首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The outer membrane (OM) of Gram-negative bacteria acts as a formidable barrier against a plethora of detrimental compounds owing to its asymmetric nature. This is because the OM possesses lipopolysaccharides (LPSs) in the outer leaflet and phospholipids (PLs) in the inner leaflet. The maintenance of lipid asymmetry (Mla) system is involved in preserving the distribution of PLs in OM. The periplasmic component of the system MlaC serves as the substrate-binding protein (SBP) that shuttles PLs between the inner and outer membranes. However, an in-depth report highlighting its mechanism of ligand binding is still lacking. This study reports the crystal structure of MlaC from Escherichia coli (EcMlaC) at a resolution of 2.5 Å in a quasi-open state, complexed with PL. The structural analysis reveals that EcMlaC and orthologs comprise two major domains, viz. nuclear transport factor 2-like (NTF2-like) and phospholipid-binding protein (PBP). Each domain can be further divided into two subdomains arranged in a discontinuous fashion. This study further reveals that EcMlaC is polyspecific in nature and follows a reverse mechanism of the opening of the substrate-binding site during the ligand binding. Furthermore, MlaC can bind two PLs by forming subsites in the binding pocket. These findings, altogether, have led to the proposition of the unique “segmented domain movement” mechanism of PL binding, not reported for any known SBP to date. Further, unlike typical SBPs, MlaC has originated from a cystatin-like fold. Overall, this study establishes MlaC to be a non-canonical SBP with a unique ligand-binding mechanism.  相似文献   

2.
Gram‐negative bacteria can survive in harsh environments in part because the asymmetric outer membrane (OM) hinders the entry of toxic compounds. Lipid asymmetry is established by having phospholipids (PLs) confined to the inner leaflet of the membrane and lipopolysaccharides (LPS) to the outer leaflet. Perturbation of OM lipid asymmetry, characterized by PL accumulation in the outer leaflet, disrupts proper LPS packing and increases membrane permeability. The multi‐component Mla system prevents PL accumulation in the outer leaflet of the OM via an unknown mechanism. Here, we demonstrate that in Escherichia coli, the Mla system maintains OM lipid asymmetry with the help of osmoporin OmpC. We show that the OM lipoprotein MlaA interacts specifically with OmpC and OmpF. This interaction is sufficient to localize MlaA lacking its lipid anchor to the OM. Removing OmpC, but not OmpF, causes accumulation of PLs in the outer leaflet of the OM in stationary phase, as was previously observed for MlaA. We establish that OmpC is an additional component of the Mla system; the OmpC‐MlaA complex may function to remove PLs directly from the outer leaflet to maintain OM lipid asymmetry. Our work reveals a novel function for the general diffusion channel OmpC in lipid transport.  相似文献   

3.
In Gram-negative bacteria, phospholipids are major components of the inner membrane and the inner leaflet of the outer membrane, playing an essential role in forming the unique dual-membrane barrier to exclude the entry of most antibiotics. Understanding the mechanisms of phospholipid translocation between the inner and outer membrane represents one of the major challenges surrounding bacterial phospholipid homeostasis. The conserved MlaFEDB complex in the inner membrane functions as an ABC transporter to drive the translocation of phospholipids between the inner membrane and the periplasmic protein MlaC. However, the mechanism of phospholipid translocation remains elusive. Here we determined three cryo-EM structures of MlaFEDB from Escherichia coli in its nucleotide-free and ATP-bound conformations, and performed extensive functional studies to verify and extend our findings from structural analyses. Our work reveals unique structural features of the entire MlaFEDB complex, six well-resolved phospholipids in three distinct cavities, and large-scale conformational changes upon ATP binding. Together, these findings define the cycle of structural rearrangement of MlaFEDB in action, and suggest that MlaFEDB uses an extrusion mechanism to extract and release phospholipids through the central translocation cavity.Subject terms: Electron microscopy, Membrane trafficking  相似文献   

4.
Lipopolysaccharide (LPS) and the periplasmic protein, LptA, are two essential components of Gram‐negative bacteria. LPS, also known as endotoxin, is found asymmetrically distributed in the outer leaflet of the outer membrane of Gram‐negative bacteria such as Escherichia coli and plays a role in the organism's natural defense in adverse environmental conditions. LptA is a member of the lipopolysaccharide transport protein (Lpt) family, which also includes LptC, LptDE, and LptBFG2, that functions to transport LPS through the periplasm to the outer leaflet of the outer membrane after MsbA flips LPS across the inner membrane. It is hypothesized that LPS binds to LptA to cross the periplasm and that the acyl chains of LPS bind to the central pocket of LptA. The studies described here are the first to comprehensively characterize and quantitate the binding of LPS by LptA. Using site‐directed spin‐labeling electron paramagnetic resonance (EPR) spectroscopy, data were collected for 15 spin‐labeled residues in and around the proposed LPS binding pocket on LptA to observe the mobility changes caused by the presence of exogenous LPS and identify the binding location of LPS to LptA. The EPR data obtained suggest a 1:1 ratio for the LPS:LptA complex and allow the first calculation of dissociation constants for the LptA–LPS interaction. The results indicate that the entire protein is affected by LPS binding, the N‐terminus unfolds in the presence of LPS, and a mutant LptA protein unable to form oligomers has an altered affinity for LPS.  相似文献   

5.
The outer membrane of Gram-negative bacteria contains phospholipids and lipopolysaccharide (LPS) in the inner and outer leaflet, respectively. Little is known about the transport of the phospholipids from their site of synthesis to the outer membrane. The inner membrane protein MsbA of Escherichia coli, which is involved in the transport of LPS across the inner membrane, has been reported to be involved in phospholipid transport as well. Here, we have reported the construction and the characterization of a Neisseria meningitidis msbA mutant. The mutant was viable, and it showed a retarded growth phenotype and contained very low amounts of LPS. However, it produced an outer membrane, demonstrating that phospholipid transport was not affected by the mutation. Notably, higher amounts of phospholipids were produced in the msbA mutant than in its isogenic parental strain, provided that capsular biosynthesis was also disrupted. Although these results confirmed that MsbA functions in LPS transport, they also demonstrated that it is not required for phospholipid transport, at least not in N. meningitidis.  相似文献   

6.
Many bacterial pathogens are becoming increasingly resistant to antibiotic treatments, and a detailed understanding of the molecular basis of antibiotic resistance is critical for the development of next‐generation approaches for combating bacterial infections. Studies focusing on pathogens have revealed the profile of resistance in these organisms to be due primarily to the presence of multidrug resistance efflux pumps: tripartite protein complexes which span the periplasm bridging the inner and outer membranes of Gram‐negative bacteria. An atomic‐level resolution tripartite structure remains imperative to advancing our understanding of the molecular mechanisms of pump function using both theoretical and experimental approaches. We develop a fast and consistent method for constructing tripartite structures which leverages existing data‐driven models and provide molecular modeling approaches for constructing tripartite structures of multidrug resistance efflux pumps. Our modeling studies reveal that conformational changes in the inner membrane component responsible for drug translocation have limited impact on the conformations of the other pump components, and that two distinct models derived from conflicting experimental data are both consistent with all currently available measurements. Additionally, we investigate putative drug translocation pathways via geometric simulations based on the available crystal structures of the inner membrane pump component, AcrB, bound to two drugs which occupy distinct binding sites: doxorubicin and linezolid. These simulations suggest that smaller drugs may enter the pump through a channel from the cytoplasmic leaflet of the inner membrane, while both smaller and larger drug molecules may enter through a vestibule accessible from the periplasm. Proteins 2015; 83:46–65. © 2014 Wiley Periodicals, Inc.  相似文献   

7.
Palmitoylated lipid A can both protect pathogenic bacteria from host immune defences and attenuate the activation of those same defences through the TLR4 signal transduction pathway. A palmitate chain from a phospholipid is incorporated into lipid A by an outer membrane enzyme PagP, which is an 8-stranded antiparallel beta-barrel preceded by an amino-terminal amphipathic alpha-helix. The PagP barrel axis is tilted by 25 degrees with respect to the membrane normal. An interior hydrophobic pocket in the outer leaflet-exposed half of the molecule functions as a hydrocarbon ruler that allows the enzyme to distinguish palmitate from other acyl chains found in phospholipids. Internalization of a phospholipid palmitoyl group within the barrel appears to occur by lateral diffusion from the outer leaflet through non-hydrogen-bonded regions between beta-strands. The MsbA-dependent trafficking of lipids from the inner membrane to the outer membrane outer leaflet is necessary for lipid A palmitoylation in vivo. The mechanisms by which bacteria regulate pagP gene expression strikingly reflect the corresponding pathogenic lifestyle of the bacterium. Variations on PagP structure and function can be illustrated with the known homologues from Gram-negative bacteria, which include pathogens of humans and other mammals in addition to pathogens of insects and plants. The PagP enzyme is potentially a target for the development of anti-infective agents, a probe of outer membrane lipid asymmetry, and a tool for the synthesis of lipid A-based vaccine adjuvants and endotoxin antagonists.  相似文献   

8.
The biogenesis of biological membranes hinges on the coordinated trafficking of membrane lipids between distinct cellular compartments. The bacterial outer membrane enzyme PagP confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to the lipid A (endotoxin) component of lipopolysaccharide. PagP is an eight-stranded antiparallel beta-barrel, preceded by an N-terminal amphipathic alpha-helix. The active site is localized inside the beta-barrel and is aligned with the lipopolysaccharide-containing outer leaflet, but the phospholipid substrates are normally restricted to the inner leaflet of the asymmetric outer membrane. We examined the possibility that PagP activity in vivo depends on the aberrant migration of phospholipids into the outer leaflet. We find that brief addition to Escherichia coli cultures of millimolar EDTA, which is reported to replace a fraction of lipopolysaccharide with phospholipids, rapidly induces palmitoylation of lipid A. Although expression of the E. coli pagP gene is induced during Mg2+ limitation by the phoPQ two-component signal transduction pathway, EDTA-induced lipid A palmitoylation occurs more rapidly than pagP induction and is independent of de novo protein synthesis. EDTA-induced lipid A palmitoylation requires functional MsbA, an essential ATP-binding cassette transporter needed for lipid transport to the outer membrane. A potential role for the PagP alpha-helix in phospholipid translocation to the outer leaflet was excluded by showing that alpha-helix deletions are active in vivo. Neither EDTA nor Mg(2+)-EDTA stimulate PagP activity in vitro. These findings suggest that PagP remains dormant in outer membranes until Mg2+ limitation promotes the migration of phospholipids into the outer leaflet.  相似文献   

9.
The outer membrane (OM) of Gram-negative bacteria, which consists of lipopolysaccharides (LPS) in the outer leaflet and phospholipids (PLs) in the inner leaflet, plays a key role in antibiotic resistance and pathogen virulence. The maintenance of lipid asymmetry (Mla) pathway is known to be involved in PL transport and contributes to the lipid homeostasis of the OM, yet the underlying molecular mechanism and the directionality of PL transport in this pathway remain elusive. Here, we reported the cryo-EM structures of the ATP-binding cassette (ABC) transporter MlaFEBD from P. areuginosa, the core complex in the Mla pathway, in nucleotide-free (apo)-, ADP (ATP + vanadate)- and ATP (AMPPNP)-bound states as well as the structures of MlaFEB from E. coli in apo- and AMPPNP-bound states at a resolution range of 3.4–3.9 Å. The structures show that the MlaFEBD complex contains a total of twelve protein molecules with a stoichiometry of MlaF2E2B2D6, and binds a plethora of PLs at different locations. In contrast to canonical ABC transporters, nucleotide binding fails to trigger significant conformational changes of both MlaFEBD and MlaFEB in the nucleotide-binding and transmembrane domains of the ABC transporter, correlated with their low ATPase activities exhibited in both detergent micelles and lipid nanodiscs. Intriguingly, PLs or detergents appeared to relocate to the membrane-proximal end from the distal end of the hydrophobic tunnel formed by the MlaD hexamer in MlaFEBD upon addition of ATP, indicating that retrograde PL transport might occur in the tunnel in an ATP-dependent manner. Site-specific photocrosslinking experiment confirms that the substrate-binding pocket in the dimeric MlaE and the MlaD hexamer are able to bind PLs in vitro, in line with the notion that MlaFEBD complex functions as a PL transporter.  相似文献   

10.
The outer membrane of yeast mitochondria was studied with respect to its lipid composition, phospholipid topology and membrane fluidity. This membrane is characterized by a high phospholipid to protein ratio (1.20). Like other yeast cellular membranes the outer mitochondrial membrane contains predominantly phosphatidylcholine (44% of total phospholipids), phosphatidylethanolamine (34%) and phosphatidylinositol (14%). Cardiolipin, the characteristic phospholipid of the inner mitochondrial membrane (13% of total phospholipids) is present in the outer membrane only to a moderate extent (5%). The ergosterol to phospholipid ratio is higher in the inner (7.0 wt%) as compared to the outer membrane (2.1 wt.%). Attempts to study phospholipid asymmetry by selective degradation of phospholipids of the outer leaflet of the outer mitochondrial membrane failed, because isolated right-side-out vesicles of this membrane became leaky upon treatment with phospholipases. Selective removal of phospholipids of the outer leaflet with the aid of phospholipid transfer proteins and chemical modification with trinitrobenzenesulfonic acid on the other hand, gave satisfactory results. Phosphatidylcholine and phosphatidylinositol are more or less evenly distributed between the two sides of the outer mitochondrial membrane, whereas the majority of phosphatidylethanolamine is oriented towards the intermembrane space. The fluidity of mitochondrial membranes was determined by measuring fluorescence anisotropy using diphenylhexatriene (DPH) as a probe. The lower anisotropy of DPH in the outer as compared to the inner membrane, which is an indication for an increased lipid mobility in the outer membrane, was attributed to the higher phospholipid to protein and the lower ergosterol to phospholipid ratio. The data presented here show, that the outer mitochondrial membrane, in spite of its close contact to the inner membrane, is distinct not only with respect to its protein pattern, but also with respect to its lipid composition and physical membrane properties.  相似文献   

11.
Lipopolysaccharide (LPS, endotoxin) is the major component of the outer leaflet of the outer membrane of Gram‐negative bacteria such as Escherichia coli and Salmonella typhimurium. LPS is a large lipid containing several acyl chains as its hydrophobic base and numerous sugars as its hydrophilic core and O‐antigen domains, and is an essential element of the organisms' natural defenses in adverse environmental conditions. LptC is one of seven members of the lipopolysaccharide transport (Lpt) protein family that functions to transport LPS from the inner membrane (IM) to the outer leaflet of the outer membrane of the bacterium. LptC is anchored to the IM and associated with the IM LptFGB2 complex. It is hypothesized that LPS binds to LptC at the IM, transfers to LptA to cross the periplasm, and is inserted by LptDE into the outer leaflet of the outer membrane. The studies described here comprehensively characterize and quantitate the binding of LPS to LptC. Site‐directed spin labeling electron paramagnetic resonance spectroscopy was utilized to characterize the LptC dimer in solution and monitor spin label mobility changes at 10 sites across the protein upon addition of exogenous LPS. The results indicate that soluble LptC forms concentration‐independent N‐terminal dimers in solution, LptA binding does not change the conformation of the LptC dimer nor appreciably disrupt the LptC dimer in vitro, and LPS binding affects the entire LptC protein, with the center and C‐terminal regions showing a greater affinity for LPS than the N‐terminal domain, which has similar dissociation constants to LptA.  相似文献   

12.
Bacteriophage SPN1S infects the pathogenic Gram‐negative bacterium Salmonella typhimurium and expresses endolysin for the release of phage progeny by degrading peptidoglycan of the host cell walls. Bacteriophage SPN1S endolysin exhibits high glycosidase activity against peptidoglycans, resulting in antimicrobial activity against a broad range of outer membrane‐permeabilized Gram‐negative bacteria. Here, we report a crystal structure of SPN1S endolysin, indicating that unlike most endolysins from Gram‐negative bacteria background, the α‐helical protein consists of two modular domains, a large and a small domain, with a concave groove between them. Comparison with other structurally homologous glycoside hydrolases indicated a possible peptidoglycan binding site in the groove, and the presence of a catalytic dyad in the vicinity of the groove, one residue in a large domain and the other in a junction between the two domains. The catalytic dyad was further validated by antimicrobial activity assay against outer membrane‐permeabilized Escherichia coli. The three‐helix bundle in the small domain containing a novel class of sequence motif exhibited binding affinity against outer membrane‐permeabilized E. coli and was therefore proposed as the peptidoglycan‐binding domain. These structural and functional features suggest that endolysin from a Gram‐negative bacterial background has peptidoglycan‐binding activity and performs glycoside hydrolase activity through the catalytic dyad.  相似文献   

13.
The understanding of the biogenesis of the outer membrane of Gram‐negative bacteria is of critical importance due to the emergence of bacteria that are becoming resistant to available antibiotics. A problem that is most serious for Gram‐negative bacteria, with essentially few antibiotics under development or likely to be available for clinical use in the near future. The understanding of the Gram‐negative bacterial outer membrane is therefore critical to developing new antimicrobial agents, as this membrane makes direct contact with the external milieu, and the proteins present within this membrane are the instruments of microbial warfare, playing key roles in microbial pathogenesis, virulence and multidrug resistance. To date, a single outer membrane complex has been identified as essential for the folding and insertion of proteins into the outer membrane, this is the β‐barrel assembly machine (BAM) complex, which in some cases is supplemented by the Translocation and Assembly Module (TAM). In this issue of Molecular Microbiology, Dunstan et al. have identified a novel pathway for the insertion of a subset of integral membrane proteins into the Gram‐negative outer membrane that is independent of the BAM complex and TAM.  相似文献   

14.
TonB from Escherichia coli and its homologues are critical for the uptake of siderophores through the outer membrane of Gram‐negative bacteria using chemiosmotic energy. When different models for the mechanism of TonB mediated energy transfer from the inner to the outer membrane are discussed, one of the key questions is whether TonB spans the periplasm. In this article, we use long range distance measurements by spin‐label pulsed EPR (Double Electron–Electron Resonance, DEER) and CD spectroscopy to show that the proline‐rich segment of TonB exists in a PPII‐like conformation. The result implies that the proline‐rich segment of TonB possesses a length of more than 15 nm, sufficient to span the periplasm of Gram‐negative bacteria.  相似文献   

15.
The cell envelope of Gram-negative bacteria is composed of an inner membrane, outer membane, and an intervening periplasmic space. How the outer membrane lipids are trafficked and assembled there, and how the asymmetry of the outer membrane is maintained is an area of intense research. The Mla system has been implicated in the maintenance of lipid asymmetry in the outer membrane, and is generally thought to drive the removal of mislocalized phospholipids from the outer membrane and their retrograde transport to the inner membrane. At the heart of the Mla pathway is a structurally unique ABC transporter complex in the inner membrane, called MlaFEDB. Recently, an explosion of cryo-EM studies has begun to shed light on the structure and lipid translocation mechanism of MlaFEDB, with many parallels to other ABC transporter families, including human ABCA and ABCG, as well as bacterial lipopolysaccharide and O-antigen transporters. Here we synthesize information from all available structures, and propose a model for lipid trafficking across the cell envelope by MlaFEDB.  相似文献   

16.
Recent studies suggesting that cellular activation leads to enhanced transbilayer movement of phospholipids and loss of plasma membrane phospholipid asymmetry lead us to hypothesize that such events may govern the release of PAF, a potent, but variably release, lipid mediator synthesized by numerous inflammatory cells. To model these membrane events, we studied the transbilayer movement of PAF across the human erythrocyte and erythrocyte ghost plasma membrane, membranes with documented phospholipid asymmetry which can be deliberately manipulated. Utilizing albumin to extract outer leaflet PAF, transbilayer movement of PAF was shown to be significantly enhanced in erythrocytes and ghosts altered to lose membrane asymmetry when compared to movement in those with native membrane asymmetry. Verification of membrane changes was demonstrated using merocyanine 540 (MC540), a dye which preferentially stains loosely packed or hydrophobic membranes, and acceleration of the modified Russell's viper venom clotting assay by externalized anionic phospholipids. Utilizing the erythrocyte ghost loaded with PAF in either the outer or the inner leaflet, enhanced transbilayer movement to the opposite leaflet was seen to accompany loss of membrane asymmetry. Studies utilizing ghosts loaded with albumin intracellularly demonstrated that 'acceptor' molecules binding PAF further influence the disposition of PAF across the plasma membrane. Taken together, these findings suggest that the net release of PAF from activated inflammatory cells will depend on localization of PAF to the plasma membrane, transbilayer movement, which is facilitated by alteration of membrane phospholipid asymmetry, and removal from the membrane by extracellular and intracellular 'acceptor' molecules.  相似文献   

17.
Lipoproteins are a distinct class of bacterial membrane proteins that are translocated across the cytoplasmic membrane primarily by the Sec general secretory pathway and then lipidated on a conserved cysteine by the enzyme lipoprotein diacylglycerol transferase (Lgt). The signal peptide is cleaved by lipoprotein signal peptidase (Lsp) to leave the lipid‐modified cysteine at the N‐terminus of the mature lipoprotein. In all Gram‐positive bacteria tested to date this pathway is non‐essential and the lipid attaches the protein to the outer leaflet of the cytoplasmic membrane. Here we identify lipoproteins in the model Gram‐positive bacterium Streptomyces coelicolor using bioinformatics coupled with proteomic and downstream analysis. We report that Streptomyces species translocate large numbers of lipoproteins out via the Tat (twin arginine translocase) pathway and we present evidence that lipoprotein biogenesis might be an essential pathway in S. coelicolor. This is the first analysis of lipoproteins and lipoprotein biogenesis in Streptomyces and provides the first evidence that lipoprotein biogenesis could be essential in a Gram‐positive bacterium. This report also provides the first experimental evidence that Tat plays a major role in the translocation of lipoproteins in a specific bacterium.  相似文献   

18.
F R Taylor  J E Cronan 《Biochemistry》1979,18(15):3292-3300
The cyclopropane fatty acid (CFA) synthase of Escherichia coli catalyzes the methylenation of the unsaturated moieties of phospholipids in a phospholipid bilayer. The methylene donor is S-adenosyl-L-methionine. The enzyme is loosely associated with the inner membrane of the bacterium and binds to and is stabilized by phospholipid vesicles. The enzyme has been purified over 500-fold by flotation with phospholipid vesicles and appears to be a monomeric protein having a molecular weight of about 90 000. The enzyme binds only to vesicles of phospholipids which contain either unsaturated or cyclopropane fatty acid moieties. CFA synthase is active on phosphatidylglycerol, phosphatidylethanolamine, and cardiolipin, the major phospholipids of E. coli, and also has some activity on phosphatidylcholine. The enzyme is equally active on phospholipid vesicles in the ordered or the disordered states of the lipid phase transition. Studies with a reagent that reacts only with the phosphatidylethanolamine molecules of the outer leaflet of a phospholipid bilayer indicate that CFA synthase reacts with phosphatidylethanolamine molecules of both the outer and the inner leaflets of phospholipid vesicles.  相似文献   

19.
Copper‐Zinc superoxide dismutase 1 (SOD1) is a homodimeric enzyme that protects cells from oxidative damage. Hereditary and sporadic amyotrophic lateral sclerosis may be linked to SOD1 when the enzyme is destabilized through mutation or environmental stress. The cytotoxicity of demetallated or apo‐SOD1 aggregates may be due to their ability to cause defects within cell membranes by co‐aggregating with phospholipids. SOD1 monomers may associate with the inner cell membrane to receive copper ions from membrane‐bound copper chaperones. But how apo‐SOD1 interacts with lipids is unclear. We have used atomistic molecular dynamics simulations to reveal that flexible electrostatic and zinc‐binding loops in apo‐SOD1 dimers play a critical role in the binding of 1‐octanol clusters and phospholipid bilayer, without any significant unfolding of the protein. The apo‐SOD1 monomer also associates with phospholipid bilayer via its zinc‐binding loop rather than its exposed hydrophobic dimerization interface. Our observed orientation of the monomer on the bilayer would facilitate its association with a membrane‐bound copper chaperone. The orientation also suggests how membrane‐bound monomers could act as seeds for membrane‐associated SOD1 aggregation. Proteins 2014; 82:3194–3209. © 2014 Wiley Periodicals, Inc.  相似文献   

20.
The human immune system can directly lyse invading micro‐organisms and aberrant host cells by generating pores in the cell envelope, called membrane attack complexes (MACs). Recent studies using single‐particle cryoelectron microscopy have revealed that the MAC is an asymmetric, flexible pore and have provided a structural basis on how the MAC ruptures single lipid membranes. Despite these insights, it remains unclear how the MAC ruptures the composite cell envelope of Gram‐negative bacteria. Recent functional studies on Gram‐negative bacteria elucidate that local assembly of MAC pores by surface‐bound C5 convertase enzymes is essential to stably insert these pores into the bacterial outer membrane (OM). These convertase‐generated MAC pores can subsequently efficiently damage the bacterial inner membrane (IM), which is essential for bacterial killing. This review summarizes these recent insights of MAC assembly and discusses how MAC pores kill Gram‐negative bacteria. Furthermore, this review elaborates on how MAC‐dependent OM damage could lead to IM destabilization, which is currently not well understood. A better understanding on how MAC pores kill bacteria could facilitate the future development of novel strategies to treat infections with Gram‐negative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号