首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
F L Menke  A Champion  J W Kijne    J Memelink 《The EMBO journal》1999,18(16):4455-4463
Jasmonate (JA) is an important plant stress hormone that induces various plant defense responses, including the biosynthesis of protective secondary metabolites. The induction of the secondary metabolite biosynthetic gene Strictosidine synthase (Str) in Catharanthus roseus (periwinkle) cells by elicitor requires JA as a second messenger. A 42 bp region in the Str promoter is both necessary and sufficient for JA- and elicitor-responsive expression. This region is unlike other previously identified JA-responsive regions, and contains a GCC-box-like element. Yeast one-hybrid screening identified cDNAs encoding two AP2-domain proteins. These octadecanoid-derivative responsive Catharanthus AP2-domain (ORCA) proteins bind in a sequence-specific manner the JA- and elicitor-responsive element. ORCA2 trans-activates the Str promoter and its expression is rapidly inducible with JA and elicitor, whereas Orca1 is expressed constitutively. The results indicate that a GCC-box-like element and ORCA2 play key roles in JA- and elicitor-responsive expression of the terpenoid indole alkaloid biosynthetic gene Str.  相似文献   

4.
5.
6.
7.
8.
9.
10.
Berger S 《Planta》2002,214(4):497-504
Jasmonates are naturally occurring signal compounds that regulate plant growth and development, and are involved in plant responses to several environmental stress factors. The mode of action of jasmonates has been investigated traditionally by analysis of the effects of exogenous application of these compounds, including identification of jasmonate-responsive genes and determination of their expression and responsive promoter elements. In addition, jasmonate biosynthesis has been studied by identification of biosynthetic enzymes, use of inhibitors and determination of endogenous jasmonate levels. Recently, several mutants defective in jasmonate biosynthesis and signaling have been isolated and their phenotypes shed new light on the role of jasmonates and jasmonate signaling in plant responses to pathogens, insects and ozone.  相似文献   

11.
12.
13.
The vsp1 gene of Arabidopsis thaliana encodes a storage protein that accumulates in vegetative organs. Transgenic plants expressing a vsp1 promoter-gus (beta-glucuronidase) gene fusion were found to contain high GUS activity when challenged with jasmonate, a volatile plant hormone. The induction of vsp1-gus expression by jasmonate could be measured in tobacco mesophyll protoplasts, after transient expression. A number of deletions were operated in the vsp1 promoter in order to locate its jasmonate-responsive element. A 41 bp sequence taken approximately 150 bp upstream of the vsp1 TATA box could confer jasmonate responsiveness upon a short CaMV 35S promoter. Whereas the deletion of a CAAT box-like element within the 41 bp sequence did not affect promoter activity, mutation of a short palindromic motif completely abolished jasmonate responsiveness. This motif shows no homology with the jasmonate-responsive elements of other promoters.  相似文献   

14.
15.
Jasmonates induce plant-defence responses and act to regulate defence-related genes including positive feedback of the lipoxygenase 2 (LOX2) gene involved in jasmonate synthesis. To identify jasmonate-signalling mutants, we used a fusion genetic strategy in which the firefly luciferase (FLUC) and Escherichia coli beta-glucuronidase (GUS) reporters were expressed under control of the jasmonate-responsive LOX2 promoter. Spatial and temporal patterns of reporter expression were determined initially, and revealed that JA-responsive expression from the LOX2 promoter required de novo protein synthesis. Reporter activity was also induced by the protein kinase inhibitor staurosporine and antagonized by the protein phosphatase inhibitor okadaic acid. FLUC bio-imaging, RNA gel-blot analysis and progeny analyses identified three recessive mutants that underexpress the FLUC reporter, designated jue1, 2 and 3, as well as two recessive mutants, designated joe1 and 2, that overexpress the reporter. Genetic analysis indicated that reporter overexpression in the joe mutants requires COI. joe1 responded to MeJA with increased anthocyanin accumulation, while joe2 responded with decreased root growth inhibition. In addition, reporter induction and endogenous LOX2 expression by staurosporine was absent in joe2.  相似文献   

16.
Hyoscyamus niger L. is a medicinal plant which produces a class of jasmonate-responsive pharmaceutical secondary metabolites named as tropane alkaloids. As a family of signaling phytohormones, jasmonates play significant roles in the biosynthesis of many plant secondary metabolites. In jasmonate biosynthetic pathway of plants, allene oxide cyclase (AOC, [...] EC 5.3.99.6 [...]) catalyzes the most important step. Here we cloned a cDNA from H. niger, named HnAOC (GenBank accession: AY708383), which was 1044 bp long, with a 747 bp open reading frame (ORF) encoding a polypeptide of 248 amino acid residues. Southern blot analysis indicated that it was a multi-copy gene. RT-PCR analysis revealed that the expression of HnAOC was regulated by various stresses and elicitors, with methyl-jasmonate showing the most prominent inducement. The characterization of HnAOC would be helpful for improving the production of valuable secondary metabolites by regulating the biosynthesis ofjasmonates.  相似文献   

17.
Exposure of soybean (Glycine max) seedlings to low levels of atmospheric methyl jasmonate induced the expression and accumulation of one or more lipoxygenase(s) in the primary leaves, hypocotyls, epicotyls, and cotyledons. In the primary leaf, the major site of lipoxygenase accumulation in response to methyl jasmonate was in the vacuoles of paraveinal mesophyll cells. In the other organs, however, most of the methyl jasmonate-responsive lipoxygenase(s) were associated with both the epidermal and cortical cells and were present in both vacuoles and plastids. In plastids, the methyl jasmonate-responsive lipoxygenase was sequestered into protein inclusion bodies; no lipoxygenase was evident in either the thylakoids or the stroma. Both spectrophotometric measurement of conjugated diene formation and thin layer chromatography of lipoxygenase product formation indicated that methyl jasmonate caused an increase in the amount of lipoxygenase activity. Electron microscopy of the methyl jasmonate-responsive lipoxygenase protein in the vacuoles showed that it was arranged into a stellate, paracrystalline structure in various cell types other than the paraveinal mesophyll cells. The paracrystals appeared to be composed of tubular elements of between 5 and 8 nm in diameter, were of variable length, and were observed in most cell types of the seedling organs.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号