首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human age‐onset cataracts are believed to be caused by the aggregation of partially unfolded or covalently damaged lens crystallin proteins; however, the exact molecular mechanism remains largely unknown. We have used microseconds of molecular dynamics simulations with explicit solvent to investigate the unfolding process of human lens γD‐crystallin protein and its isolated domains. A partially unfolded folding intermediate of γD‐crystallin is detected in simulations with its C‐terminal domain (C‐td) folded and N‐terminal domain (N‐td) unstructured, in excellent agreement with biochemical experiments. Our simulations strongly indicate that the stability and the folding mechanism of the N‐td are regulated by the interdomain interactions, consistent with experimental observations. A hydrophobic folding core was identified within the C‐td that is comprised of a and b strands from the Greek key motif 4, the one near the domain interface. Detailed analyses reveal a surprising non‐native surface salt‐bridge between Glu135 and Arg142 located at the end of the ab folded hairpin turn playing a critical role in stabilizing the folding core. On the other hand, an in silico single E135A substitution that disrupts this non‐native Glu135‐Arg142 salt‐bridge causes significant destabilization to the folding core of the isolated C‐td, which, in turn, induces unfolding of the N‐td interface. These findings indicate that certain highly conserved charged residues, that is, Glu135 and Arg142, of γD‐crystallin are crucial for stabilizing its hydrophobic domain interface in native conformation, and disruption of charges on the γD‐crystallin surface might lead to unfolding and subsequent aggregation.  相似文献   

2.
γ‐crystallins are highly specialized proteins of the vertebrate eye lens where they survive without turnover under high molecular crowding while maintaining transparency. They share a tightly folded structural template but there are striking differences among species. Their amino acid compositions are unusual. Even in mammals, γ‐crystallins have high contents of sulfur‐containing methionine and cysteine, but this reaches extremes in fish γM‐crystallins with up to 15% Met. In addition, fish γM‐crystallins do not conserve the paired tryptophan residues found in each domain in mammalian γ‐crystallins and in the related β‐crystallins. To gain insight into important, evolutionarily conserved properties and functionality of γ‐crystallins, zebrafish (Danio rerio) γM2b and γM7 were compared with mouse γS and human γD. For all four proteins, far UV CD spectra showed the expected β‐sheet secondary structure. Like the mammalian proteins, γM7 was highly soluble but γM2b was much less so. The heat and denaturant stability of both fish proteins was lower than either mammalian protein. The ability of full‐length and truncated versions of human αB‐crystallin to retard aggregation of the heat denatured proteins also showed differences. However, when solution behavior was investigated by sedimentation velocity experiments, the diverse γ‐crystallins showed remarkably similar hydrodynamic properties with low frictional ratios and partial specific volumes. The solution behavior of γ‐crystallins, with highly compact structures suited for the densely packed environment of the lens, seems to be highly conserved and appears largely independent of amino acid composition.  相似文献   

3.
Human gammaD crystallin (HgammaD-Crys), a major component of the human eye lens, is a 173-residue, primarily beta-sheet protein, associated with juvenile and mature-onset cataracts. HgammaD-Crys has four tryptophans, with two in each of the homologous Greek key domains, which are conserved throughout the gamma-crystallin family. HgammaD-Crys exhibits native-state fluorescence quenching, despite the absence of ligands or cofactors. The tryptophan absorption and fluorescence quenching may influence the lens response to ultraviolet light or the protection of the retina from ambient ultraviolet damage. To provide fluorescence reporters for each quadrant of the protein, triple mutants, each containing three tryptophan-to-phenylalanine substitutions and one native tryptophan, have been constructed and expressed. Trp 42-only and Trp 130-only exhibited fluorescence quenching between the native and denatured states typical of globular proteins, whereas Trp 68-only and Trp 156-only retained the anomalous quenching pattern of wild-type HgammaD-Crys. The three-dimensional structure of HgammaD-Crys shows Tyr/Tyr/His aromatic cages surrounding Trp 68 and Trp 156 that may be the source of the native-state quenching. During equilibrium refolding/unfolding at 37 degrees C, the tryptophan fluorescence signals indicated that domain I (W42-only and W68-only) unfolded at lower concentrations of GdnHCl than domain II (W130-only and W156-only). Kinetic analysis of both the unfolding and refolding of the triple-mutant tryptophan proteins identified an intermediate along the HgammaD-Crys folding pathway with domain I unfolded and domain II intact. This species is a candidate for the partially folded intermediate in the in vitro aggregation pathway of HgammaD-Crys.  相似文献   

4.
Age‐related lens cataract is the major cause of blindness worldwide. The mechanisms whereby crystallins, the predominant lens proteins, assemble into large aggregates that scatter light within the lens, and cause cataract, are poorly understood. Due to the lack of protein turnover in the lens, crystallins are long‐lived. A major crystallin, γS, is heavily modified by deamidation, in particular at surface‐exposed N14, N76, and N143 to introduce negative charges. In this present study, deamidated γS was mimicked by mutation with aspartate at these sites and the effect on biophysical properties of γS was assessed via dynamic light scattering, chemical and thermal denaturation, hydrogen‐deuterium exchange, and susceptibility to disulfide cross‐linking. Compared with wild type γS, a small population of each deamidated mutant aggregated rapidly into large, light‐scattering species that contributed significantly to the total scattering. Under partially denaturing conditions in guanidine hydrochloride or elevated temperature, deamidation led to more rapid unfolding and aggregation and increased susceptibility to oxidation. The triple mutant was further destabilized, suggesting that the effects of deamidation were cumulative. Molecular dynamics simulations predicted that deamidation augments the conformational dynamics of γS. We suggest that these perturbations disrupt the native disulfide arrangement of γS and promote the formation of disulfide‐linked aggregates. The lens‐specific chaperone αA‐crystallin was poor at preventing the aggregation of the triple mutant. It is concluded that surface deamidations cause minimal structural disruption individually, but cumulatively they progressively destabilize γS‐crystallin leading to unfolding and aggregation, as occurs in aged and cataractous lenses.  相似文献   

5.
The features in partially folded intermediates that allow the group II chaperonins to distinguish partially folded from native states remain unclear. The archaeal group II chaperonin from Methanococcus Mauripaludis (Mm‐Cpn) assists the in vitro refolding of the well‐characterized β‐sheet lens protein human γD‐crystallin (HγD‐Crys). The domain interface and buried cores of this Greek key conformation include side chains, which might be exposed in partially folded intermediates. We sought to assess whether particular features buried in the native state, but absent from the native protein surface, might serve as recognition signals. The features tested were (a) paired aromatic side chains, (b) side chains in the interface between the duplicated domains of HγD‐Crys, and (c) side chains in the buried core which result in congenital cataract when substituted. We tested the Mm‐Cpn suppression of aggregation of these HγD‐Crys mutants upon dilution out of denaturant. Mm‐Cpn was capable of suppressing the off‐pathway aggregation of the three classes of mutants indicating that the buried residues were not recognition signals. In fact, Mm‐Cpn recognized the HγD‐Crys mutants better than (wild‐type) WT and refolded most mutant HγD‐Crys to levels twice that of WT HγD‐Crys. This presumably represents the increased population or longer lifetimes of the partially folded intermediates of the mutant proteins. The results suggest that Mm‐Cpn does not recognize the features of HγD‐Crys tested—paired aromatics, exposed domain interface, or destabilized core—but rather recognizes other features of the partially folded β‐sheet conformation that are absent or inaccessible in the native state of HγD‐Crys.  相似文献   

6.
Low molecular weight peptides derived from the breakdown of crystallins have been reported in adult human lenses. The proliferation of these LMW peptides coincides with the earliest stages of cataract formation, suggesting that the protein cleavages involved may contribute to the aggregation and insolubilization of crystallins. This study reports the identification of 238 endogenous LMW crystallin peptides from the cortical extracts of four human lenses representing young, middle and old‐age human lenses. Analysis of the peptide terminal amino acids showed that Lys and Arg were situated at the C‐terminus with significantly higher frequency compared to other residues, suggesting that trypsin‐like proteolysis may be active in the lens cortical fiber cells. Selected reaction monitoring analysis of an endogenous αA‐crystallin peptide (αA57‐65) showed that the concentration of this peptide in the human lens increased gradually to middle age, after which the rate of αA57‐65 formation escalated significantly. Using 2D gel electrophoresis/nanoLC‐ESI‐MS/MS, 12 protein complexes of 40–150 kDa consisting of multiple crystallin components were characterized from the water soluble cortical extracts of an adult human lens. The detection of these protein complexes suggested the possibility of crystallin cross‐linking, with these complexes potentially acting to stabilize degraded crystallins by sequestration into water soluble complexes. Proteins 2015; 83:1878–1886. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
The small heat shock protein (sHSP) from Methanococcus jannaschii (Mj Hsp16.5) forms a monodisperse 24mer and each of its monomer contains two flexible N‐ and C‐terminals and a rigid α‐crystallin domain with an extruding β‐strand exchange loop. The minimal α‐crystallin domain with a β‐sandwich fold is conserved in sHSP family, while the presence of the β‐strand exchange loop is divergent. The function of the β‐strand exchange loop and the minimal α‐crystallin domain of Mj Hsp16.5 need further study. In the present study, we constructed two fragment‐deletion mutants of Mj Hsp16.5, one with both the N‐ and C‐terminals deleted (ΔNΔC) and the other with a further deletion of the β‐strand exchange loop (ΔNΔLΔC). ΔNΔC existed as a dimer in solution. In contrast, the minimal α‐crystallin domain ΔNΔLΔC became polydisperse in solution and exhibited more efficient chaperone‐like activities to prevent amorphous aggregation of insulin B chain and fibril formation of the amyloidogenic peptide dansyl‐SSTSAA‐W than the mutant ΔNΔC and the wild type did. The hydrophobic probe binding experiments indicated that ΔNΔLΔC exposed much more hydrophobic surface than ΔNΔC. Our study also demonstrated that Mj Hsp16.5 used different mechanisms for protecting different substrates. Though Mj Hsp16.5 formed stable complexes with substrates when preventing thermal aggregation, no complexes were detected when preventing aggregation under non‐heat‐shock conditions. Proteins 2014; 82:1156–1167. © 2013 Wiley Periodicals, Inc.  相似文献   

8.
Lens γ crystallins are found at the highest protein concentration of any tissue, ranging from 300 mg/mL in some mammals to over 1000 mg/mL in fish. Such high concentrations are necessary for the refraction of light, but impose extreme requirements for protein stability and solubility. γ‐crystallins, small stable monomeric proteins, are particularly associated with the lowest hydration regions of the lens. Here, we examine the solvation of selected γ‐crystallins from mammals (human γD and mouse γS) and fish (zebrafish γM2b and γM7). The thermodynamic water binding coefficient B1 could be probed by sucrose expulsion, and the hydrodynamic hydration shell of tightly bound water was probed by translational diffusion and structure‐based hydrodynamic boundary element modeling. While the amount of tightly bound water of human γD was consistent with that of average proteins, the water binding of mouse γS was found to be relatively low. γM2b and γM7 crystallins were found to exhibit extremely low degrees hydration, consistent with their role in the fish lens. γM crystallins have a very high methionine content, in some species up to 15%. Structure‐based modeling of hydration in γM7 crystallin suggests low hydration is associated with the large number of surface methionine residues, likely in adaptation to the extremely high concentration and low hydration environment in fish lenses. Overall, the degree of hydration appears to balance stability and tissue density requirements required to produce and maintain the optical properties of the lens in different vertebrate species.  相似文献   

9.
Pantothenate kinase generates 4′‐phosphopantothenate in the first and rate‐determining step of coenzyme A (CoA) biosynthesis. The human genome encodes three well‐characterized and nearly identical pantothenate kinases (PANK1‐3) plus a putative bifunctional protein (PANK4) with a predicted amino‐terminal pantothenate kinase domain fused to a carboxy‐terminal phosphatase domain. Structural and phylogenetic analyses show that all active, characterized PANKs contain the key catalytic residues Glu138 and Arg207 (HsPANK3 numbering). However, all amniote PANK4s, including human PANK4, encode Glu138Val and Arg207Trp substitutions which are predicted to inactivate kinase activity. Biochemical analysis corroborates bioinformatic predictions—human PANK4 lacks pantothenate kinase activity. Introducing Glu138Val and Arg207Trp substitutions to the human PANK3 and plant PANK4 abolished their robust pantothenate kinase activity. Introducing both catalytic residues back into human PANK4 restored kinase activity, but only to a low level. This result suggests that epistatic changes to the rest of the protein already reduced the kinase activity prior to mutation of the catalytic residues in the course of evolution. The PANK4 from frog, an anamniote living relative encoding the catalytically active residues, had only a low level of kinase activity, supporting the view that HsPANK4 had reduced kinase activity prior to the catalytic residue substitutions in amniotes. Together, our data show that human PANK4 is a pseudo‐pantothenate kinase—a catalytically deficient variant of the catalytically active PANK4 found in plants and fungi. The Glu138Val and Arg207Trp substitutions in amniotes (HsPANK3 numbering) completely deactivated the pantothenate kinase activity that had already been reduced by prior epistatic mutations.  相似文献   

10.
In previous work on truncated alpha crystallins (Laganowsky et al., Protein Sci 2010; 19:1031–1043), we determined crystal structures of the alpha crystallin core, a seven beta‐stranded immunoglobulin‐like domain, with its conserved C‐terminal extension. These extensions swap into neighboring cores forming oligomeric assemblies. The extension is palindromic in sequence, binding in either of two directions. Here, we report the crystal structure of a truncated alphaA crystallin (AAC) from zebrafish (Danio rerio) revealing C‐terminal extensions in a non three‐dimensional (3D) domain swapped, “closed” state. The extension is quasi‐palindromic, bound within its own zebrafish core domain, lying in the opposite direction to that of bovine AAC, which is bound within an adjacent core domain (Laganowsky et al., Protein Sci 2010; 19:1031–1043). Our findings establish that the C‐terminal extension of alpha crystallin proteins can be either 3D domain swapped or non‐3D domain swapped. This duality provides another molecular mechanism for alpha crystallin proteins to maintain the polydispersity that is crucial for eye lens transparency.  相似文献   

11.
Protein distribution patterns across eye lenses from the Asiatic toad Bufo gargarizans were investigated and individual crystallin classes characterised. Special fractionation that follows the growth mode of the lens was used to yield nine fractions corresponding to layers laid down at different chronological (developmental) stages. Proportions of soluble and insoluble crystallins within each fraction were measured by Bradford assay. Water‐soluble proteins in all fractions were separated by size‐exclusion HPLC and constituents of each class further characterised by electrophoresis, RP‐HPLC and MS analysis. In outer lens layers, α‐crystallin is the most abundant soluble protein but is not found in soluble proteins in the lens centre. Water‐soluble β‐crystallins also decrease from their highest level in the outer lens to negligible mounts in the central lens. The proportion of soluble γ‐crystallin increases significantly towards the lens centre where this is the only soluble protein present. Insoluble protein levels increase significantly towards the lens centre. In B. gargarizans lenses, as with other anurans, the predominant water‐soluble protein class is γ‐crystallin. No taxon‐specific crystallins were found. The relationship between the protein distribution patterns and the functional properties of the lens this species is discussed.  相似文献   

12.
The eye lens protein γD‐crystallin contributes to cataract formation in the lens. In vitro experiments show that γD‐crystallin has a high propensity to form amyloid fibers when denatured, and that denaturation by acid or UV‐B photodamage results in its C‐terminal domain forming the β‐sheet core of amyloid fibers. Here, we show that thermal denaturation results in sheet‐like aggregates that contain cross‐linked oligomers of the protein, according to transmission electron microscopy and SDS‐PAGE. We use two‐dimensional infrared spectroscopy to show that these aggregates have an amyloid‐like secondary structure with extended β‐sheets, and use isotope dilution experiments to show that each protein contributes approximately one β‐strand to each β‐sheet in the aggregates. Using segmental 13C labeling, we show that the organization of the protein's two domains in thermally induced aggregates results in a previously unobserved structure in which both the N‐terminal and C‐terminal domains contribute to β‐sheets. We propose a model for the structural organization of the aggregates and attribute the recruitment of the N‐terminal domain into the fiber structure to intermolecular cross linking.  相似文献   

13.
The effect of protein and chemical chaperones and crowders on thermal stability and aggregation of apoform of rabbit muscle glycogen phosphorylase b (apoPhb) has been studied at 37°C. Proline suppressed heat‐induced loss in ability of apoPhb to reconstitution at 37°C, whereas α‐crystallin did not reveal a protective action. To compare the antiaggregation activity of intact and crosslinked α‐crystallins, an adsorption capacity (AC) of a protein chaperone with respect to a target protein was estimated. This parameter is a measure of the antiaggregation activity. Crosslinking of α‐crystallin results in 11‐fold decrease in the initial AC. The nonlinear character of the relative initial rate of apoPhb aggregation versus the [intact α‐crystallin]/[apoPhb] ratio plot is indicative of the decrease in the AC of α‐crystallin with increasing the [α‐crystallin]/[apoPhb] ratio and can be interpreted as an evidence for dynamic chaperone structure and polydispersity of α‐crystallin–target protein complexes. As for chemical chaperones, a semisaturation concentration of the latter was used as a characteristic of the antiaggregation activity. A decrease in the semisaturation concentration for proline was observed in the presence of the crowders (polyethylene glycol and Ficoll‐70). © 2013 Wiley Periodicals, Inc. Biopolymers 101: 504–516, 2014.  相似文献   

14.
Protein loops make up a large portion of the secondary structure in nature. But very little is known concerning loop closure dynamics and the effects of loop composition on fold stability. We have designed a small system with stable β‐sheet structures, including features that allow us to probe these questions. Using paired Trp residues that form aromatic clusters on folding, we are able to stabilize two β‐strands connected by varying loop lengths and composition (an example sequence: R W ITVTI – loop – KKIRV W E). Using NMR and CD, both fold stability and folding dynamics can be investigated for these systems. With the 16 residue loop peptide (sequence: R W ITVTI‐(GGGGKK)2GGGG‐KKIRV W E) remaining folded (ΔGU = 1.6 kJ/mol at 295K). To increase stability and extend the series to longer loops, we added an additional Trp/Trp pair in the loop flanking position. With this addition to the strands, the 16 residue loop (sequence: R W ITVRI W ‐(GGGGKK)2GGGG‐ W KTIRV W E) supports a remarkably stable β‐sheet (ΔGU = 6.3 kJ/mol at 295 K, Tm = ~55°C). Given the abundance of loops in binding motifs and between secondary structures, these constructs can be powerful tools for peptide chemists to study loop effects; with the Trp/Trp pair providing spectroscopic probes for assessing both stability and dynamics by NMR.  相似文献   

15.
Chen J  Flaugh SL  Callis PR  King J 《Biochemistry》2006,45(38):11552-11563
Quenching of the fluorescence of buried tryptophans (Trps) is an important reporter of protein conformation. Human gammaD-crystallin (HgammaD-Crys) is a very stable eye lens protein that must remain soluble and folded throughout the human lifetime. Aggregation of non-native or covalently damaged HgammaD-Crys is associated with the prevalent eye disease mature-onset cataract. HgammaD-Crys has two homologous beta-sheet domains, each containing a pair of highly conserved buried tryptophans. The overall fluorescence of the Trps is quenched in the native state despite the absence of the metal ligands or cofactors. We report the results of detailed quantitative measurements of the fluorescence emission spectra and the quantum yields of numerous site-directed mutants of HgammaD-Crys. From fluorescence of triple Trp to Phe mutants, the homologous pair Trp68 and Trp156 were found to be extremely quenched, with quantum yields close to 0.01. The homologous pair Trp42 and Trp130 were moderately fluorescent, with quantum yields of 0.13 and 0.17, respectively. In an attempt to identify quenching and/or electrostatically perturbing residues, a set of 17 candidate amino acids around Trp68 and Trp156 were substituted with neutral or hydrophobic residues. None of these mutants showed significant changes in the fluorescence intensity compared to their own background. Hybrid quantum mechanical-molecular mechanical (QM-MM) simulations with the four different excited Trps as electron donors strongly indicate that electron transfer rates to the amide backbone of Trp68 and Trp156 are extremely fast relative to those for Trp42 and Trp130. This is in agreement with the quantum yields measured experimentally and consistent with the absence of a quenching side chain. Efficient electron transfer to the backbone is possible for Trp68 and Trp156 because of the net favorable location of several charged residues and the orientation of nearby waters, which collectively stabilize electron transfer electrostatically. The fluorescence emission spectra of single and double Trp to Phe mutants provide strong evidence for energy transfer from Trp42 to Trp68 in the N-terminal domain and from Trp130 to Trp156 in the C-terminal domain. The backbone conformation of tryptophans in HgammaD-Crys may have evolved in part to enable the lens to become a very effective UV filter, while the efficient quenching provides an in situ mechanism to protect the tryptophans of the crystallins from photochemical degradation.  相似文献   

16.
In humans, the crystallin proteins of the ocular lens become yellow-coloured and fluorescent with ageing. With the development of senile nuclear cataract, the crystallins become brown and additional fluorophores are formed. The mechanism underlying crystallin colouration is not known but may involve interaction with kynurenine-derived UV filter compounds. We have recently identified a sulphur-linked glutathionyl-3-hydroxykynurenine glucoside adduct in the lens and speculated that kynurenine may also form adducts with GSH and possibly with nucleophilic amino acids of the crystallins (e.g. Cys). Here we show that kynurenine modifies calf lens crystallins non-oxidatively to yield coloured (365 nm absorbing), fluorescent (Ex 380 nm/Em 450-490 nm) protein adducts. Carboxymethylation and succinylation of crystallins inhibited kynurenine-mediated modification by approx. 90%, suggesting that Cys, Lys and possibly His residues may be involved. This was confirmed by showing that kynurenine formed adducts with GSH as well as with poly-His and poly-Lys. NMR studies revealed that the novel poly-Lys-kynurenine covalent linkage was via the epsilon-amino group of the Lys side chain and the betaC of the kynurenine side chain. Analysis of tryptic peptides of kynurenine-modified crystallins revealed that all of the coloured peptides contained either His, Cys or an internal Lys residue. We propose a novel mechanism of kynurenine-mediated crystallin modification which does not require UV light or oxidative conditions as catalysts. Rather, we suggest that the side chain of kynurenine-derived lens UV filters becomes deaminated to yield an alpha,beta-unsaturated carbonyl which is highly susceptible to attack by nucleophilic amino acid residues of the crystallins. The inability of the lens fibre cells to metabolise their constituent proteins results in the accumulation of coloured/fluorescent crystallins with age.  相似文献   

17.
Animal model systems of senile cataract and lens crystallin stability are essential to understand the complex nature of lens transparency. Our aim in this study was to assess the long-lived Antarctic toothfish Dissostichus mawsoni (Norman) as a model system to understand long-term lens clarity in terms of solubility changes that occur to crystallins. We compared the toothfish with the mammalian model cow lens, dissecting each species’ lens into a cortex and nuclear region. In addition to crystallin distribution, we also assayed fatty acid (FA) composition by negative ion electrospray ionization mass spectrometry (ESI-MS). The majority of toothfish lens crystallins from cortex (90.4%) were soluble, whereas only a third (31.8%) from the nucleus was soluble. Crystallin solubility analysis by SDS-PAGE and immunoblots revealed that relative proportions of crystallins in both soluble and urea-soluble fractions were similar within each species examined and in agreement with previous reports for bovine lens. From our data, we found that both toothfish and cow crystallins follow patterns of insolubility that mirror each animals lens composition with more γ crystallin aggregation seen in the toothfish lens nucleus than in cow. Toothfish lens lipids had a large amount of polyunsaturated fatty acids that were absent in cow resulting in an unsaturation index (I U) four-fold higher than that of cow. We identified a novel FA with a molecular mass of 267 mass units in the lens epithelial layer of the toothfish that accounted for well over 50% of the FA abundance. The unidentified lipid in the toothfish lens epithelia corresponds to either an odd-chain (17 carbons) FA or a furanoid. We conclude that long-lived fishes are likely good animal models of lens crystallin solubility and may model post-translational modifications and solubility changes better than short-lived animal models.  相似文献   

18.
α‐Crystallin is a multimeric eye lens protein having molecular chaperone‐like function which is crucial for lens transparency. The stability and unfolding‐refolding properties of α‐crystallin plays important roles for its function. We undertook a multi probe based fluorescence spectroscopic approach to explore the changes in the various levels of organization of this protein at different urea concentration. Steady state fluorescence studies reveal that at 0.6M urea a compact structural intermediate is formed which has a native‐like secondary structure with enhanced surface exposure of hydrophobic groups. At 2.8M urea the tertiary interactions are largely collapsed with partial collapse of secondary and quaternary structure. The surface solvation probed by picosecond time resolved fluorescence of acrylodan labeled α‐crystallin revealed dry native‐like core of α‐crystallin at 0.6M urea compared to enhanced water penetration at 2.8M urea and extensive solvation at 6M urea. Activation energy for the subunit exchange decreased by 22 kJ mol?1 on changing urea concentration from 0 to 0.6M compared with over 75 kJ mol?1 on changing urea concentration from 0 to 2.8M. Light scattering and analytical ultracentrifugation techniques were used to determine size and oligomerization of the unfolding intermediates. The data indicated swelling but no oligomer breakdown at 0.6M urea. At 2.8M urea the oligomeric size is considerably reduced and a monomer is produced at 6M urea. The data clearly reveals that structural breakdown of α‐crystallin does not follow hierarchical sequence as tertiary structure dissolution takes place before complete oligomeric dissociation. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 549–560, 2014.  相似文献   

19.
Chen J  Toptygin D  Brand L  King J 《Biochemistry》2008,47(40):10705-10721
Human gammaD-crystallin (HgammaD-Crys) is a two-domain, beta-sheet eye lens protein found in the lens nucleus. Its long-term solubility and stability are important to maintain lens transparency throughout life. HgammaD-Crys has four highly conserved buried tryptophans (Trps), with two in each of the homologous beta-sheet domains. In situ, these Trps will be absorbing ambient UV radiation that reaches the lens. The dispersal of the excited-state energy to avoid covalent damage is likely to be physiologically relevant for the lens crystallins. Trp fluorescence is efficiently quenched in native HgammaD-Crys. Previous steady-state fluorescence measurements provide strong evidence for energy transfer from Trp42 to Trp68 in the N-terminal domain and from Trp130 to Trp156 in the C-terminal domain [Chen, J., et al. (2006) Biochemistry 45, 11552-11563]. Hybrid quantum mechanical-molecular mechanical (QM-MM) simulations indicated that the fluorescence of Trp68 and Trp156 is quenched by fast electron transfer to the amide backbone. Here we report additional information obtained using time-resolved fluorescence spectroscopy. In the single-Trp-containing proteins (Trp42-only, Trp68-only, Trp130-only, and Trp156-only), the highly quenched Trp68 and Trp156 have very short lifetimes, tau approximately 0.1 ns, whereas the moderately fluorescent Trp42 and Trp130 have longer lifetimes, tau approximately 3 ns. In the presence of the energy acceptor (Trp68 or Trp156), the lifetime of the energy donor (Trp42 or Trp130) decreased from approximately 3 to approximately 1 ns. The intradomain energy transfer efficiency is 56% in the N-terminal domain and is 71% in the C-terminal domain. The experimental values of energy transfer efficiency are in good agreement with those calculated theoretically. The absence of a time-dependent red shift in the time-resolved emission spectra of Trp130 proves that its local environment is very rigid. Time-resolved fluorescence anisotropy measurements with the single-Trp-containing proteins, Trp42-only and Trp130-only, indicate that the protein rotates as a rigid body and no segmental motion is detected. A combination of energy transfer with electron transfer results in short excited-state lifetimes of all Trps, which, together with the high rigidity of the protein matrix around Trps, could protect HgammaD-Crys from excited-state reactions causing permanent covalent damage.  相似文献   

20.
Myoglobin is an alpha-helical globular protein containing two highly conserved tryptophanyl residues at positions 7 and 14 in the N-terminal region. The simultaneous substitution of the two residues increases the susceptibility of the polypeptide chain to misfold, causing amyloid aggregation under physiological condition, i.e., neutral pH and room temperature. The role played by tryptophanyl residues in driving the folding process has been investigated by examining three mutated apomyoglobins, i.e., W7F, W14F, and the amyloid-forming mutant W7FW14F, by an integrated approach based on far-ultraviolet (UV) circular dichroism (CD) analysis, fluorescence spectroscopy, and complementary proteolysis. Particular attention has been devoted to examine the conformational and dynamic properties of the equilibrium intermediate formed at pH 4.0, since it represents the early organized structure from which the native fold originates. The results show that the W → F substitutions at position 7 and 14 differently affect the structural organization of the AGH subdomain of apomyoglobin. The combined effect of the two substitutions in the double mutant impairs the formation of native-like contacts and favors interchain interactions, leading to protein aggregation and amyloid formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号