首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Ionotropic glutamate receptors (iGluRs) are tetrameric cation channels that mediate synaptic transmission and plasticity. They have a unique modular architecture with four domains: the intracellular C-terminal domain (CTD) that is involved in synaptic targeting, the transmembrane domain (TMD) that forms the ion channel, the membrane-proximal ligand-binding domain (LBD) that binds agonists such as L-glutamate, and the distal N-terminal domain (NTD), whose function is the least clear. The extracellular portion, comprised of the LBD and NTD, is loosely arranged, mediating complex allosteric regulation and providing a rich target for drug development. Here, we briefly review recent work on iGluR NTD structure and dynamics, and further explore the allosteric potential for the NTD in AMPA-type iGluRs using coarse-grained simulations. We also investigate mechanisms underlying the established NTD allostery in NMDA-type iGluRs, as well as the fold-related metabotropic glutamate and GABAB receptors. We show that the clamshell motions intrinsically favored by the NTD bilobate fold are coupled to dimeric and higher-order rearrangements that impact the iGluR LBD and ultimately the TMD. Finally, we explore the dynamics of intact iGluRs and describe how it might affect receptor operation in a synaptic environment.  相似文献   

2.
Dror Tobi 《Proteins》2017,85(8):1507-1517
A new algorithm for comparison of protein dynamics is presented. Compared protein structures are superposed and their modes of motions are calculated using the anisotropic network model. The obtained modes are aligned using the dynamic programming algorithm of Needleman and Wunsch, commonly used for sequence alignment. Dynamical comparison of hemoglobin in the T and R2 states reveals that the dynamics of the allosteric effector 2,3‐bisphosphoglycerate binding site is different in the two states. These differences can contribute to the selectivity of the effector to the T state. Similar comparison of the ionotropic glutamate receptor in the kainate+(R,R)‐2b and ZK bound states reveals that the kainate+(R,R)‐2b bound states slow modes describe upward motions of ligand binding domain and the transmembrane domain regions. Such motions may lead to the opening of the receptor. The upper lobes of the LBDs of the ZK bound state have a smaller interface with the amino terminal domains above them and have a better ability to move together. The present study exemplifies the use of dynamics comparison as a tool to study protein function. Proteins 2017; 85:1507–1517. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Ionotropic glutamate receptor (iGluR) subunits contain a approximately 400-residue extracellular N-terminal domain ("X domain"), which is sequence-related to bacterial amino acid-binding proteins and to class C G-protein-coupled receptors. The X domain has been implicated in the assembly, transport to the cell surface, allosteric ligand binding, and desensitization in various members of the iGluR family, but its actual role in these events is poorly characterized. We have studied the properties of homomeric alpha-amino-3-hydroxy-5-methylisoxazolepropionate (AMPA)-selective GluR-D glutamate receptors carrying N-terminal deletions. Our analysis indicates that, surprisingly, transport to the cell surface, ligand binding properties, agonist-triggered channel activation, rapid desensitization, and allosteric potentiation by cyclothiazide can occur normally in the complete absence of the X domain (residues 22-402). The relatively intact ligand-gated channel function of a homomeric AMPA receptor in the absence of the X domain indirectly suggests more subtle roles for this domain in AMPA receptors, e.g. in the assembly of heteromeric receptors and in synaptic protein interactions.  相似文献   

4.
Ligand‐regulated pregnane X receptor (PXR), a member of the nuclear receptor superfamily, plays a central role in xenobiotic metabolism. Despite its critical role in drug metabolism, PXR activation can lead to adverse drug‐drug interactions and early stage metabolism of drugs. Activated PXR can induce cancer drug resistance and enhance the onset of malignancy. Since promiscuity in ligand binding makes it difficult to develop competitive inhibitors targeting PXR ligand binding pocket (LBP), it is essential to identify allosteric sites for effective PXR antagonism. Here, molecular dynamics (MD) simulation studies unravelled the existence of two different conformational states, namely “expanded” and “contracted”, in apo PXR ligand binding domain (LBD). Ligand binding events shifted this conformational equilibrium and locked the LBD in a single “ligand‐adaptable” conformational state. Ensemble‐based computational solvent mapping identified a transiently open potential small molecule binding pocket between α5 and α8 helices, named “α8 pocket”, whose opening‐closing mechanism directly correlated with the conformational shift in LBD. A virtual hit identified through structure‐based virtual screening against α8 pocket locks the pocket in its open conformation. MD simulations further revealed that the presence of small molecule at allosteric site disrupts the LBD dynamics and locks the LBD in a “tightly‐contracted” conformation. The molecular details provided here could guide new structural studies to understand PXR activation and antagonism.  相似文献   

5.
Ionotropic glutamate receptor (iGluR) channels control synaptic activity. The crystallographic structure of GluA2, the prototypical iGluR, reveals a clamshell-like ligand-binding domain (LBD) that closes in the presence of glutamate to open a gate on the pore lining α-helix. How LBD closure leads to gate opening remains unclear. Here, we show that bending the pore helix at a highly conserved alanine residue (Ala-621) below the gate is responsible for channel opening. Substituting Ala-621 with the smaller more flexible glycine resulted in a basally active, nondesensitizing channel with ∼39-fold increase in glutamate potency without affecting surface expression or binding. On GluA2(A621G), the partial agonist kainate showed efficacy similar to a full agonist, and competitive antagonists CNQX and DNQX acted as a partial agonists. Met-629 in GluA2 sits above the gate and is critical in transmitting LBD closure to the gate. Substituting Met-629 with the flexible glycine resulted in reduced channel activity and glutamate potency. The pore regions in potassium channels are structurally similar to iGluRs. Whereas potassium channels typically use glycines as a hinge for gating, iGluRs use the less flexible alanine as a hinge at a similar position to maintain low basal activity allowing for ligand-mediated gating.  相似文献   

6.
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.  相似文献   

7.
Cytoplasmic domains of transmembrane bacterial chemoreceptors are largely extended four‐helix coiled coils. Previous observations suggested the domain was structurally dynamic. We probed directly backbone dynamics of this domain of the transmembrane chemoreceptor Tar from Escherichia coli using site‐directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy. Spin labels were positioned on solvent‐exposed helical faces because EPR spectra for such positions reflect primarily polypeptide backbone movements. We acquired spectra for spin‐labeled, intact receptor homodimers solubilized in detergent or inserted into native E. coli lipid bilayers in Nanodiscs, characterizing 16 positions distributed throughout the cytoplasmic domain and on both helices of its helical hairpins, one amino terminal to the membrane‐distal tight turn (N‐helix), and the other carboxyl terminal (C‐helix). Detergent solubilization increased backbone dynamics for much of the domain, suggesting that loss of receptor activities upon solubilization reflects wide‐spread destabilization. For receptors in either condition, we observed an unanticipated difference between the N‐ and C‐helices. For bilayer‐inserted receptors, EPR spectra from sites in the membrane‐distal protein‐interaction region and throughout the C‐helix were typical of well‐structured helices. In contrast, for approximately two‐thirds of the N‐helix, from its origin as the AS‐2 helix of the membrane‐proximal HAMP domain to the beginning of the membrane‐distal protein‐interaction region, spectra had a significantly mobile component, estimated by spectral deconvolution to average approximately 15%. Differential helical dynamics suggests a four‐helix bundle organization with a pair of core scaffold helices and two more dynamic partner helices. This newly observed feature of chemoreceptor structure could be involved in receptor function.  相似文献   

8.
Ionotropic glutamate receptor (iGluR) subunits contain a large N-terminal domain (NTD) that precedes the agonist-binding domain (ABD) and participates in subunit oligomerization. In NMDA receptors (NMDARs), the NTDs of NR2A and NR2B subunits also form binding sites for the endogenous inhibitor Zn(2+) ion. Although these allosteric sites have been characterized in detail, the molecular mechanisms by which the NTDs communicate with the rest of the receptor to promote its inhibition remain unknown. Here, we identify the ABD dimer interface as a major structural determinant that permits coupling between the NTDs and the channel gate. The strength of this interface also controls proton inhibition, another form of allosteric modulation of NMDARs. Conformational rearrangements at the ABD dimer interface thus appear to be a key mechanism conserved in all iGluR subfamilies, but have evolved to fulfill different functions: fast desensitization at AMPA and kainate receptors, allosteric inhibition at NMDARs.  相似文献   

9.
The P2X receptor is a trimeric transmembrane protein that acts as an ATP-gated ion channel. Its transmembrane domain (TMD) contains only six helices and three of them, the M2 helices, line the ion conduction pathway. Here, using molecular dynamics simulation, I identify four conformational states of the TMD that are associated with four types of packing between M2 helices. Packing in the extracellular half of the M2 helix produces closed conformations, while packing in the intracellular half produces both open and closed conformations. State transition is observed and supports a mechanism where iris-like twisting of the M2 helices switches the location of helical packing between the extracellular and the intracellular halves of the helices. In addition, this twisting motion alters the position and orientation of residue side-chains relative to the pore and therefore influences the pore geometry and possibly ion permeation. Helical packing, on the other hand, may restrict the twisting motion and generate discrete conformational states.  相似文献   

10.
Szarecka A  Xu Y  Tang P 《Proteins》2007,68(4):948-960
The dynamics characteristics of the currently available structure of Torpedo nicotinic acetylcholine receptor (nAChR), including the extracellular, transmembrane, and intracellular domains (ICDs), were analyzed using the Gaussian Network Model (GNM) and Anisotropic Network Model (ANM). We found that a symmetric quaternary twist motion, reported previously in the literature in a homopentameric receptor (Cheng et al. J Mol Biol 2006;355:310-324; Taly et al. Biophys J 2005;88:3954-3965), occurred also in the heteropentameric Torpedo nAChR. We believe, however, that the symmetric twist alone is not sufficient to explain a large body of experimental data indicating asymmetry and subunit nonequivalence during gating. Here we report our results supporting the hypothesis that a combination of symmetric and asymmetric motions opens the gate. We show that the asymmetric motion involves tilting of the TM2 helices. Furthermore, our study reveals three additional aspects of channel dynamics: (1) loop A serves as an allosteric mediator between the ligand binding loops and those at the domain interface, particularly the linker between TM2 and TM3; (2) the ICD can modulate the pore dynamics and thus should not be neglected in gating studies; and (3) the F loops, which are peculiarly longer and poorly-conserved in non-alpha-subunits, have important dynamical implications.  相似文献   

11.
Meir Davis  Dror Tobi 《Proteins》2014,82(9):2097-2105
Gaussian network model (GNM) modes of motion are calculated to a dataset of h emoglobin (Hb) structures and modes with dynamics similarity to the T state are multiply aligned. The sole criterion for the alignment is the mode shape itself and not sequence or structural similarity. Standard deviation (SD) of the GNM value score along the alignment is calculated, regions with high SD are defined as dynamically variable. The analysis shows that the α1β1/α2β2 interface is a dynamically variable region but not the α1β2/α2β1 and the α1α2/β1β2 interfaces. The results are in accordance with the T → R2 transition of Hb. We suggest that dynamically variable regions are regions that are likely to undergo structural change in the protein upon binding, conformational transition, or any other relevant chemical event. The represented technique of multiple dynamics ‐ based alignment of modes is novel and may offer a new insight in proteins ' dynamics to function relation. Proteins 2014; 82:2097–2105. © 2014 Wiley Periodicals, Inc.  相似文献   

12.
The extracellular calcium-sensing human Ca(2+) receptor (hCaR),2 a member of the family-3 G-protein-coupled receptors (GPCR) possesses a large amino-terminal extracellular ligand-binding domain (ECD) in addition to a seven-transmembrane helical domain (7TMD) characteristic of all GPCRs. Two calcimimetic allosteric modulators, NPS R-568 and Calindol ((R)-2-{1-(1-naphthyl)ethyl-aminom-ethyl}indole), that bind the 7TMD of the hCaR have been reported to potentiate Ca(2+) activation without independently activating the wild type receptor. Because agonists activate rhodopsin-like family-1 GPCRs by binding within the 7TMD, we examined the ability of Calindol, a novel chemically distinct calcimimetic, to activate a Ca(2+) receptor construct (T903-Rhoc) in which the ECD and carboxyl-terminal tail have been deleted to produce a rhodopsin-like 7TMD. Here we report that although Calindol has little or no agonist activity in the absence of extracellular Ca(2+) for the ECD-containing wild type or carboxyl-terminal deleted receptors, it acts as a strong agonist of the T903-Rhoc. In addition, Ca(2+) alone displays little or no agonist activity for the hCaR 7TMD, but potentiates the activation by Calindol. We confirm that activation of Ca(2+) T903-Rhoc by Calindol truly the is independent using in vitro reconstitution with purified G(q). These findings demonstrate distinct allosteric linkages between Ca(2+) site(s) in the ECD and 7TMD and the 7TMD site(s) for calcimimetics.  相似文献   

13.
We present a homology based model of the ligand binding domain (LBD) of the homopentameric alpha1 glycine receptor (GlyR). The model is based on multiple sequence alignment with other members of the nicotinicoid ligand gated ion channel superfamily and two homologous acetylcholine binding proteins (AChBP) from the freshwater (Lymnaea stagnalis) and saltwater (Aplysia californica) snails with known high resolution structure. Using two template proteins with known structure to model three dimensional structure of a target protein is especially advantageous for sequences with low homology as in the case presented in this paper. The final model was cross-validated by critical evaluation of experimental and published mutagenesis, functional and other biochemical studies. In addition, a complex structure with strychnine antagonist in the putative binding site is proposed based on docking simulation using Autodock program. Molecular dynamics (MD) simulations with simulated annealing protocol are reported on the proposed LBD of GlyR, which is stable in 5 ns simulation in water, as well as for a deformed LBD structure modeled on the corresponding domain determined in low-resolution cryomicroscopy structure of the alpha subunit of the full-length acetylcholine receptor (AChR). Our simulations demonstrate that the beta-sandwich central core of the protein monomer is fairly rigid in the simulations and resistant to deformations in water.  相似文献   

14.
Regulation of nuclear receptor (NR) activity is driven by alterations in the conformational dynamics of the receptor upon ligand binding. Previously, we demonstrated that hydrogen/deuterium exchange (HDX) can be applied to determine novel mechanism of action of PPARγ ligands and in predicting tissue specificity of selective estrogen receptor modulators. Here, we applied HDX to probe the conformational dynamics of the ligand binding domain (LBD) of the vitamin D receptor (VDR) upon binding its natural ligand 1α,25-dihydroxyvitamin D3 (1,25D3), and two analogs, alfacalcidol and ED-71. Comparison of HDX profiles from ligands in complex with the LBD with full-length receptor bound to its cognate receptor retinoid X receptor (RXR) revealed unique receptor dynamics that could not be inferred from static crystal structures. These results demonstrate that ligands modulate the dynamics of the heterodimer interface as well as provide insight into the role of AF-2 dynamics in the action of VDR partial agonists.  相似文献   

15.
The human constitutive androstane receptor (CAR, NR1I3) is an important ligand-activated regulator of oxidative and conjugative enzymes and transport proteins. Because of the lack of a crystal structure of the ligand-binding domain (LBD), wide species differences in ligand specificity and the scarcity of well characterized ligands, the factors that determine CAR ligand specificity are not clear. To address this issue, we developed highly defined homology models of human CAR LBD to identify residues lining the ligand-binding pocket and to perform molecular dynamics simulations with known human CAR modulators. The roles of 22 LBD residues for basal activity, ligand selectivity, and interactions with co-regulators were studied using site-directed mutagenesis, mammalian co-transfection, and yeast two-hybrid assays. These studies identified several amino acids within helices 3 (Asn(165)), 5 (Val(199)), 11 (Tyr(326), Ile(330), and Gln(331)), and 12 (Leu(343) and Ile(346)) that contribute to the high basal activity of human CAR. Unique residues within helices 3 (Ile(164) and Asn(165)), 5 (Cys(202) and His(203)), and 7 (Phe(234) and Phe(238)) were found control the selectivity for CAR activators and inhibitors. A single residue in helix 7 (Phe(243)) appears to explain the human/mouse species difference in response of CAR to 17alpha-ethynyl-3,17beta-estradiol.  相似文献   

16.
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission in the central nervous system and play key roles in brain development and disease. iGluRs have two distinct extracellular domains, but the functional role of the distal N-terminal domain (NTD) is poorly understood. Crystal structures of the NTD from some non-N-methyl-d-aspartate (NMDA) iGluRs are consistent with a rigid body that facilitates receptor assembly but suggest an additional dynamic role that could modulate signaling. Here, we moved beyond spatial and temporal limitations of conventional protein single-molecule spectroscopy by employing correlation analysis of extrinsic oxazine fluorescence fluctuations. We observed nanosecond (ns)-to-microsecond (μs) motions of loop segments and helices within a region of an AMPA-type iGluR NTD, which has been identified previously to be structurally variable. Our data reveal that the AMPA receptor NTD undergoes rapid conformational fluctuations, suggesting an inherent allosteric capacity for this domain in addition to its established assembly function.  相似文献   

17.
18.
The native α7 nicotinic acetylcholine receptor (α7nAChR) is a homopentameric ligand-gated ion channel mediating fast synaptic transmission and is of pharmaceutical interest for treatment of numerous disorders. The transmembrane domain (TMD) of α7nAChR has been identified as a target for positive allosteric modulators (PAMs), but it is unclear whether modulation occurs through changes entirely within the TMD or changes involving both the TMD and the extracellular domain (ECD)-TMD interface. In this study, we constructed multiple chimeras using the TMD of human α7nAChR and the ECD of a prokaryotic homolog, ELIC, which is not sensitive to these modulators, and for which a high resolution structure has been solved. Functional ELIC-α7nAChR (EA) chimeras were obtained when their ECD-TMD interfaces were modified to resemble either the ELIC interface (EAELIC) or α7nAChR interface (EAα7). Both EAα7 and EAELIC show similar activation response and desensitization characteristics, but only EAα7 retained the unique pharmacology of α7nAChR evoked by PAMs, including potentiation by ivermectin, PNU-120596, and TQS, as well as activation by 4BP-TQS. This study suggests that PAM modulation through the TMD has a more stringent requirement at the ECD-TMD interface than agonist activation.  相似文献   

19.
Ligand‐gated Glutamate receptors (GluR) mediate synaptic signals in the nervous system. Ionotropic GluRs of AMPA type, the subject of this study, are tetrameric assemblies of monomer subunits, each of which is constructed in a modular fashion from functional subdomains. The extracellular ligand‐binding domain (LBD) changes its conformation upon binding of an agonist ligand followed by opening of a transmembrane (TM) ion channel. Peptides connecting the LBD and TM domains facilitate gating of the channel, and their structure and composition are important for the receptor functioning. In this study, we used replica exchange molecular dynamics (REMD) simulations to model S1M1 and S2M3 connecting peptides of the GluR2 receptor in two implicit solvents, water and interfacial water/lipid medium characterized by lower polarity. Propensity of these peptides to form helical structures was analyzed using helicity measure derived from the free energy of the simulated ensembles of structures. The S1M1 and S2M3 connecting peptides were not helical in our simulations in both dielectric environments in the absence of the rest of the protein. The structures of the LBD fragment with known high‐resolution α‐helical structure and of the TM3 helix were successfully predicted in the simulations, which in part validate our results. The S2M3 peptide, which is important in gating, formed a well‐defined coil structure and salt‐bridges with the S2 domain. The S1M1 peptide formed a loop structure via formation of internal salt‐bridges. Potential implications of these structures on function of the receptor are discussed. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
The precise regulation of protein activity is fundamental to life. The allosteric control of an active site by a remote regulatory binding site is a mechanism of regulation found across protein classes, from enzymes to motors to signaling proteins. We describe a general approach for manipulating allosteric control using synthetic optical switches. Our strategy is exemplified by a ligand-gated ion channel of central importance in neuroscience, the ionotropic glutamate receptor (iGluR). Using structure-based design, we have modified its ubiquitous clamshell-type ligand-binding domain to develop a light-activated channel, which we call LiGluR. An agonist is covalently tethered to the protein through an azobenzene moiety, which functions as the optical switch. The agonist is reversibly presented to the binding site upon photoisomerization, initiating clamshell domain closure and concomitant channel gating. Photoswitching occurs on a millisecond timescale, with channel conductances that reflect the photostationary state of the azobenzene at a given wavelength. Our device has potential uses not only in biology but also in bioelectronics and nanotechnology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号