on poor carbon sources such as galactose, raffinose, and ethanol. In vivo dephosphorylation of Hxk2p is promoted after addition of glucose. This effect is absent in glucose repression mutants cat80/grr1, hex2/reg1, and cid1/glc7. Treatment of a glucose crude extract from cid1-226 (glc7-T152K) mutant cells with λ-phosphatase drastically reduces the presence of phosphoprotein, suggesting that CID1/GLC7 phosphatase together with its regulatory HEX2/REG1 subunit are involved in the dephosphorylation of the Hxk2p monomer. An HXK2 mutation encoding a serine-to-alanine change at position 15 [HXK2 (S15A)] was to clarify the in vivo function of the phosphorylation of hexokinase PII. In this mutant, where the Hxk2 protein is unable to undergo phosphorylation, the cells could not provide glucose repression of invertase. Glucose induction of HXT gene expression is also affected in cells expressing the mutated enzyme. Although we cannot rule out a defect in the metabolic state of the cell as the origin of these phenomena, our results suggest that the phosphorylation of hexokinase is essential in vivo for glucose signal transduction.  相似文献   

12.
E Kopetzki  K D Entian  D Mecke 《Gene》1985,39(1):95-101
The nucleotide sequence of the yeast glycolytic hexokinase isoenzyme PI-gene, HXK1, has been determined by sequencing the yeast DNA insert of the previously isolated plasmid HXK1 clone [Entian et al., Mol. Gen. Genet. 198 (1984) 50-54]. The structural gene sequence included 1452 bp coding for 484 amino acid (aa) residues corresponding to the Mr of 153 605 for the HXK1 monomer. Several initiation regions and termination points were located using nuclease S1 mapping. The HXK1 sequence was 76% homologous with that of HXK2, which is responsible for triggering glucose repression in yeasts. Since HXK1 is not involved in this regulatory system, the regulatory function of HXK2 must correspond to one or more of the differences between both isoenzymes. Most changes in the amino acid sequence were statistically distributed; however, four clustered regions with more than five altered aa residues were identified.  相似文献   

13.
Saccharomyces cerevisiae regulatory genes CAT1 and CAT3 constitute a positive control circuit necessary for derepression of gluconeogenic and disaccharide-utilizing enzymes. Mutations within these genes are epistatic to hxk2 and hex2, which cause defects in glucose repression. cat1 and cat3 mutants are unable to grow in the presence of nonfermentable carbon sources or maltose. Stable gene disruptions were constructed inside these genes, and the resulting growth deficiencies were used for selecting epistatic mutations. The revertants obtained were tested for glucose repression, and those showing altered regulatory properties were further investigated. Most revertants belonged to a single complementation group called cat4. This recessive mutation caused a defect in glucose repression of invertase, maltase, and iso-1-cytochrome c. Additionally, hexokinase activity was increased. Gluconeogenic enzymes are still normally repressible in cat4 mutants. The occurrence of recombination of cat1::HIS3 and cat3::LEU2 with some cat4 alleles allowed significant growth in the presence of ethanol, which could be attributed to a partial derepression of gluconeogenic enzymes. The cat4 complementation group was tested for allelism with hxk2, hex2, cat80, cid1, cyc8, and tup1 mutations, which were previously described as affecting glucose repression. Allelism tests and tetrad analysis clearly proved that the cat4 complementation group is a new class of mutant alleles affecting carbon source-dependent gene expression.  相似文献   

14.
15.
Previously, we described a mutation glr1-1 in Saccharomyces carlsbergensis which pleiotropically relieves the synthesis of the following enzymes from glucose repression: maltase, galactokinase, alpha-galactosidase, NADH:cytochrome c reductase, and cytochrome c oxidase (C. A. Michels and A. Romanowski, J. Bacteriol, 143:674-679, 1980.) In this report, we demonstrate that glr1-1 and two other alleles, glr1-3 and glr1-16, are also insensitive to the glucose repression of invertase synthesis. Determinations of the levels of hexokinase activity and the rate of glucose transport in these mutants show that both are reduced as compared with the parent strain. Complementation tests and genetic analysis indicate that the glr1 mutations are allelic to HXK2, the structural gene for hexokinase B. The significance of this result is discussed with regard to the mechanism of glucose repression in S. carlsbergensis.  相似文献   

16.
Two glucose-phosphorylating enzymes, a hexokinase phosphorylating both glucose and fructose, and a glucose-specific glucokinase were electrophoretically separated in the methylotrophic yeastHansenula polymorpha. Hexokinase-negative mutants were isolated inH. polymorpha by using mutagenesis, selection and genetic crosses. Regulation of synthesis of the sugar-repressed alcohol oxidase, catalase and maltase was studied in different hexose kinase mutants. In the wild type and in mutants possessing either hexokinase or glucokinase, glucose repressed the synthesis of maltase, alcohol oxidase and catalase. Glucose repression of alcohol oxidase and catalase was abolished in mutants lacking both glucose-phosphorylating enzymes (i.e. in double kinase-negative mutants). Thus, glucose repression inH. polymorpha cells requires a glucose-phosphorylating enzyme, either hexokinase or glucokinase. The presence of fructose-phosphorylating hexokinase in the cell was specifically needed for fructose repression of alcohol oxidase, catalase and maltase. Hence, glucose or fructose has to be phosphorylated in order to cause repression of the synthesis of these enzymes inH. polymorpha suggesting that sugar repression in this yeast therefore relies on the catalytic activity of hexose kinases.  相似文献   

17.
The extracellular proteases of Aspergillus nidulans are produced in response to limitation of carbon, nitrogen, or sulfur, even in the absence of exogenous protein. Mutations in the A. nidulans xprF and xprG genes have been shown to result in elevated levels of extracellular protease in response to carbon limitation. The xprF gene was isolated and sequence analysis indicates that it encodes a 615-amino-acid protein, which represents a new type of fungal hexokinase or hexokinase-like protein. In addition to their catalytic role, hexokinases are thought to be involved in triggering carbon catabolite repression. Sequence analysis of the xprF1 and xprF2 alleles showed that both alleles contain nonsense mutations. No loss of glucose or fructose phosphorylating activity was detected in xprF1 or xprF2 mutants. There are two possible explanations for this observation: (1) the xprF gene may encode a minor hexokinase or (2) the xprF gene may encode a protein with no hexose phosphorylating activity. Genetic evidence suggests that the xprF and xprG genes are involved in the same regulatory pathway. Support for this hypothesis was provided by the identification of a new class of xprG(-) mutation that suppresses the xprF1 mutation and results in a protease-deficient phenotype.  相似文献   

18.
The SNF1 gene product of Saccharomyces cerevisiae is required to derepress expression of many glucose-repressible genes, including the SUC2 structural gene for invertase. Strains carrying a recessive snf1 mutation are unable to ferment sucrose. We have isolated 30 partial phenotypic revertants of a snf1 mutant that were able to ferment sucrose. Genetic characterization of these revertants showed that the suppressor mutations were all recessive and defined eight complementation groups, designated ssn1 through ssn8 (suppressor of snf1 ). The revertants were assayed for secreted invertase activity, and although activity was detected in members of each complementation group, only the ssn6 strains contained wild-type levels. Synthesis of secreted invertase in ssn6 strains was found to be constitutive, that is, insensitive to glucose repression; moreover, the ssn6 mutations also conferred constitutivity in a wild-type ( SNF1 ) genetic background and are, therefore, not merely suppressors of snf1 . Pleiotropic defects were observed in ssn6 mutants. Genetic analysis suggested that the ssn6 mutations are allelic to the cyc8 mutation isolated by R. J. Rothstein and F. Sherman, which causes increased production of iso-2-cytochrome c. The data suggest a regulatory function for SSN6 .  相似文献   

19.
Mutants of Saccharomyces cerevisiae resistant to carbon catabolite repression.   总被引:26,自引:0,他引:26  
Summary Mutants with defective carbon catabolite repression have been isolated in the yeast Saccharomyces cerevisiae using a selective procedure. This was based on the fact that invertase is a glucose repressible cell wall enzyme which slowly hydrolyses raffinose to yield fructose and that the inhibitory effects of 2-deoxyglucose can be counteracted by fructose. Repressed cells were plated on a raffinose-2-deoxyglucose medium and the resistant cells growing up into colonies were tested for glucose non-repressible invertase and maltase. The yield of regulatory mutants was very high. All were equally derepressed for invertase and maltase, no mutants were obtained with only non-repressible invertase synthesis which was the selected function. A total of 61 mutants isolated in different strains were allele tested and could be attributed to three genes. They were all recessive. Mutants in one gene had reduced hexokinase activities, the other class, located in a centromere linked gene, had elevated hexokinase levels and was inhibited by maltose. Mutants in a third gene were isolated on a 2-deoxyglucose galactose medium and had normal hexokinase levels. A partial derepression was observed for malate dehydrogenase in all mutants. Isocitrate lyase, however, was still fully repressible.  相似文献   

20.
The relationship between the xylose induced decrease in hexokinase PII activity and the derepression of invertase synthesis in yeast is described. When xylose was added to cells growing in a chemostat under nitrogen limitation, the catabolic repression was supressed as shown by the large increase on invertase levels even if glucose remained high. The glucose phosphorylating-enzymes were separated by hydroxylapatite chromatography and it is shown that the treatment with xylose is accompanied by a loss of 98% hexokinase PII and a 50% of the PI isoenzyme, whereas the levels of glucokinase as well as those of glucose-6-phosphate, fructose-6-phosphate, pyruvate and ATP remained unaffected.The analysis of the enzymes present in cells grown in ethanol, limiting glucose and high glucose, shows that hexokinase PII predominates in cells under catabolic repression, the opposite is true for glucokinase, whereas hexokinase PI remains unaffected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号