首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Toneva  V.  Shalygo  N.  Yaronskaya  E.  Averina  N.  Minkov  I. 《Photosynthetica》1998,34(4):555-560
The influence of 2,2′-dipyridyl (2,2′-DP) on the activity of one of the enzymes at the initial stages of chlorophyll (Chl) biosynthesis, δ-aminolevulinic acid dehydratase (ALAD; δ-aminolevulinate hydro-lyase, EC 4.2.1.24), as well as on δ-aminolevulinic acid (ALA) accumulation was investigated in green barley (Hordeum vulgare L.) leaves. In seven-day-old green leaves treated with 3 mM 2,2′-DP for 17 h in darkness and subsequently irradiated with "white light" (15 W m-2) for 4, 8, and 24 h the ALAD activity was 51 % as compared to that in untreated leaves. At the same time, the ALA forming system was most sensitive to the photodynamic processes caused by 2,2′-DP. After 8 h of irradiation, ALA synthesis was entirely inhibited. After the treatment the leaves accumulated exceptionally high amounts of Chl precursors such as protoporphyrin IX (Proto), Mg-protoporphyrin IX (Mg-Proto), its monomethyl ester, and protochlorophyllide (Pchlide) that are photosensitizers of photodynamic processes in plants. A comparatively low Chl and carotenoid (Car) destruction was registered during the subsequent 4 and 8 h of irradiation. At the same time, the content of Chl precursors was negligible. The low photodestruction of Chl and Car included in pigment-protein complexes, against the background of fast porphyrin disappearance, and fast decrease of enzymatic activities at the initial stages of Chl production could mean that the photodynamic effect induced by porphyrins accumulated in the presence of 2,2′-DP affected first the Chl enzymatic system and did not change the pool of already synthesized photosynthetic pigments.  相似文献   

2.
    
The influence of 2,2′-dipyridyl (2,2′-DP) on the activity of one of the enzymes at the initial stages of chlorophyll (Chl) biosynthesis, δ-aminolevulinic acid dehydratase (ALAD; δ-aminolevulinate hydro-lyase, EC 4.2.1.24), as well as on δ-aminolevulinic acid (ALA) accumulation was investigated in green barley (Hordeum vulgare L.) leaves. In seven-day-old green leaves treated with 3 mM 2,2′-DP for 17 h in darkness and subsequently irradiated with "white light" (15 W m-2) for 4, 8, and 24 h the ALAD activity was 51 % as compared to that in untreated leaves. At the same time, the ALA forming system was most sensitive to the photodynamic processes caused by 2,2′-DP. After 8 h of irradiation, ALA synthesis was entirely inhibited. After the treatment the leaves accumulated exceptionally high amounts of Chl precursors such as protoporphyrin IX (Proto), Mg-protoporphyrin IX (Mg-Proto), its monomethyl ester, and protochlorophyllide (Pchlide) that are photosensitizers of photodynamic processes in plants. A comparatively low Chl and carotenoid (Car) destruction was registered during the subsequent 4 and 8 h of irradiation. At the same time, the content of Chl precursors was negligible. The low photodestruction of Chl and Car included in pigment-protein complexes, against the background of fast porphyrin disappearance, and fast decrease of enzymatic activities at the initial stages of Chl production could mean that the photodynamic effect induced by porphyrins accumulated in the presence of 2,2′-DP affected first the Chl enzymatic system and did not change the pool of already synthesized photosynthetic pigments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Aminolevulinic acid (ALA)-based photodynamic therapy (PDT) has been successfully employed in the treatment of certain tumours. Porphyrins endogenously generated from ALA induce tumour regression after illumination with light of an appropriate wavelength. The aim of this work was to compare porphyrin production from ALA and sensitivity to photodynamic treatment in a tumour/normal cell line pair. We employed the HB4a cell line from normal mammary luminal epithelium and its counterpart transfected with the oncogen H-Ras (VAL/12 Ras). After 3 h of exposure to ALA, HB4a-Ras cells produce a maximum of 150 ng porphyrins per 10(5) cells whereas HB4a produce 95 ng porphyrins per 10(5) cells. In addition, HB4a-Ras cells show a plateau of porphyrin synthesis at 1 mM whereas HB4a porphyrins peak at the same concentration, and then decrease quickly. This higher porphyrin synthesis in the tumorigenic cell line does not lead to a higher response to the photodynamic treatment upon illumination. Lethal doses 50, LD(50), determined by MTT assay were 0.015 J cm(-2) and 0.039 J cm(-2) for HB4a and HB4a-Ras respectively after 3 h exposure to 1 mM ALA. The conclusion of this work is that a tumour cell line obtained by transfection of the Ras oncogene, although producing higher porphyrin synthesis from ALA, is more resistant to ALA-PDT than the parental non-tumour line, however the mechanism is not related to photosensitiser accumulation, but very likely to cell survival responses.  相似文献   

4.
European larch (Larix decidua Mill.) and Norway spruce [Picea abies (L.) Karst.] synthesize chlorophyll (Chl) in darkness. This paper compares Chl accumulation in 14-d-old dark-grown seedlings of L. decidua and P. abies after shortterm (24 h) feeding with 5-aminolevulinic acid (ALA). We used two ALA concentrations (1 and 10 mM) fed to cotyledons of both species in darkness and in continuous light. The dark-grown seedlings of L. decidua accumulated Chl only in trace amounts and the seedlings remained etiolated. In contrast, P. abies seedlings grown in darkness were green and had significantly higher Chl content. After ALA feeding, higher protochlorophyllide (Pchlide) content was observed in L. decidua than in P. abies cotyledons incubated in darkness. Although short-term ALA feeding stimulated the synthesis of Pchlide, Chl content did not change significantly in cotyledons incubated in darkness. The Chl accumulation in cotyledons fed with ALA was similar to the rate of Chl accumulation in the controls. Higher Chl accumulation was reported in control samples after illumination: 86.9% in L. decidua cotyledons and 46.4% in P. abies cotyledons. The Chl content decreased and bleaching occurred in cotyledons incubated with ALA in light due to photooxidation. Analyses of Chlbinding proteins (D1 and LHCIIb) by Western blotting proved differences between Chl biosynthesis in L. decidua and P. abies seedlings in the dark and in the light. No remarkable increase was found in protein accumulation (D1 and LHCIIb) after ALA application. Our results showed interspecific difference in Chl synthesis between two gymnosperms. Shortterm ALA feeding did not stimulate Chl synthesis, thus ALA synthesis was not the rate-limiting step in Chl synthesis in the dark.  相似文献   

5.
The possibility of photoeradicating the prokaryotic microorganism Candida albicans by enhancing its endogenous porphyrin production and accumulation was investigated in this study. Induction of porphyrin synthesis was performed by the addition of δ-aminolevulinic acid (ALA), or its hydrophobic derivative ALA methyl ester (m-ALA). Photoinactivation of C. albicans was performed under blue light (407–420 nm) illumination. A decrease in viability of about 1.6 or 2.1 orders of magnitudes was obtained with a light dose of 36 J/cm2 for an initial concentration of 100-mg/ml ALA or m-ALA, respectively. Endogenous porphyrins extracted from the cells showed that cultures incubated with m-ALA accumulated a relatively higher amount of endogenous porphyrins than ALA, indicating better transport through the yeast cell barriers. When a combination of miconazole and ketoconazole (antifungal agents) is given at a sub-inhibitory concentration (0.5 μg/ml each) with an inducer, a 2.1 or 3.2 orders of magnitude decrease in viability is caused with ALA or with m-ALA, respectively, upon illumination. Fluorescence intensities of the accumulated porphyrins as demonstrated by FACS indicate that the combination of the two azole drugs and an inducer cause a relatively high amount of endogenous porphyrins. Although the additive action of both azole drugs allow better penetration of the inducer, especially m-ALA photoeradication remained limited because of an acidic pH generated in the presence of the inducer. The acidic pH is probably the cause for the inefficiency of the photodynamic treatment. More hydrophobic inducers than m-ALA and less acidic must be investigated to improve the photodynamic treatment by endogenous-induced porphyrins.  相似文献   

6.
Toneva  V.  Gechev  T.  Minkov  I. 《Photosynthetica》2001,39(4):597-601
The photodynamic damage of the sensitive plants wheat and mustard, treated with chlorophyll (Chl) precursors 5-aminolevulinic acid (ALA) and glutamic acid (Glu) and with 1,10-phenanthroline (Phen), was caused by tetrapyrroles, which accumulated after 17 h in the dark period, followed by 12 h of irradiation with white light. The effect of accumulated Chl in mustard plants was accompanied by changes in the amounts of the Chls and carotenoids and by dehydration of the tissues, partial chlorosis, and necrosis. The molecular nature of the specific photodynamic sensitivity of the mustard and wheat plants under the influence of Phen and Chl precursors was important: accumulation of tetrapyrroles was a necessary, but not only reason for photodynamic damage of the plants. The degree of leaf damage was related to the amount and chemical nature of accumulated tetrapyrroles and to the greening group to which the investigated plant belongs.  相似文献   

7.
Multi-drug resistance of breast cancer is a major obstacle in chemotherapy of cancer treatments. Recently it was suggested that photodynamic therapy (PDT) can overcome drug resistance of tumors. ALA-PDT is based on the administration of 5-aminolevulinic acid (ALA), the natural precursor for the PpIX biosynthesis, which is a potent natural photosensitizer. In the present study we used the AlaAcBu, a multifunctional ALA-prodrug for photodynamic inactivation of drug resistant MCF-7/DOX breast cancer cells. Supplementation of low doses (0.2mM) of AlaAcBu to the cells significantly increased accumulation of PpIX in both MCF-7/WT and MCF-7/DOX cells in comparison to ALA, or ALA + butyric acid (BA). In addition, our results show that MCF-7/DOX cells are capable of producing higher levels of porphyrins than MCF-7/WT cells due to low expression of the enzyme ferrochelatase, which inserts iron into the tetra-pyrrol ring to form the end product heme. Light irradiation of the AlaAcBu treated cells activated efficient photodynamic killing of MCF-7/DOX cells similar to the parent MCF-7/WT cells, depicted by low mitochondrial enzymatic activity, LDH leakage and decreased cell survival following PDT. These results indicate that the pro-drug AlaAcBu is an effective ALA derivative for PDT treatments of multidrug resistant tumors.  相似文献   

8.
Growing barley (Hordeum vulgare L.) plants for 7 days on NaCl solutions (20–200 mM) decreased chlorophyll (Chl) a and b content with respect to that in untreated control plants. The content of free proline and the plant ability to synthesize 5-aminolevulinic acid (ALA) started to increase in parallel at salt concentrations of 20–50 mM. The maximum amount of ALA accumulated in plants grown at 100 mM NaCl was twofold higher than in control plants grown on fresh water. In this case the proline content increased 2.8-fold. On further increase in salt concentration, the rate of ALA accumulation decreased, approaching control values at 150 mM NaCl; even lower rates were observed at 200 mM NaCl. The reduced ability to synthesize ALA was accompanied by an increase in proline content. The albino tissue of plants treated at the seed stage with the antibiotic streptomycin lost its ability to synthesize ALA needed for Chl formation. The proline content in the albino tissue was tenfold higher than in control green plants and was 30-fold higher when the plants were grown on solutions with 100 mM NaCl. No effect of NaCl on ALA-dehydratase activity was noted. As NaCl concentration was raised, there occurred the decrease in magnesium chelatase activity, accumulation of reactive oxygen species (ROS), the increase in ascorbate peroxidase activity, and a slight decrease in lipid peroxidation level. Growing plants in the presence of 150 mM NaCl and 10 or 60 mg/l exogenous ALA led to the increase in proline content (by a factor of 1.8 and 4.2, respectively) and to the decrease in ROS content, in comparison with plants grown on salt solutions without ALA. Furthermore, in the presence of exogenous ALA, the parameters of seedling growth became similar to those of NaCl-untreated plants. The role of ALA in plants as an antistress agent is considered. ALA is supposed to confer tolerance to salt stress by taking part in Chl and heme biosynthesis and also through functioning as a plant growth regulator. A hypothesis is put forward that the impairment of ALA-synthesizing ability may redirect metabolic conversions of glutamic acid from Chl and heme synthesis to the proline synthesis pathway, which would stimulate proline biosynthesis and improve salt tolerance.  相似文献   

9.
  • 1.1. The effectiveness of the photodynamic action of porphyrins, was studied by means of the tissue explant culture technique. A murine tumor tissue explant was incubated in a medium containing 0.6 mM of ALA for periods of 1 and 2 hr; total porphyrins synthesized under these conditions were of the same level as those found in our previous in vivo experiments. The explants were then irradiated for 30 min with He-Ne laser of 3.5 mW output power placed at a distance of 10 cm. Controls of non-irradiated tumor tissue slices incubated with and without ALA were performed. Immediately after irradiation, innocula of exactly 1 mm3 of the irradiated and non-irradiated tissue were subcutaneously injected under the right and left flanks of the same animal, respectively. The growth of the tumor was measured 15, 20 and 25 days after implantation.
  • 2.2. Results obtained showed that the explants that were incubated for 1 hr with ALA and irradiated, reaching a concentration of 2.8 μg porphyrins/g tissue, produced a reduction of 50–70% of tumor size as compared with the non-irradiated controls incubated with ALA. Explants incubated for 2 hr, reaching a concentration of 4.6 μg porphyrins/g tissue, produced from 60% to complete lack of tumor growth. The effectiveness index (EI) of photoirradiation was calculated on the basis of the tumor growth in irradiated and non-irradiated tumors. EI was nearly 100% showing almost complete tumor cell destruction for tumor irradiated for 2 hr with 0.6 mM ALA.
  • 3.3. As indicators of cell injury and subsequent death and necrosis, LDH activity in the incubation medium and intracellular potassium content were measured. Results indicated that as a consequence of irradiation of porphyrin loaded tumor explants, significant release of LDH to the medium and loss of intracellular potassium occurred. These findings show great to complete tumor destruction by combination of porphyrins endogenously formed from ALA and low irradiance with laser.
  相似文献   

10.
11.
In greening etiolated primary leaves of barley (Hordeum vulgare L.), Mn2+ ions have been shown to inhibit chlorophyll (Chl) accumulation in a dose dependent manner and to lead to an accumulation of protoporphyrin IX (Proto) and Mg-protoporphyrin IX monomethyl ester (MgPE). The amount of MgPE that accumulated, was 2 times higher than Proto. In the dark, Proto and MgPE were observed to have accumulated to high levels in seven-day old green and etiolated leaves in the presence of 5 mmol/L Mn2+, but only if 5 mmol/L δ-aminolevulinic acid (ALA) was present. The 24 hours of irradiation of the green barley leaves treated in this way, resulted in a photodynamic destruction of Proto and MgPE as well as of Chl and carotenoids (Car). The observed porphyrin accumulation caused by the Mn2+ ions was reversed in the presence of active iron (Fe2+). This effect was observed when the iron concentration in incubation solutions was half the Mn2+ concentration, most effective for porphyrin synthesis, i.e. 5 mmol/L. The action of Mn2+ on porphyrin accumulation is also discussed.  相似文献   

12.
The inflamed synovium of rheumatoid arthritis exhibits many features typical for neoplastic tissue implying that the photodynamic therapy might be an efficient modality for chronic poliarthritis. The accumulation of endogenously produced porphyrins after administration of exogenous 5-aminolevulinic acid (ALA) in a rabbit model of rheumatoid arthritis was evaluated by fluorescence spectroscopy. Independent of the way, intravenously or intra-articularly, in which ALA was administered to the experimental animals, the highest fluorescence intensity of endogenously produced porphyrins was detected in the tissues of the inflamed joints. Besides, the application of ALA had a systemic sensitising effect on the whole organism of rabbits. The highest amount of endogenously produced porphyrins in the inflamed joints measured from the surface of the skin above the synovium tissues was detected 1-3 h after the administration of ALA. Fluorescence measurements performed on the tissue specimens ex vivo showed the predominant accumulation of porphyrins in the synovium of the inflamed joints. The fluorescence of porphyrins was also observed in the cartilage tissues taken from knee joints. However, the fluorescence spectra features indicated that the composition of porphyrins detected in the cartilage tissues was different than that in the synovial tissues. The selective accumulation of porphyrins in the inflamed synovial tissues stands up for the application of photodynamic therapy in the treatment of rheumatoid arthritis and implies the possibility to use optical non-invasive methods based on fluorescence detection of endogenously produced porphyrins for diagnostics of inflamed tissues.  相似文献   

13.
Chlorophyll (Chl) accumulation and delayed luminescence of PSII were compared in greening barley leaves pretreated and untreated with diuron (DCMU) in the etiolated state, and reactions of two photosystems were studied in the plastids isolated from the pretreated and untreated leaves. The effect of treatment in light of post-etiolated leaves after 40-h illumination with 5-aminolevulinic acid (ALA), on the content of Chl and its precursor, protochlorophyllide (PChld) was also studied. The pretreatment of etiolated leaves with DCMU did not affect the rate of greening and the stable level of Chl content in barley. ALA, when introduced to leaves after the termination of Chl accumulation, increased PChld, but not Chl level. We suppose that the primary cause of greening cessation in etiolated leaves is the inhibition and cessation of the synthesis of apoproteins of pigment–protein complexes. The exhaustion of binding sites for newly synthesized Chl molecules leads to their retention in the so-called retroinhibitory pool of Chl, thus resulting in the inhibition of ALA synthesis by a negative feedback mechanism.  相似文献   

14.
Helga Kasemir  Hans Mohr 《Planta》1981,152(4):369-373
Chlorophyll a (Chl a) accumulation in the cotyledons of Scots pine seedlings (Pinus sylvestris L.) is much higher in the light than in darkness where it ceases 6 days after germination. When these darkgrown seedlings are treated with continuous white light (3,500 lx) a 3 h lag phase appears before Chl a accumulation is resumed. The lag phase can be eliminated by pretreating the seedlings with 7 h of weak red light (0.14 Wm-2) or with 14 red light pulses separated by relatively short dark periods (<100 min). The effect of 15s red light pulses can be fully reversed by 1 min far-red light pulses. This reversibility is lost within 2 min. In addition, the amount of Chl a formed within 27 h of continuous red light is considerably reduced by the simultaneous application of far-red (RG 9) light. It is concluded that phytochrome (Pfr) is required not only for the elimination of the lagphase but also to maintain a high rate of Chl a accumulation in continuous light. Since accumulation of 5-aminolevulinate (ALA) responds in the same manner as Chl a accumulation to a red light pretreatment it is further concluded that ALA formation is the point where phytochrome regulates Chl biosynthesis in continuous light. No correlation has been found between ALA and Chl a formation in darkness. This indicates that in a darkgrown pine seedling ALA formation is not rate limiting for Chl a accumulation.Abbreviations Chl chlorophyll(ide) - PChl protochlorophyll(ide) - ALA 5-aminolevulinate - Pr the red absorbing form of phytochrome - Pfr the far-red absorbing form of phytochrome - Ptot total phytochrome ([Pr]+[Pfr])  相似文献   

15.
By HPLC analytical method, the change of PS Ⅱ RC' s pigment content in the process of photodamage under strong illumination from spinach ( Spinacia oleracea Mill. ) was comparatively studied. The experimental results show that: (1) In authors' analytical conditions, (of which, [Chl] = 150 µg/mL, and the illumination strength was put at 2.3 ×10 6 mJ·m-2·s-1 ), 45 rain of illumination could cause almost the whole loss of A680 in the fourth derivative absorption spectra, while A670 decreased to about one half of its original intensity; the absorption maximum in red, concurrently, was shifted from 676 nm to 671 nm, representing the loss of more than 90% of the photochemical activities of the PS Il RC. (2) During the period of continuous illumination, the Chl concentration decreased in a 3-period style, which meant that the first [Chl] decreased to the 2/3 of its original amount from 20 min to 40 rain after illumination had started, then became stabilized up to about 60 min of illumination, there after a second decrease of [ Chl ] in another about 20 min until it reached about 30 % of the original level and remained unchanged from about 80 min on. The original pigment components of D1/D2/Cyt b559 was approximately as 6 Chl a:2 Pheo:2β-Car which are in support of authors' previous proposal about the minimum Chl/Pheo ratio of 4: 2 in PS Ⅱ RC’s pigment contents. (3) After about 40 min of illumination, a newly appeared elution peak was found between the Pheo andβ-Car peaks in HPLC profile, at the retention time of 7.2 min, a little later than that (6.9 rain) of Pheo molecules, the newly appeared elution peak was supposed to be a kind of accumulated and stable product of the PS II RC's photodamage process and very much possible the Pheo-like molecules.  相似文献   

16.
Spectral and kinetic parameters and quantum yield of IR phosphorescence accompanying radiative deactivation of the chlorophyll a (Chl a) triplet state were compared in pigment solutions, greening and mature plant leaves, isolated chloroplasts, and thalluses of macrophytic marine algae. On the early stages of greening just after the Shibata shift, phosphorescence is determined by the bulk Chl a molecules. According to phosphorescence measurement, the quantum yield of triplet state formation is not less than 25%. Further greening leads to a strong decrease in the phosphorescence yield. In mature leaves developing under normal irradiation conditions, the phosphorescence yield declined 1000-fold. This parameter is stable in leaves of different plant species. Three spectral forms of phosphorescence-emitting chlorophyll were revealed in the mature photosynthetic apparatus with the main emission maxima at 955, 975, and 995 nm and lifetimes ~1.9, ~1.5, and 1.1–1.3 ms. In the excitation spectra of chlorophyll phosphorescence measured in thalluses of macrophytic green and red algae, the absorption bands of Chl a and accessory pigments — carotenoids, Chl b, and phycobilins — were observed. These data suggest that phosphorescence is emitted by triplet chlorophyll molecules that are not quenched by carotenoids and correspond to short wavelength forms of Chl a coupled to the normal light harvesting pigment complex. The concentration of the phosphorescence-emitting chlorophyll molecules in chloroplasts and the contribution of these molecules to chlorophyll fluorescence were estimated. Spectral and kinetic parameters of the phosphorescence corresponding to the long wavelength fluorescence band at 737 nm were evaluated. The data indicate that phosphorescence provides unique information on the photophysics of pigment molecules, molecular organization of the photosynthetic apparatus, and mechanisms and efficiency of photodynamic stress in plants.  相似文献   

17.
The effects were examined of 5-aminolevulinic acid (ALA) onthe accumulation of Chl and apoproteins of light-harvestingChl a/b-protein complex of photosystem II (LHCII) in cucumbercotyledons under intermittent light. A supply of ALA preferentiallyincreased the accumulation of Chl a during intermittent illumination.However, when cotyledons were pretreated with a brief exposureto light or benzyladenine (BA), the stimulatory effect of ALAon the increase in the level of Chl b was greater than thatin the level of Chl a, resulting in decreased ratios of Chla/b. Time-course experiments with preilluminated cotyledonsrevealed that LHCII apoproteins accumulated rapidly within thefirst 30 min of intermittent illumination with a decline duringsubsequent incubation in darkness. A supply of ALA did not affectthe accumulation of LHCII apoproteins during the intermittentlight period, but it efficiently inhibited the decline in theirlevels during the subsequent darkness. After exposure to a singlepulse of light of BA-treated cotyledons, the prompt increasein levels of LHCII apoproteins was not accompanied by the formationof Ch b, which began to accumulate later. The pattern of changesin levels of LHCII apoproteins was quite similar to that inlevels of Chl a. These results suggest that LHCII apoproteinsare first stabilized by binding with Chl a and that an increasedsupply of Chl a and the accumulation of LHCII apoproteins areprerequisites for the formation of Chl b. 1Present address: Department of Chemistry, Faculty of Scienceand Technology, Meijo University, Aichi, 468 Japan.  相似文献   

18.
Application of delta-aminolevulinic acid (ALA) results in the endogenous accumulation of protoporphyrin IX and is a useful approach in the photodynamic therapy (PDT) of cancers. To investigate the role of nitric oxide (NO) in the specific accumulation of protoporphyrin and ALA-induced PDT of cancerous cells, we transfected inducible-nitric oxide synthase (NOS2) cDNA into human embryonic kidney (HEK) 293T cells and examined the ALA-induced photo-damage as well as the accumulation of porphyrin in the cells. When the NOS2-expressing HEK293T cells were treated with ALA and then exposed to visible light, they became more sensitive to the light with accumulating porphyrins, as compared with the ALA-treated control cells. An increase in the generation of NO in transfected cells led to the accumulation of protoporphyrin with a concomitant decrease of ferrochelatase, the final step enzyme of heme biosynthesis. When mouse macrophage-like RAW264.7 cells were cultured with lipopolysaccharide and interferon-gamma, the expression of NOS2 was induced. The addition of ALA to these cells led to the accumulation of protoporphyrin and cell death upon exposure to light. The treatment of cells with an NOS inhibitor, NG-monomethyl-L-arginine acetate, resulted in the inhibition of protoporphyrin accumulation and cell death. The levels of mitochondrial ferrochelatase and rotenone-sensitive NADH dehydrogenase in the NOS2-induced cells decreased. These results indicated that the generation of NO augments the ALA-induced accumulation of protoporphyrin IX and subsequent photo-damage in cancerous cells by decreasing the levels of mitochondrial iron-containing enzymes. Based on the fact that the production of NO in cancerous cells is elevated, NO in the cells is responsible for susceptibility with ALA-induced PDT.  相似文献   

19.
Propionibacterium acnes is a Gram-positive, microaerophilic bacterium that causes skin wounds. It is known to naturally produce high amounts of intracellular porphyrins. The results of the present study confirm that the investigated strain of P. acnes is capable of producing endogenic porphyrins with no need for any trigger molecules. Extracts from growing cultures have demonstrated emission peaks around 612 nm when excited at 405 nm, which are characteristic for porphyrins. Endogenic porphyrins were determined and quantified after their extraction from the bacterial cells by fluorescence intensity and by elution retention time on high-performance liquid chromatography (HPLC). The porphyrins produced by P. acnes are mostly coproporphyrin, as shown by the HPLC elution patterns. Addition of delta-aminolevulinic acid (ALA) enhanced intracellular porphyrin synthesis and higher amounts of coproporphyrin have been found. Eradication of P. acnes by its endogenic porphyrins was examined after illumination with intense blue light at 407-420 nm. The viability of 24 h cultures grown anaerobically in liquid medium was reduced by less than two orders of magnitude when illuminated once with a light dose of 75 J cm(-2). Better photodynamic effects were obtained when cultures were illuminated twice or three times consecutively with a light dose of 75 J cm(-2) and an interval of 24 h between illuminations. The viability of the culture under these conditions decreased by four orders of magnitude after two illuminations and by five orders of magnitude after three illuminations. When ALA-triggered cultures were illuminated with intense blue light at a light dose of 75 J cm(-2) the viability of the treated cultures decreased by seven orders of magnitude. This decrease in viability can occur even after a single exposure of illumination for the indicated light intensity. X-ray microanalysis and transmission electron microscopy revealed structural damages to membranes in the illuminated P. acnes. Illumination of the endogenous coproporphyrin with blue light (407-420 nm) apparently plays a major role in P. acnes photoinactivation. A treatment protocol with a series of several illuminations or illumination after application of ALA may be suitable for curing acne. Treatment by both pathways may overcome the resistance of P. acnes to antibiotic treatment.  相似文献   

20.
Leishmania double transfectants (DTs) expressing the 2nd and 3rd enzymes in the heme biosynthetic pathway were previously reported to show neogenesis of uroporphyrin I (URO) when induced with delta-aminolevulinate (ALA), the product of the 1st enzyme in the pathway. The ensuing accumulation of URO in DT promastigotes rendered them light excitable to produce reactive oxygen species (ROS), resulting in their cytolysis. Evidence is presented showing that the DTs retained wild-type infectivity to their host cells and that the intraphagolysosomal/parasitophorous vacuolar (PV) DTs remained ALA inducible for uroporphyrinogenesis/photolysis. Exposure of DT-infected cells to ALA was noted by fluorescence microscopy to result in host-parasite differential porphyrinogenesis: porphyrin fluorescence emerged first in the host cells and then in the intra-PV amastigotes. DT-infected and control cells differed qualitatively and quantitatively in their porphyrin species, consistent with the expected multi- and monoporphyrinogenic specificities of the host cells and the DTs, respectively. After ALA removal, the neogenic porphyrins were rapidly lost from the host cells but persisted as URO in the intra-PV DTs. These DTs were thus extremely light sensitive and were lysed selectively by illumination under nonstringent conditions in the relatively ROS-resistant phagolysosomes. Photolysis of the intra-PV DTs returned the distribution of major histocompatibility complex (MHC) class II molecules and the global gene expression profiles of host cells to their preinfection patterns and, when transfected with ovalbumin, released this antigen for copresentation with MHC class I molecules. These Leishmania mutants thus have considerable potential as a novel model of a universal vaccine carrier for photodynamic immunotherapy/immunoprophylaxis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号