首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Davis RB  Lecomte JT 《Biopolymers》2008,90(4):556-566
In the absence of heme cofactor, the water-soluble domain of rat microsomal cytochrome b5 (cyt b5) contains a long flexible region within its 42-residue heme-binding loop. Heme capture induces this region to fold into a well-defined structure containing helices H3-H5, each separated by a turn, with His39 and His63 serving as axial ligands to the heme iron. We have shown that the H4 region of the apoprotein has the greatest tendency for disorder within the isolated binding loop. Here, the effect of the His63-iron bond and proximity of heme plane on the population of helical conformation in H4 and H5 was investigated by synthesis and characterization of a peptide-sandwiched mesoheme construct in which two H4-H5 peptides were covalently attached to a single cofactor. Spectroscopic data indicated that a holoprotein-like bis-histidine coordination state was achieved over a pH range from 7 to 9. Trifluoroethanol titrations of the construct and the analogous free peptide under these pH conditions revealed that heme proximity and iron ligation were insufficient to promote helix formation in H4 and H5. These observations were used to assess the role of disordered regions in heme capture and the loop-scaffold interface in holoprotein folding and stability.  相似文献   

2.
The broadly neutralizing HIV-1 antibody 2F5 recognizes an epitope in the gp41 membrane proximal external region (MPER). The MPER adopts a helical conformation as free peptide, as post-fusogenic forms of gp41, and when bound to the 4E10 monoclonal antibody (Mab). However, when bound to 2F5, the epitope is an extended-loop. The antibody-peptide structure reveals binding between the heavy and light chains with most the long, hydrophobic CDRH3 not contacting peptide. However, mutagenesis identifies this loop as critical for binding, neutralization and for putative hydrophobic membrane interactions. Here, we examined length requirements of the 2F5 CDRH3 and plasticity regarding binding and neutralization. We generated 2F5 variants possessing either longer or shorter CDRH3s and assessed function. The CDRH3 tolerated elongations and reductions up to four residues, displaying a range of binding affinities and retaining some neutralizing capacity. 2F5 antibody variants selective recognition of conformationally distinctive MPER probes suggests a new role for the CDRH3 loop in destabilizing the helical MPER. Binding and neutralization were enhanced by targeted tryptophan substitutions recapitulating fully the activities of the wild-type 2F5 antibody in a shorter CDRH3 variant. MPER alanine scanning revealed binding contacts of this variant downstream of the 2F5 core epitope, into the 4E10 epitope region. This variant displayed increased reactivity to cardiolipin-beta-2-glycoprotein. Tyrosine replacements maintained neutralization while eliminating cardiolipin-beta-2-glycoprotein interaction. The data suggest a new mechanism of action, important for vaccine design, in which the 2F5 CDRH3 contacts and destabilizes the MPER helix downstream of its core epitope to allow induction of the extended-loop conformation.  相似文献   

3.
4.
The binding of core histone proteins to DNA, measured as a function of [NaCl[ is a reversible process. Dissociation and reassociation occurs in two stages. Between 0.7 and 1.2 M NaCl H2a H2b bind non-cooperatively as an equimolar complex with deltaGo = 1.6 Kcals/mole at 4 degree C and 1.0 M NaCl. Between 1.2 and 2.0 M NaCl H3 and H4 bind cooperatively as an equimolar complex with delta Go = 7.4 Kcal/mole at 4 degree C and 1.0 M NaCl. The proper binding of H2a and H2b requires the presence of bound H3 and H4. Nuclease digestion of the H3-H4 DNA produces a tetramer of H3-H4 bound to fragments of DNA 145, 125 and 104 base pairs long. Thus an H3-H4 tetramer can protect fragments of DNA as long as those found in complete core particles and must therefore span the nucleosome core particle.  相似文献   

5.
6.
Banks DD  Gloss LM 《Biochemistry》2003,42(22):6827-6839
To compare the stability of structurally related dimers and to aid in understanding the thermodynamics of nucleosome assembly, the equilibrium stabilities of the recombinant wild-type H3-H4 tetramer and H2A-H2B dimer have been determined by guanidinium-induced denaturation, using fluorescence and circular dichroism spectroscopies. The unfolding of the tetramer and dimer are highly reversible. The unfolding of the H2A-H2B dimer is a two-state process, with no detected equilibrium intermediates. The H3-H4 tetramer is unstable at moderate ionic strengths (mu approximately 0.2 M). TMAO (trimethylamine-N-oxide) was used to stabilize the tetramer; the stability of the H2A-H2B dimer was determined under the same solvent conditions. The equilibrium unfolding of H3-H4 was best described by a three-state mechanism, with well-folded H3-H4 dimers as a populated intermediate. When compared to H2A-H2B, the H3-H3 tetramer interface and the H3-H4 histone fold are strikingly less stable. The free energy of unfolding, in the absence of denaturant, for the H3-H4 and H2A-H2B dimers are 12.4 and 21.0 kcal mol(-)(1), respectively, in 1 M TMAO. It is postulated that the difference in stability between the histone dimers, which contain the same fold, is the result of unfavorable tertiary interactions, most likely the partial to complete burial of three salt bridges and burial of a charged hydrogen bond. Given the conservation of these buried interactions in histones from yeast to mammals, it is speculated that the H3-H4 tetramer has evolved to be unstable, and this instability may relate to its role in nucleosome dynamics.  相似文献   

7.
The Na,K-stimulated ATPase is inhibited by extracellular cardiac glycosides, which bind to the enzyme's alpha subunit. We used a monoclonal antibody, VG4, as a probe of the extracellular surface. The antibody was specific for Na,K-ATPase and bound to intact cells. The epitope was mapped to the first extracellular loop (H1-H2) of alpha, using a combination of techniques including trypsinolysis, N-terminal sequence of a fragment containing the determinant, and analysis of the effects of species-specific sequence differences. The antibody inhibited Na,K-ATPase activity under certain circumstances, indicating that the H1-H2 loop participates in conformational changes that are transmitted to the active site. Mutations in the H1-H2 loop have been shown by others to affect ouabain affinity. Ouabain and the antibody acted synergistically to inhibit the enzyme, which seemingly supported the hypothesis that the H1-H2 loop is an essential part of the cardiac glycoside binding site. Direct measurements of the binding of [3H]ouabain, however, indicated that VG4 enhanced rather than inhibited binding, presumably by promoting favorable conformation changes. The data suggest the possibility that the cardiac glycoside binding site may be intramembrane rather than extracellular.  相似文献   

8.
The trimeric HIV/SIV envelope glycoprotein, gp160, is cleaved to noncovalently associated fragments, gp120 and gp41. Binding of gp120 to viral receptors leads to large structural rearrangements in both fragments. The unliganded gp120 core has a disordered beta3-beta5 loop, which reconfigures upon CD4 binding into an ordered, extended strand. Molecular modeling suggests that residues in this loop may contact gp41. We show here that deletions in the beta3-beta5 loop of HIV-1 gp120 weaken the binding of CD4 and prevent formation of the epitope for monoclonal antibody (mAb) 17b (which recognizes the coreceptor site). Formation of an encounter complex with CD4 binding and interactions of gp120 with mAbs b12 and 2G12 are not affected by these deletions. Thus, deleting the beta3-beta5 loop blocks the gp120 conformational change and may offer a strategy for design of restrained immunogens. Moreover, mutations in the SIV beta3-beta5 loop lead to greater spontaneous dissociation of gp120 from cell-associated trimers. We suggest that the CD4-induced rearrangement of this loop releases structural constraints on gp41 and thus potentiates its fusion activity.  相似文献   

9.
The crystal structure of a DNA-binding domain of PHO4 complexed with DNA at 2.8 A resolution revealed that the domain folds into a basic-helix-loop-helix (bHLH) motif with a long but compact loop that contains a short alpha-helical segment. This helical structure positions a tryptophan residue into an aromatic cluster so as to make the loop compact. PHO4 binds to DNA as a homodimer with direct reading of both the core E-box sequence CACGTG and its 3'-flanking bases. The 3'-flanking bases GG are recognized by Arg2 and His5. The residues involved in the E-box recognition are His5, Glu9 and Arg13, as already reported for bHLH/Zip proteins MAX and USF, and are different from those recognized by bHLH proteins MyoD and E47, although PHO4 is a bHLH protein.  相似文献   

10.
11.
To further understand oligomeric protein assembly, the folding and unfolding kinetics of the H3-H4 histone tetramer have been examined. The tetramer is the central protein component of the core nucleosome, which is the basic unit of DNA compaction into chromatin in the eukaryotic nucleus. This report provides the first kinetic folding studies of a protein containing the histone fold dimerization motif, a motif observed in several protein-DNA complexes. Previous equilibrium unfolding studies have demonstrated that, under physiological conditions, there is a dynamic equilibrium between the H3-H4 dimer and tetramer species. This equilibrium is shifted predominantly toward the tetramer in the presence of the organic osmolyte trimethylamine-N-oxide (TMAO). Stopped-flow methods, monitoring intrinsic tyrosine fluorescence and far-UV circular dichroism, have been used to measure folding and unfolding kinetics as a function of guanidinium hydrochloride (GdnHCl) and monomer concentrations, in 0 and 1 M TMAO. The assignment of the kinetic phases was aided by the study of an obligate H3-H4 dimer, using the H3 mutant, C110E, which destabilizes the H3-H3' hydrophobic four-helix bundle tetramer interface. The proposed kinetic folding mechanism of the H3-H4 system is a sequential process. Unfolded H3 and H4 monomers associate in a burst phase reaction to form a dimeric intermediate that undergoes a further, first-order folding process to form the native dimer in the rate-limiting step of the folding pathway. H3-H4 dimers then rapidly associate with a rate constant of > or =10(7) M(-1)sec(-1) to establish a dynamic equilibrium between the fully assembled tetramer and folded H3-H4 dimers.  相似文献   

12.
13.
Kinetic and equilibrium studies of apomyoglobin folding pathways and intermediates have provided important insights into the mechanism of protein folding. To investigate the role of intrinsic helical propensities in the apomyoglobin folding process, a mutant has been prepared in which Asn132 and Glu136 have been substituted with glycine to destabilize the H helix. The structure and dynamics of the equilibrium molten globule state formed at pH 4.1 have been examined using NMR spectroscopy. Deviations of backbone (13)C(alpha) and (13)CO chemical shifts from random coil values reveal high populations of helical structure in the A and G helix regions and in part of the B helix. However, the H helix is significantly destabilized compared to the wild-type molten globule. Heteronuclear [(1)H]-(15)N NOEs show that, although the polypeptide backbone in the H helix region is more flexible than in the wild-type protein, its motions are restricted by transient hydrophobic interactions with the molten globule core. Quench flow hydrogen exchange measurements reveal stable helical structure in the A and G helices and part of the B helix in the burst phase kinetic intermediate and confirm that the H helix is largely unstructured. Stabilization of structure in the H helix occurs during the slow folding phases, in synchrony with the C and E helices and the CD region. The kinetic and equilibrium molten globule intermediates formed by N132G/E136G are similar in structure. Although both the wild-type apomyoglobin and the mutant fold via compact helical intermediates, the structures of the intermediates and consequently the detailed folding pathways differ. Apomyoglobin is therefore capable of compensating for mutations by using alternative folding pathways within a common basic framework. Tertiary hydrophobic interactions appear to play an important role in the formation and stabilization of secondary structure in the H helix of the N132G/E136G mutant. These studies provide important insights into the interplay between secondary and tertiary structure formation in protein folding.  相似文献   

14.
W A Lim  D C Farruggio  R T Sauer 《Biochemistry》1992,31(17):4324-4333
We have characterized the properties of a set of variants of the N-terminal domain of lambda repressor bearing disruptive mutations in the hydrophobic core. These mutations include some that dramatically alter the total core residue volume (by up to six methylene groups) and some that place a single polar residue into the otherwise hydrophobic core. The structural properties of the purified proteins have been studied by CD spectroscopy, biological activity, recognition by conformation-specific monoclonal antibodies, and 1H NMR spectroscopy. The stabilities of the proteins have been measured by thermal and guanidine hydrochloride denaturation. Proteins with disruptive core mutations are found to display a continuum of increasingly nonnative properties. Large internal volume changes cause both significant conformational rearrangements and destabilization by up to 5 kcal/mol. Variants with polar substitutions at core positions no longer behave like well-folded proteins but rather display characteristics of molten globules. However, even proteins bearing some of the most disruptive mutations retain many of the crude secondary and tertiary structural features of the wild-type protein. These results indicate that primitive elements of native structure can form in the absence of normal core packing.  相似文献   

15.
16.
Synthetic peptides with defined secondary structure scaffolds, namely hairpins and helices, containing tryptophan residues, have been investigated in this study to probe the influence of a large number of aromatic amino acids on backbone conformations. Solution NMR investigations of Boc-W-L-W-(D)P-G-W-L-W-OMe (peptide 1), designed to form a well-folded hairpin, clearly indicates the influence of flanking aromatic residues at the (D)Pro-Gly region on both turn nucleation and strand propagation. Indole-pyrrolidine interactions in this peptide lead to the formation of the less-frequent type I' turn at the (D)Pro-Gly segment and frayed strand regions, with the strand residues adopting local helical conformations. An analog of peptide 1 with an Aib-Gly turn-nucleated hairpin (Boc-W-L-W-U-G-W-L-W-OMe (peptide 2)) shows a preference for helical structures in solution, in both chloroform and methanol. Peptides with either one (Boc-W-L-W-U-W-L-W-OMe (peptide 3)) or two (Boc-U-W-L-W-U-W-L-W-OMe (peptide 4)) helix-nucleating Aib residues give rise to the well-folded helical conformations in the chloroform solution. The results are indicative of a preference for helical folding in peptides containing a large number of Trp residues. Investigation of a tetrapeptide analog of peptide 2, Boc-W-U-G-W-OMe (peptide 5), in solution and in the crystal state (by X-ray diffraction), also indicates a preference for a helical fold. Additionally, peptide 5 is stabilized in crystals by both aromatic interactions and an array of weak interactions. Examination of Trp-rich sequences in protein structures, however, reveals no secondary structure preference, suggesting that other stabilizing interactions in a well-folded protein may offset the influence of indole rings on backbone conformations.  相似文献   

17.
The eukaryotic histone dimers, H3–H4 and H2A–H2B, are formed in the cytosol prior to being transported into the nucleus and assembled into the nucleosome. Residue side-chain distances from the interior of the histone dimers are obtained with an ellipsoidal spatial metric and structural information provided by X-ray analyses at atomic resolution of the nucleosome core particles. While the spatial hydrophobic moment profiles of the dimers are comparable with profiles obtained previously that characterize the hydrophobic core of single-chain, single-domain globular soluble proteins, correlation coefficients between the side-chain hydrophobicities and distances from the interior of the H3–H4 dimer and H2A–H2B dimer differ significantly. This difference is traced to the H3 histone fold, which segregates fewer hydrophobic residues within the protein interior than the three other folds. Examination of the correlation coefficient between residue hydrophobicity and side-chain distance from the dimer interior over local regions of the fold sequence shows that the region of reduced correlation is associated mainly with the residues at the carboxyl end of the H3 histone fold, the helical region of the fold involved in the H3–H3 binding of the (H3–H4)2 tetramer of the nucleosome. Hydrophobic interactions apparently contribute to the binding of this fourfold helical bundle and this evolutionary requirement may trade off against the requirement for H3–H4 dimer stability. The present results provide a different view than previously proposed, albeit of similar origin, to account for the reduced stability of the H3–H4 dimer compared with the H2A–H2B dimer.Reviewing Editor: Dr. Martin Kreitman  相似文献   

18.
19.
The C-terminal region of focal adhesion kinase (FAK) consists of a right-turn, elongated, four-helix bundle termed the focal adhesion targeting (FAT) domain. The structure of this domain is maintained by hydrophobic interactions, and this domain is also the proposed binding site for the focal adhesion protein paxillin. Paxillin contains five well-conserved LD motifs, which have been implicated in the binding of many focal adhesion proteins. In this study we determined that LD4 binds specifically to only a single site between the H2 and H3 helices of the FAT domain and that the C-terminal end of LD4 is oriented toward the H2-H3 loop. Comparisons of chemical-shift perturbations in NMR spectra of the FAT domain in complex with the binding region of paxillin and the FAT domain bound to both the LD2 and LD4 motifs allowed us to construct a model of FAK-paxillin binding and suggest a possible mechanism of focal adhesion disassembly.  相似文献   

20.
We have investigated the role of the labile terminal domains of the core histones on the stability of the subunits of the protein core of the nucleosome by studying the thermodynamic behavior of the products of limited trypsin digestion of these subunits. The thermal stabilities of the truncated H2A-H2B dimer and the truncated (H3-H4)/(H3-H4)(2) system were studied by high-sensitivity differential scanning calorimetry and circular dichroism spectroscopy. The thermal denaturation of the truncated H2A-H2B dimer at pH 6.0 and low ionic strength is centered at 47.3 degrees C. The corresponding enthalpy change is 35 kcal/mol of 11.5 kDa monomer unit, and the heat capacity change upon unfolding is 1.2 kcal/(K mol of 11.5 kDa monomer unit). At pH 4.5 and low ionic strength, the truncated (H3-H4)/(H3-H4)(2) system, like its full-length counterpart, is quantitatively dissociated into two truncated H3-H4 dimers. The thermal denaturation of the truncated H3-H4 dimer is characterized by the presence of a single calorimetric peak centered at 60 degrees C. The enthalpy change is 25 kcal/mol of 10 kDa monomer unit, and the change in heat capacity upon unfolding is 0.5 kcal/(K mol of 10 kDa monomer unit). The thermal stabilities of both types of truncated dimers exhibit salt and pH dependencies similar to those of the full-length proteins. Finally, like their full-length counterparts, both truncated core histone dimers undergo thermal denaturation as highly cooperative units, without the involvement of any significant population of melting intermediates. Therefore, removal of the histone "tails" does not generally affect the thermodynamic behavior of the subunits of the core histone complex, indicating that the more centrally located regions of the histone fold and the extra-fold structured elements are primarily responsible for their stability and responses to parameters of their chemical microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号