首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Epigenetics》2013,8(7):973-979
Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder characterized by facial dysmorphisms, limb anomalies, and growth and cognitive deficits. Mutations in genes encoding subunits (SMC1A, SMC3, RAD21) or regulators (NIPBL, HDAC8) of the cohesin complex account for approximately 65% of clinically diagnosed CdLS cases. The SMC1A gene (Xp11.22), responsible for 5% of CdLS cases, partially escapes X chromosome inactivation in humans and the allele on the inactive X chromosome is variably expressed. In this study, we evaluated overall and allele-specific SMC1A expression. Real-time PCR analysis conducted on 17 controls showed that SMC1A expression in females is 50% higher than in males. Immunoblotting experiments confirmed a 44% higher protein level in healthy females than in males, and showed no significant differences in SMC1A protein levels between controls and patients. Pyrosequencing was used to assess the reciprocal level of allelic expression in six female carriers of different SMC1A mutations and 15 controls who were heterozygous at a polymorphic transcribed SMC1A locus. The two alleles were expressed at a 1:1 ratio in the control group and at a 2:1 ratio in favor of the wild type allele in the test group. Since a dominant negative effect is considered the pathogenic mechanism in SMC1A-defective female patients, the level of allelic preferential expression might be one of the factors contributing to the wide phenotypic variability observed in these patients. An extension of this study to a larger cohort containing mild to borderline cases could enhance our understanding of the clinical spectrum of SMC1A-linked CdLS.  相似文献   

2.
Mutations in the cohesin regulators NIPBL and ESCO2 are causative of the Cornelia de Lange syndrome (CdLS) and Roberts or SC phocomelia syndrome, respectively. Recently, mutations in the cohesin complex structural component SMC1A have been identified in two probands with features of CdLS. Here, we report the identification of a mutation in the gene encoding the complementary subunit of the cohesin heterodimer, SMC3, and 14 additional SMC1A mutations. All mutations are predicted to retain an open reading frame, and no truncating mutations were identified. Structural analysis of the mutant SMC3 and SMC1A proteins indicate that all are likely to produce functional cohesin complexes, but we posit that they may alter their chromosome binding dynamics. Our data indicate that SMC3 and SMC1A mutations (1) contribute to approximately 5% of cases of CdLS, (2) result in a consistently mild phenotype with absence of major structural anomalies typically associated with CdLS, and (3) in some instances, result in a phenotype that approaches that of apparently nonsyndromic mental retardation.  相似文献   

3.
Cornelia de Lange syndrome (CdLS) is a rare multisystem disorder characterized by facial dysmorphisms, limb anomalies, and growth and cognitive deficits. Mutations in genes encoding subunits (SMC1A, SMC3, RAD21) or regulators (NIPBL, HDAC8) of the cohesin complex account for approximately 65% of clinically diagnosed CdLS cases. The SMC1A gene (Xp11.22), responsible for 5% of CdLS cases, partially escapes X chromosome inactivation in humans and the allele on the inactive X chromosome is variably expressed. In this study, we evaluated overall and allele-specific SMC1A expression. Real-time PCR analysis conducted on 17 controls showed that SMC1A expression in females is 50% higher than in males. Immunoblotting experiments confirmed a 44% higher protein level in healthy females than in males, and showed no significant differences in SMC1A protein levels between controls and patients. Pyrosequencing was used to assess the reciprocal level of allelic expression in six female carriers of different SMC1A mutations and 15 controls who were heterozygous at a polymorphic transcribed SMC1A locus. The two alleles were expressed at a 1:1 ratio in the control group and at a 2:1 ratio in favor of the wild type allele in the test group. Since a dominant negative effect is considered the pathogenic mechanism in SMC1A-defective female patients, the level of allelic preferential expression might be one of the factors contributing to the wide phenotypic variability observed in these patients. An extension of this study to a larger cohort containing mild to borderline cases could enhance our understanding of the clinical spectrum of SMC1A-linked CdLS.  相似文献   

4.
5.
6.
7.
8.
Cohesion between sister chromatids in mitotic and meiotic cells is promoted by a ring‐shaped protein structure, the cohesin complex. The cohesin core complex is composed of four subunits, including two structural maintenance of chromosome (SMC) proteins, one α‐kleisin protein, and one SA protein. Meiotic cells express both mitotic and meiosis‐specific cohesin core subunits, generating cohesin complexes with different subunit composition and possibly separate meiotic functions. Here, we have analyzed the in vivo function of STAG3, a vertebrate meiosis‐specific SA protein. Mice with a hypomorphic allele of Stag3, which display a severely reduced level of STAG3, are viable but infertile. We show that meiocytes in homozygous mutant Stag3 mice display chromosome axis compaction, aberrant synapsis, impaired recombination and developmental arrest. We find that the three different α‐kleisins present in meiotic cells show different dosage‐dependent requirements for STAG3 and that STAG3‐REC8 cohesin complexes have a critical role in supporting meiotic chromosome structure and functions.  相似文献   

9.
10.
Cohesins are important for chromosome structure and chromosome segregation during mitosis and meiosis. Cohesins are composed of two structural maintenance of chromosomes (SMC1-SMC3) proteins that form a V-shaped heterodimer structure, which is bridged by a α-kleisin protein and a stromal antigen (STAG) protein. Previous studies in mouse have shown that there is one SMC1 protein (SMC1β), two α-kleisins (RAD21L and REC8) and one STAG protein (STAG3) that are meiosis-specific. During meiosis, homologous chromosomes must recombine with one another in the context of a tripartite structure known as the synaptonemal complex (SC). From interaction studies, it has been shown that there are at least four meiosis-specific forms of cohesin, which together with the mitotic cohesin complex, are lateral components of the SC. STAG3 is the only meiosis-specific subunit that is represented within all four meiosis-specific cohesin complexes. In Stag3 mutant germ cells, the protein level of other meiosis-specific cohesin subunits (SMC1β, RAD21L and REC8) is reduced, and their localization to chromosome axes is disrupted. In contrast, the mitotic cohesin complex remains intact and localizes robustly to the meiotic chromosome axes. The instability of meiosis-specific cohesins observed in Stag3 mutants results in aberrant DNA repair processes, and disruption of synapsis between homologous chromosomes. Furthermore, mutation of Stag3 results in perturbation of pericentromeric heterochromatin clustering, and disruption of centromere cohesion between sister chromatids during meiotic prophase. These defects result in early prophase I arrest and apoptosis in both male and female germ cells. The meiotic defects observed in Stag3 mutants are more severe when compared to single mutants for Smc1β, Rec8 and Rad21l, however they are not as severe as the Rec8, Rad21l double mutants. Taken together, our study demonstrates that STAG3 is required for the stability of all meiosis-specific cohesin complexes. Furthermore, our data suggests that STAG3 is required for structural changes of chromosomes that mediate chromosome pairing and synapsis, DNA repair and progression of meiosis.  相似文献   

11.
Cohesin is a multi-protein complex composed of four core subunits (SMC1A, SMC3, RAD21, and either STAG1 or STAG2) that is responsible for the cohesion of sister chromatids following DNA replication until its cleavage during mitosis thereby enabling faithful segregation of sister chromatids into two daughter cells. Recent cancer genomics analyses have discovered a high frequency of somatic mutations in the genes encoding the core cohesin subunits as well as cohesin regulatory factors (e.g. NIPBL, PDS5B, ESPL1) in a select subset of human tumors including glioblastoma, Ewing sarcoma, urothelial carcinoma, acute myeloid leukemia, and acute megakaryoblastic leukemia. Herein we review these studies including discussion of the functional significance of cohesin inactivation in tumorigenesis and potential therapeutic mechanisms to selectively target cancers harboring cohesin mutations. [BMB Reports 2014; 47(6): 299-310]  相似文献   

12.
13.
14.
Cornelia de Lange syndrome (CdLS) is a rare multi-system genetic disorder characterised by growth and developmental delay, distinctive facial dysmorphism, limb malformations and multiple organ defects. The disease is caused by mutations in genes responsible for the formation and regulation of cohesin complex. About half of the cases result from mutations in the NIPBL gene coding delangin, a protein regulating the initialisation of cohesion. To date, approximately 250 point mutations have been identified in more than 300 CdLS patients worldwide. In the present study, conducted on a group of 64 unrelated Polish CdLS patients, 25 various NIPBL sequence variants, including 22 novel point mutations, were detected. Additionally, large genomic deletions on chromosome 5p13 encompassing the NIPBL gene locus were detected in two patients with the most severe CdLS phenotype. Taken together, 42 % of patients were found to have a deleterious alteration affecting the NIPBL gene, by and large private ones (89 %). The review of the types of mutations found so far in Polish patients, their frequency and correlation with the severity of the observed phenotype shows that Polish CdLS cases do not significantly differ from other populations.  相似文献   

15.
Bacterial condensin MukBEF is essential for global folding of the Escherichia coli chromosome. MukB, a SMC (structural maintenance of chromosome) protein, comprises the core of this complex and is responsible for its ATP‐modulated DNA binding and reshaping activities. MukF serves as a kleisin that modulates MukB–DNA interactions and links MukBs into macromolecular assemblies. Little is known about the function of MukE. Using random mutagenesis, we generated six loss‐of‐function point mutations in MukE. The surface mutations clustered in two places. One of them was at or close to the interface with MukF while the other was away from the known interactions of the protein. All loss‐of‐function mutations affected focal localization of MukBEF in live cells. In vitro, however, only some of them interfered with the assembly of MukBEF into a complex or the ability of MukEF to disrupt MukB–DNA interactions. Moreover, some MukE mutants were able to join intracellular foci formed by endogenous MukBEF and most of the mutants were efficiently incorporated into MukBEF even in the presence of endogenous MukE. These data reveal that focal localization of MukBEF involves other activities besides DNA binding and that MukE plays a central role in them.  相似文献   

16.
Nipbl (Scc2) and Mau2 (Scc4) encode evolutionary conserved proteins that play a vital role for loading the cohesin complex onto chromosomes, thereby ensuring accurate chromosome segregation during cell division. While mutations in human NIPBL are known to cause the developmental disorder Cornelia de Lange syndrome, the functions of Nipbl and Mau2 in mammalian development are poorly defined. Here we generated conditional alleles for both genes in mice and show that neural crest cell‐specific inactivation of Nipbl or Mau2 strongly affects craniofacial development. Surprisingly, the early phase of neural crest cell proliferation and migration is only moderately affected in these mutants. Moreover, we found that Mau2 single homozygous mutants exhibited a more severe craniofacial phenotype when compared to that of Nipbl;Mau2 double homozygous mutants. This raises the possibility that the Mau2/Nipbl protein interaction is not only required for cohesin loading, but may also be required to restrict the level of Nipbl involved in regulating gene expression. Together, the data suggest that proliferating neural crest cells tolerate a substantial reduction of cohesin loading proteins and we propose that the successive decrease of cohesin loading proteins in neural crest cells may alter developmental gene regulation in a highly dynamic manner. genesis 52:687–694, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

17.
Drosophila Nipped-B is an essential protein that has multiple functions. It facilitates expression of homeobox genes and is also required for sister chromatid cohesion. Nipped-B is conserved from yeast to man, and its orthologs also play roles in deoxyribonucleic acid repair and meiosis. Mutation of the human ortholog, Nipped-B-Like (NIPBL), causes Cornelia de Lange syndrome (CdLS), associated with multiple developmental defects. The Nipped-B protein family is required for the cohesin complex that mediates sister chromatid cohesion to bind to chromosomes. A key question, therefore, is whether the Nipped-B family regulates gene expression, meiosis, and development by controlling cohesin. To gain insights into Nipped-B’s functions, we compared the effects of several Nipped-B mutations on gene expression, sister chromatid cohesion, and meiosis. We also examined association of Nipped-B and cohesin with somatic and meiotic chromosomes by immunostaining. Missense Nipped-B alleles affecting the same HEAT repeat motifs as CdLS-causing NIPBL mutations have intermediate effects on both gene expression and mitotic chromatid cohesion, linking these two functions and the role of NIPBL in human development. Nipped-B colocalizes extensively with cohesin on chromosomes in both somatic and meiotic cells and is present in soluble complexes with cohesin subunits in nuclear extracts. In meiosis, Nipped-B also colocalizes with the synaptonemal complex and contributes to maintenance of meiotic chromosome cores. These results support the idea that direct regulation of cohesin function underlies the diverse functions of Nipped-B and its orthologs. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Gause, Webber, and Misulovin provided equal contributions.  相似文献   

18.
19.
The cohesion of sister chromatids is mediated by cohesin, a protein complex containing members of the structural maintenance of chromosome (Smc) family. How cohesins tether sister chromatids is not yet understood. Here, we mutate SMC1, the gene encoding a cohesin subunit of budding yeast, by random insertion dominant negative mutagenesis to generate alleles that are highly informative for cohesin assembly and function. Cohesins mutated in the Hinge or Loop1 regions of Smc1 bind chromatin by a mechanism similar to wild-type cohesin, but fail to enrich at cohesin-associated regions (CARs) and pericentric regions. Hence, the Hinge and Loop1 regions of Smc1 are essential for the specific chromatin binding of cohesin. This specific binding and a subsequent Ctf7/Eco1-dependent step are both required for the establishment of cohesion. We propose that a cohesin or cohesin oligomer tethers the sister chromatids through two chromatin-binding events that are regulated spatially by CAR binding and temporally by Ctf7 activation, to ensure cohesins crosslink only sister chromatids.  相似文献   

20.
The cohesin complex is essential for mitosis and meiosis. The specific meiotic roles of individual cohesin proteins are incompletely understood. We report in vivo functions of the only meiosis‐specific STAG component of cohesin, STAG3. Newly generated STAG3‐deficient mice of both sexes are sterile with meiotic arrest. In these mice, meiotic chromosome architecture is severely disrupted as no bona fide axial elements (AE) form and homologous chromosomes do not synapse. Axial element protein SYCP3 forms dot‐like structures, many partially overlapping with centromeres. Asynapsis marker HORMAD1 is diffusely distributed throughout the chromatin, and SYCP1, which normally marks synapsed axes, is largely absent. Centromeric and telomeric sister chromatid cohesion are impaired. Centromere and telomere clustering occurs in the absence of STAG3, and telomere structure is not severely affected. Other cohesin proteins are present, localize throughout the STAG3‐devoid chromatin, and form complexes with cohesin SMC1β. No other deficiency in a single meiosis‐specific cohesin causes a phenotype as drastic as STAG3 deficiency. STAG3 emerges as the key STAG cohesin involved in major functions of meiotic cohesin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号