首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella invasion is mediated by a concerted action of the Salmonella pathogenicity island 4 (SPI4)‐encoded type one secretion system (T1SS) and the SPI1‐encoded type three secretion system (T3SS‐1). The SPI4‐encoded T1SS consists of five proteins (SiiABCDF) and secretes the giant adhesin SiiE. Here, we investigated structure–function relationships in SiiA, a non‐canonical T1SS subunit. We show that SiiA consists of a membrane domain, an intrinsically disordered periplasmic linker region and a folded globular periplasmic domain (SiiA‐PD). The crystal structure of SiiA‐PD displays homology to that of MotB and other peptidoglycan (PG)‐binding domains. SiiA‐PD binds PG in vitro, albeit at an acidic pH, only. Mutation of Arg162 impedes PG binding of SiiA and reduces Salmonella invasion efficacy. SiiA forms a complex with SiiB at the inner membrane (IM), and the observed SiiA‐MotB homology is paralleled by a predicted SiiB‐MotA homology. We show that, similar to MotAB, SiiAB translocates protons across the IM. Mutating Asp13 in SiiA impairs proton translocation. Overall, SiiA shares numerous properties with MotB. However, MotAB uses the proton motif force (PMF) to energize the bacterial flagellum, it remains to be shown how usage of the PMF by SiiAB assists T1SS function and Salmonella invasion.  相似文献   

2.
YscD is an essential component of the plasmid pCD1-encoded type III secretion system (T3SS) of Yersinia pestis. YscD has a single transmembrane (TM) domain that connects a small N-terminal cytoplasmic region (residues 1 to 121) to a larger periplasmic region (residues 143 to 419). Deletion analyses established that both the N-terminal cytoplasmic region and the C-terminal periplasmic region are required for YscD function. Smaller targeted deletions demonstrated that a predicted cytoplasmic forkhead-associated (FHA) domain is also required to assemble a functional T3SS; in contrast, a predicted periplasmic phospholipid binding (BON) domain and a putative periplasmic "ring-building motif" domain of YscD could be deleted with no significant effect on the T3S process. Although deletion of the putative "ring-building motif" domain did not disrupt T3S activity per se, the calcium-dependent regulation of the T3S apparatus was affected. The extreme C-terminal region of YscD (residues 354 to 419) was essential for secretion activity and had a strong dominant-negative effect on the T3S process when exported to the periplasm of the wild-type parent strain. Coimmunoprecipitation studies demonstrated that this region of YscD mediates the interaction of YscD with the outer membrane YscC secretin complex. Finally, replacement of the YscD TM domain with a TM domain of dissimilar sequence had no effect on the T3S process, indicating that the TM domain has no sequence-specific function in the assembly or function of the T3SS.  相似文献   

3.
The assembly of the Yersinia enterocolitica type III secretion injectisome was investigated by grafting fluorescent proteins onto several components, YscC (outer‐membrane (OM) ring), YscD (forms the inner‐membrane (IM) ring together with YscJ), YscN (ATPase), and YscQ (putative C ring). The recombinant injectisomes were functional and appeared as fluorescent spots at the cell periphery. Epistasis experiments with the hybrid alleles in an array of injectisome mutants revealed a novel outside‐in assembly order: whereas YscC formed spots in the absence of any other structural protein, formation of YscD foci required YscC, but not YscJ. We therefore propose that the assembly starts with YscC and proceeds through the connector YscD to YscJ, which was further corroborated by co‐immunoprecipitation experiments. Completion of the membrane rings allowed the subsequent assembly of cytosolic components. YscN and YscQ attached synchronously, requiring each other, the interacting proteins YscK and YscL, but no further injectisome component for their assembly. These results show that assembly is initiated by the formation of the OM ring and progresses inwards to the IM ring and, finally, to a large cytosolic complex.  相似文献   

4.
Chlamydophila pneumoniae is a gram-negative obligate intracellular bacterial pathogen that causes pneumonia and bronchitis and may contribute to atherosclerosis. The developmental cycle of C. pneumoniae includes a morphological transition from an infectious extracellular elementary body (EB) to a noninfectious intracellular reticulate body (RB) that divides by binary fission. The C. pneumoniae genome encodes a type III secretion (T3S) apparatus that may be used to infect eukaryotic cells and to evade the host immune response. In the present study, Cpn0712 (CdsD), Cpn0704 (CdsQ), and Cpn0826 (CdsL), three C. pneumoniae genes encoding yersiniae T3S YscD, YscQ, and YscL homologs, respectively, were cloned and expressed as histidine- and glutathione S-transferase (GST)-tagged proteins in Escherichia coli. Purified recombinant proteins were used to raise hyper-immune polyclonal antiserum and were used in GST pull-down and copurification assays to identify protein-protein interactions. CdsD was detected in both EB and RB lysates by Western blot analyses, and immunofluorescent staining demonstrated the presence of CdsD within inclusions. Triton X-114 solubilization and phase separation of chlamydial EB proteins indicated that CdsD partitions with cytoplasmic proteins, suggesting it is not an integral membrane protein. GST pull-down assays indicated that recombinant CdsD interacts with CdsQ and CdsL, and copurification assays with chlamydial lysates confirmed that native CdsD interacts with CdsQ and CdsL. To the best of our knowledge, this is the first report demonstrating interactions between YscD, YscQ, and YscL homologs of bacterial T3S systems. These novel protein interactions may play important roles in the assembly or function of the chlamydial T3S apparatus.  相似文献   

5.
The Gram‐negative bacterium Xanthomonas campestris pv. vesicatoria translocates effector proteins via a type III secretion system (T3SS) into eukaryotic cells. The T3SS spans both bacterial membranes and consists of more than 20 proteins, 9 of which are conserved in plant and animal pathogens and constitute the core subunits of the secretion apparatus. T3S in X. campestris pv. vesicatoria also depends on nonconserved proteins with yet unknown function including HrpB7, which contains predicted N‐ and C‐terminal coiled‐coil regions. In the present study, we provide experimental evidence that HrpB7 forms stable oligomeric complexes. Interaction and localisation studies suggest that HrpB7 interacts with inner membrane and predicted cytoplasmic (C) ring components of the T3SS but is dispensable for the assembly of the C ring. Additional interaction partners of HrpB7 include the cytoplasmic adenosinetriphosphatase HrcN and the T3S chaperone HpaB. The interaction of HrpB7 with T3SS components as well as complex formation by HrpB7 depends on the presence of leucine heptad motifs, which are part of the predicted N‐ and C‐terminal coiled‐coil structures. Our data suggest that HrpB7 forms multimeric complexes that associate with the T3SS and might serve as a docking site for the general T3S chaperone HpaB.  相似文献   

6.
InvA is a prominent inner‐membrane component of the Salmonella type III secretion system (T3SS) apparatus, which is responsible for regulating virulence protein export in pathogenic bacteria. InvA is made up of an N‐terminal integral membrane domain and a C‐terminal cytoplasmic domain that is proposed to form part of a docking platform for the soluble export apparatus proteins notably the T3SS ATPase InvC. Here, we report the novel crystal structure of the C‐terminal domain of Salmonella InvA which shows a compact structure composed of four subdomains. The overall structure is unique although the first and second subdomains exhibit structural similarity to the peripheral stalk of the A/V‐type ATPase and a ring building motif found in other T3SS proteins respectively.  相似文献   

7.
The Type IX secretion system (T9SS) is present in over 1000 sequenced species/strains of the Fibrobacteres‐Chlorobi‐Bacteroidetes superphylum. Proteins secreted by the T9SS have an N‐terminal signal peptide for translocation across the inner membrane via the SEC translocon and a C‐terminal signal for secretion across the outer membrane via the T9SS. Nineteen protein components of the T9SS have been identified including three, SigP, PorX and PorY that are involved in regulation. The inner membrane proteins PorL and PorM and the outer membrane proteins PorK and PorN interact and a complex comprising PorK and PorN forms a large ring structure of 50 nm in diameter. PorU, PorV, PorQ and PorZ form an attachment complex on the cell surface of the oral pathogen, Porphyromonas gingivalis. P. gingivalis T9SS substrates bind to PorV suggesting that after translocation PorV functions as a shuttle protein to deliver T9SS substrates to the attachment complex. The PorU component of the attachment complex is a novel Gram negative sortase which catalyses the cleavage of the C‐terminal signal and conjugation of the protein substrates to lipopolysaccharide, anchoring them to the cell surface. This review presents an overview of the T9SS focusing on the function of T9SS substrates and machinery components.  相似文献   

8.
Lipopolysaccharide (LPS) is an essential element of nearly all Gram‐negative bacterial outer membranes and serves to protect the cell from adverse environmental stresses. Seven members of the lipopolysaccharide transport (Lpt) protein family function together to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of bacteria such as Escherichia coli. Each of these proteins has a solved crystal structure, including LptC, which is a largely periplasmic protein that is associated with the IM LptB2FG complex and anchored to the membrane by an N‐terminal helix. LptC directly binds LPS and is hypothesized to be involved in the transfer of LPS to another periplasmic protein, LptA. Purified and in solution, LptC forms a dimer. Here, point mutations designed to disrupt formation of the dimer are characterized using site‐directed spin labeling double electron electron resonance (DEER) spectroscopy, light scattering, circular dichroism, and computational modeling. The computational studies reveal the molecular interactions that drive dimerization of LptC and elucidate how the disruptive mutations change this interaction, while the DEER and light scattering studies identify which mutants disrupt the dimer. And, using electron paramagnetic resonance spectroscopy and comparing the results to the previous quantitative characterization of the interactions between dimeric LptC and LPS and LptA, the functional consequences of monomeric LptC were also determined. These results indicate that disruption of the dimer does not affect LPS or LptA binding and that monomeric LptC binds LPS and LptA at levels similar to dimeric LptC.  相似文献   

9.
Type II secretion system (T2SS) is a multiprotein trans‐envelope complex that translocates fully folded proteins through the outer membrane of Gram‐negative bacteria. Although T2SS is extensively studied in several bacteria pathogenic for humans, animals and plants, the molecular basis for exoprotein recruitment by this secretion machine as well as the underlying targeting motifs remain unknown. To address this question, we used bacterial two‐hybrid, surface plasmon resonance, in vivo site‐specific photo‐cross‐linking approaches and functional analyses. We showed that the fibronectin‐like Fn3 domain of exoprotein PelI from Dickeya dadantii interacts with four periplasmic domains of the T2SS components GspD and GspC. The interaction between exoprotein and the GspC PDZ domain is positively modulated by the GspD N1 domain, suggesting that exoprotein secretion is driven by a succession of synergistic interactions. We found that an exposed 9‐residue‐long loop region of PelI interacts with the GspC PDZ domain. This loop acts as a specific secretion signal that controls exoprotein recruitment by the T2SS. Concerted in silico and in vivo approaches reveal the occurrence of equivalent secretion motifs in other exoproteins, suggesting a plausible general mechanism of exoprotein recruitment by the T2SS.  相似文献   

10.
The opportunistic pathogen Pseudomonas aeruginosa may cause both acute and chronic‐persistent infections in predisposed individuals. Acute infections require the presence of a functional type III secretion system (T3SS), whereas chronic P. aeruginosa infections are characterized by the formation of drug‐resistant biofilms. The T3SS and biofilm formation are reciprocally regulated by the signaling kinases LadS, RetS, and GacS. RetS downregulates biofilm formation and upregulates expression of the T3SS through a unique mechanism. RetS forms a heterodimeric complex with GacS and thus prevents GacS autophosphorylation and downstream signaling. The signals that regulate RetS are not known but RetS possesses a distinctive periplasmic sensor domain that is believed to serve as receptor for the regulatory ligand. We have determined the crystal structure of the RetS sensory domain at 2.0 Å resolution. The structure closely resembles those of carbohydrate binding modules of other proteins, suggesting that the elusive ligands are likely carbohydrate moieties. In addition to the conserved beta‐sandwich structure, the sensory domain features two alpha helices which create a unique surface topology. Protein–protein crosslinking and fluorescence energy transfer experiments also revealed that the sensory domain dimerizes with a dissociation constant of Kd = 580 ± 50 nM, a result with interesting implications for our understanding of the underlying signaling mechanism. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

11.
Type II secretion systems (T2SSs) are critical for secretion of many proteins from Gram-negative bacteria. In the T2SS, the outer membrane secretin GspD forms a multimeric pore for translocation of secreted proteins. GspD and the inner membrane protein GspC interact with each other via periplasmic domains. Three different crystal structures of the homology region domain of GspC (GspC(HR)) in complex with either two or three domains of the N-terminal region of GspD from enterotoxigenic Escherichia coli show that GspC(HR) adopts an all-β topology. N-terminal β-strands of GspC and the N0 domain of GspD are major components of the interface between these inner and outer membrane proteins from the T2SS. The biological relevance of the observed GspC-GspD interface is shown by analysis of variant proteins in two-hybrid studies and by the effect of mutations in homologous genes on extracellular secretion and subcellular distribution of GspC in Vibrio cholerae. Substitutions of interface residues of GspD have a dramatic effect on the focal distribution of GspC in V. cholerae. These studies indicate that the GspC(HR)-GspD(N0) interactions observed in the crystal structure are essential for T2SS function. Possible implications of our structures for the stoichiometry of the T2SS and exoprotein secretion are discussed.  相似文献   

12.
The type 2 secretion system (T2SS) occurring in Gram-negative bacteria is composed of 12-15 different proteins which form large assemblies spanning two membranes and secreting several virulence factors in folded state across the outer membrane. The T2SS component EpsC of Vibrio cholerae plays an important role in this machinery. While anchored in the inner membrane, by far the largest part of EpsC is periplasmic, containing a so-called homology region (HR) domain and a PDZ domain. Here we report studies on the structure and function of both periplasmic domains of EpsC. The crystal structures of two variants of the PDZ domain of EpsC from V. cholerae were determined at better than 2 A resolution. Compared to the short variant, the longer variant contains an additional N-terminal helix, and reveals a significant difference in the position of helix alphaB with respect to the beta-sheet. Both our structures show that the PDZ domain of EpsC adopts a more open form than in previously reported structures of other PDZ domains. Most interestingly, in the crystals of the short EpsC-PDZ domain the peptide binding groove interacts with an alpha-helix from a neighboring subunit burying approximately 921 A2 solvent accessible surface. This makes it possible that the PDZ domain of this bacterial protein binds proteins in a manner which is altogether different from that seen in any other PDZ domain so far. We also determined that the HR domain of EpsC is primarily responsible for the interaction with the secretin EpsD, while the PDZ is not, or much less, so. This new finding, together with studies of others, leads to the suggestion that the PDZ domain of EpsC may interact with exoproteins to be secreted while the HR domain plays a key role in linking the inner-membrane sub-complex of the T2SS in V. cholerae to the outer membrane secretin.  相似文献   

13.
Aeromonas hydrophila uses the type II secretion system (T2SS) to transport protein toxins across the outer membrane. The inner membrane complex ExeAB is required for assembly of the ExeD secretion channel multimer, called the secretin, into the outer membrane. A putative peptidoglycan‐binding domain (Pfam number PF01471) conserved in many peptidoglycan‐related proteins is present in the periplasmic region of ExeA (P‐ExeA). In this study, co‐sedimentation analysis revealed that P‐ExeA was able to bind to highly pure peptidoglycan. The protein assembled into large multimers in the presence of peptidoglycan fragments, as shown in native PAGE, gel filtration and cross‐linking experiments. The requirement of peptidoglycan for multimerization was abrogated when the protein was incubated at 30°C and above. These results provide evidence that the putative peptidoglycan‐binding domain of ExeA is involved in physical contact with peptidoglycan. The interactions facilitate the multimerization of ExeA, favouring a model in which the protein forms a multimeric structure on the peptidoglycan during the ExeAB‐dependent assembly of the secretin multimer in the outer membrane.  相似文献   

14.
Type VI secretion systems (T6SS) are multi‐component machines encoded within the genomes of most Gram‐negative bacteria that associate with plant, animal and/or human cells, and therefore are considered as potential virulence factors. We recently launched a study on the Sci‐1 T6SS of enteroaggregative Escherichia coli (EAEC). The Sci‐1 T6SS is composed of all or a subset of the 21 gene products encoded within the cluster, 13 of which are shared by all T6SS identified so far. In the present work, we focussed our attention on the SciZ protein. We first showed that SciZ is required for the release of the Hcp protein in the culture supernatant and for efficient biofilm formation, demonstrating that SciZ is necessary for EAEC T6SS function. Indeed, SciZ forms a complex with SciP, SciS and SciN, three core components of the transport apparatus. Fractionation and topology studies showed that SciZ is a polytopic inner membrane protein with three trans‐membrane segments. Computer analyses identified a motif shared by peptidoglycan binding proteins of the OmpA family in the SciZ periplasmic domain. Using in vivo and in vitro binding assays, we showed that this motif anchors the SciZ protein to the cell wall and is required for T6SS function.  相似文献   

15.
Petr G Leiman 《EMBO reports》2018,19(2):191-193
The bacterial type VI secretion system (T6SS) is a multicomponent complex responsible for the translocation of effector proteins into the external milieu. The T6SS consists of an external sheath, an internal rigid tube, a baseplate, and a T6SS‐specific membrane complex. Secretion is accomplished by the contraction of the sheath, which expels the effector‐loaded tube. In this issue of EMBO reports, Brackmann et al 1 show how modifications of the sheath subunits can lock the T6SS assembly in the extended state. These findings allowed Wang et al 2 and Nazarov et al 3 to purify the T6SS sheath–tube–baseplate complex in the extended pre‐secretion state and to analyze its structure using cryo‐electron microscopy (cryoEM).  相似文献   

16.
Flagellar type III secretion systems (T3SS) contain an essential cytoplasmic‐ring (C‐ring) largely composed of two proteins FliM and FliN, whereas an analogous substructure for the closely related non‐flagellar (NF) T3SS has not been observed in situ. We show that the spa33 gene encoding the putative NF‐T3SS C‐ring component in Shigella flexneri is alternatively translated to produce both full‐length (Spa33‐FL) and a short variant (Spa33‐C), with both required for secretion. They associate in a 1:2 complex (Spa33‐FL/C2) that further oligomerises into elongated arrays in vitro. The structure of Spa33‐C2 and identification of an unexpected intramolecular pseudodimer in Spa33‐FL reveal a molecular model for their higher order assembly within NF‐T3SS. Spa33‐FL and Spa33‐C are identified as functional counterparts of a FliM–FliN fusion and free FliN respectively. Furthermore, we show that Thermotoga maritima FliM and FliN form a 1:3 complex structurally equivalent to Spa33‐FL/C2, allowing us to propose a unified model for C‐ring assembly by NF‐T3SS and flagellar‐T3SS.  相似文献   

17.
The type II secretion system (T2SS) is widely exploited by proteobacteria to secrete enzymes and toxins involved in bacterial survival and pathogenesis. The outer membrane pore formed by the secretin OutD and the inner membrane protein OutC are two key components of the secretion complex, involved in secretion specificity. Here, we show that the periplasmic regions of OutC and OutD interact directly and map the interaction site of OutC to a 20‐residue peptide named OutCsip (s ecretin i nteracting p eptide, residues 139–158). This peptide interacts in vitro with two distinct sites of the periplasmic region of OutD, one located on the N0 subdomain and another overlapping the N2‐N3′ subdomains. The two interaction sites of OutD have different modes of binding to OutCsip. A single substitution, V143S, located within OutCsip prevents its interaction with one of the two binding sites of OutD and fully inactivates the T2SS. We show that the N0 subdomain of OutD interacts also with a second binding site within OutC located in the region proximal to the transmembrane segment. We suggest that successive interactions between these distinct regions of OutC and OutD may have functional importance in switching the secretion machine.  相似文献   

18.
19.
The type VI secretion system (T6SS) is a versatile molecular weapon used by many bacteria against eukaryotic hosts or prokaryotic competitors. It consists of a cytoplasmic bacteriophage tail‐like structure anchored in the bacterial cell envelope via a cytoplasmic baseplate and a periplasmic membrane complex. Rapid contraction of the sheath in the bacteriophage tail‐like structure propels an inner tube/spike complex through the target cell envelope to deliver effectors. While structures of purified contracted sheath and purified membrane complex have been solved, because sheaths contract upon cell lysis and purification, no structure is available for the extended sheath. Structural information about the baseplate is also lacking. Here, we use electron cryotomography to directly visualize intact T6SS structures inside Myxococcus xanthus cells. Using sub‐tomogram averaging, we resolve the structure of the extended sheath and membrane‐associated components including the baseplate. Moreover, we identify novel extracellular bacteriophage tail fiber‐like antennae. These results provide new structural insights into how the extended sheath prevents premature disassembly and how this sophisticated machine may recognize targets.  相似文献   

20.
The virulence of many Gram-negative pathogens is associated with type III secretion systems (T3SSs), which deliver virulence effector proteins into the cytoplasm of host cells. Components of enteropathogenic Escherichia coli (EPEC) T3SS are encoded within the locus of enterocyte effacement (LEE). While most LEE-encoded T3SS proteins in EPEC have assigned names and functions, a few of them remain poorly characterized. Here, we studied a small LEE-encoded protein, Orf15, that shows no homology to other T3SS/flagellar proteins and is only present in attaching and effacing pathogens, including enterohemorrhagic E. coli and Citrobacter rodentium. Our findings demonstrated that it is essential for type III secretion (T3S) and that it is localized to the periplasm and associated with the inner membrane. Membrane association was driven by the N-terminal 19 amino acid residues, which were also shown to be essential for T3S. Consistent with its localization, Orf15 was found to interact with the EPEC T3SS outer membrane ring component, EscC, which was previously shown to be embedded within the outer membrane and protruding into the periplasmic space. Interestingly, we found that the predicted coiled-coil structure of Orf15 is critical for the protein's function. Overall, our findings suggest that Orf15 is a structural protein that contributes to the structural integrity of the T3S complex, and therefore we propose to rename it EscA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号