首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Type 1 cannabinoid receptor (CB1) is expressed in different neuronal populations in the mammalian brain. In particular, CB1 on GABAergic or glutamatergic neurons exerts different functions and display different pharmacological properties in vivo. This suggests the existence of neuron‐type specific signalling pathways activated by different subpopulations of CB1. In this study, we analysed CB1 expression, binding and signalling in the hippocampus of conditional mutant mice, bearing CB1 deletion in GABAergic (GABA‐CB1‐KO mice) or cortical glutamatergic neurons (Glu‐CB1‐KO mice). Compared to their wild‐type littermates, Glu‐CB1‐KO displayed a small decrease of CB1 mRNA amount, immunoreactivity and [³H]CP55,940 binding. Conversely, GABA‐CB1‐KO mice showed a drastic reduction of these parameters, confirming that CB1 is present at much higher density on hippocampal GABAergic interneurons than glutamatergic neurons. Surprisingly, however, saturation analysis of HU210‐stimulated [35S]GTPγS binding demonstrated that ‘glutamatergic’ CB1 is more efficiently coupled to G protein signalling than ‘GABAergic’ CB1. Thus, the minority of CB1 on glutamatergic neurons is paradoxically several fold more strongly coupled to G protein signalling than ‘GABAergic’ CB1. This selective signalling mechanism raises the possibility of designing novel cannabinoid ligands that differentially activate only a subset of physiological effects of CB1 stimulation, thereby optimizing therapeutic action.  相似文献   

2.
Allosteric modulation of G‐protein coupled receptors (GPCRs) represents a novel approach for fine‐tuning GPCR functions. The cannabinoid CB1 receptor, a GPCR associated with the CNS, has been implicated in the treatment of drug addiction, pain, and appetite disorders. We report here the synthesis and pharmacological characterization of two indole‐2‐carboxamides:5‐chloro‐3‐ethyl‐1‐methyl‐N‐(4‐(piperidin‐1‐yl)phenethyl)‐1H‐indole‐2‐carboxamide (ICAM‐a) and 5‐chloro‐3‐pentyl‐N‐(4‐(piperidin‐1‐yl)phenethyl)‐1H‐indole‐2‐carboxamide (ICAM‐b). Although both ICAM‐a and ICAM‐b enhanced CP55, 940 binding, ICAM‐b exhibited the strongest positive cooperativity thus far demonstrated for enhancing agonist binding to the CB1 receptor. Although it displayed negative modulatory effects on G‐protein coupling to CB1, ICAM‐b induced β‐arrestin‐mediated downstream activation of extracellular signal‐regulated kinase (ERK) signaling. These results indicate that this compound represents a novel class of CB1 ligands that produce biased signaling via CB1.  相似文献   

3.
Urotensin II (U‐II) is a disulfide bridged peptide hormone identified as the ligand of a G‐protein‐coupled receptor. Human U‐II (H‐Glu‐Thr‐Pro‐Asp‐c[Cys‐Phe‐Trp‐Lys‐Tyr‐Cys]‐Val‐OH) has been described as the most potent vasoconstrictor compound identified to date. We have recently identified both a superagonist of human U‐II termed P5U (H‐Asp‐c[Pen‐Phe‐Trp‐Lys‐Tyr‐Cys]‐Val‐OH) and the compound termed urantide (H‐Asp‐c[Pen‐Phe‐d ‐Trp‐Orn‐Tyr‐Cys]‐Val‐OH), which is the most potent UT receptor peptide antagonist described to date. In the present study, we have synthesized four analogues of P5U and urantide in which the Trp7 residue was replaced by the highly constrained l ‐Tpi and d ‐Tpi residues. The replacement of the Trp7 by Tpi led to active analogues. Solution NMR analysis allowed improving the knowledge on conformation–activity relationships previously reported on UT receptor ligands. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
We have recently developed a soluble mimic of the corticotropin‐releasing factor receptor type 1 (CRF1), a membrane‐spanning G protein‐coupled receptor, which allowed investigations on receptor–ligand interactions. The CRF1 mimic consists of the receptor N‐terminus and three synthetic extracellular loops (ECL1–3), which constitute the extracellular receptor domains (ECDs) of CRF1, coupled to a linear peptide template. Here, we report the synthesis of a modified CRF1 mimic, which is more similar to the native receptor possessing a cyclic template that displays the ECDs in a more physiological conformation compared with the initial linear design. In order to facilitate detailed biophysical investigations on CRF1 mimics, we have further established a cost‐efficient access to the CRF1 mimic, which is suitable for isotopic labeling for NMR spectroscopy. To this end, the loop‐mimicking cyclic peptide of the ECL2 of CRF1 was produced recombinantly and cyclized by expressed protein ligation. Cyclic ECL2 was obtained in milligram scale, and CRF1 mimics synthesized from this material displayed the same binding properties as synthetic CRF1 constructs. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
6.
A photoreactive analogue of human melanin‐concentrating hormone was designed, [d‐ Bpa13,Tyr19]‐MCH, containing the d‐ enantiomer of photolabile p‐benzoylphenylalanine (Bpa) in position 13 and tyrosine for radioiodination in position 19. The linear peptide was synthesized by the continuous‐flow solid‐ phase methodology using Fmoc‐strategy and PEG‐PS resins, purified to homogeneity and cyclized by iodine oxidation. Radioiodination of [d ‐Bpa13,Tyr19]‐MCH at its Tyr19 residue was carried out enzymatically using solid‐ phase bound glucose oxidase/lactoperoxidase, followed by purification on a reversed‐ phase mini‐column and HPLC. Saturation binding analysis of [125I]‐[d‐ Bpa13,Tyr19]‐MCH with G4F‐7 mouse melanoma cells gave a KD of 2.2±0.2×10−10 mol/l and a Bmax of 1047±50 receptors/cell. Competition binding analysis showed that MCH and rANF(1–28) displace [125I]‐[d‐ Bpa13,Tyr19]‐MCH from the MCH binding sites on G4F‐7 cells whereas α‐MSH has no effect. Receptor crosslinking by UV‐irradiation of G4F‐7 cells in the presence of [125I]‐[d‐ Bpa13,Tyr19]‐MCH followed by SDS‐polyacrylamide gel electrophoresis and autoradiography yielded a band of 45–50 kDa. Identical crosslinked bands were also detected in B16‐F1 and G4F mouse melanoma cells, in RE and D10 human melanoma cells as well as in COS‐7 cells. Weak staining was found in rat PC12 phaeochromocytoma and Chinese hamster ovary cells. No crosslinking was detected in human MP fibroblasts. These data demonstrate that [125I]‐[d‐ Bpa13,Tyr19]‐MCH is a versatile photocrosslinking analogue of MCH suitable to identify MCH receptors in different cells and tissues; the MCH receptor in these cells appears to have the size of a G protein‐coupled receptor, most likely with a varying degree of glycosylation. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The N‐terminal 1–34 segments of both parathyroid hormone (PTH) and parathyroid hormone‐related protein (PTHrP) bind and activate the same membrane receptor in spite of major differences in their amino acid sequence. The hypothesis was made that they share the same bioactive conformation when bound to the receptor. A common structural motif in all bioactive fragments of the hormone in water/trifluoroethanol mixtures or in aqueous solution containing detergent micelles is the presence of two helical segments at the N‐ and C‐termini of the sequence. In order to stabilize the helical structures, we have recently synthesized and studied the PTHrP(1–34) analog [(Lys13–As p17, Lys26–As p30)]PTHrP(1–34)NH2, which contains lactam‐constrained Lys‐Asp side chains at positions i, i+4. This very potent agonist exhibits enhanced helix stability with respect to the corresponding linear peptide and also two flexible sites at positions 12 and 19 in 1:1 trifluoroethanol/water. These structural elements have been suggested to play a critical role in bioactivity. In the present work we have extended our conformational studies on the bicyclic lactam‐constrained analog to aqueous solution. By CD, 2D‐NMR and structure calculations we have shown that in water two helical segments are present in the region of the lactam bridges (13–18, and 26–31) with high flexibility around Gly12 and Arg19. Thus, the essential structural features observed in the aqueous‐organic medium are maintained in water even if, in this solvent, the overall structure is more flexible. Our findings confirm the stabilizing effect of side‐chain lactam constraints on the α‐helical structure. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
Detection of protein–protein interactions involved in signal transduction in live cells and organisms has a variety of important applications. We report a fluorogenic assay for G protein‐coupled receptor (GPCR)–β‐arrestin interaction that is genetically encoded, generalizes to multiple GPCRs, and features high signal‐to‐noise because fluorescence is absent until its components interact upon GPCR activation. Fluorescence after protease‐activated receptor‐1 activation developed in minutes and required specific serine–threonine residues in the receptor carboxyl tail, consistent with a classical G protein‐coupled receptor kinase dependent β‐arrestin recruitment mechanism. This assay provides a useful complement to other in vivo assays of GPCR activation.  相似文献   

9.
As molecular on–off switches, heterotrimeric G protein complexes, comprised of a Gα subunit and an obligate Gβγ dimer, transmit extracellular signals received by G protein–coupled receptors (GPCRs) to cytoplasmic targets that respond to biotic and abiotic stimuli. Signal transduction is modulated by phosphorylation of GPCRs and G protein complexes. In Arabidopsis thaliana, the Gα subunit AtGPA1 is phosphorylated by the receptor‐like kinase (RLK) BRI1‐associated Kinase 1 (BAK1), but the extent that other RLKs phosphorylates AtGPA1 is unknown. Twenty‐two trans‐phosphorylation sites on AtGPA1 are mapped by 12 RLKs hypothesized to act in the Arabidopsis G protein signaling pathway. Cis‐phosphorylation sites are also identified on these RLKs, some newly shown to be dual specific kinases. Multiple sites are present in the core AtGPA1 functional units, including pSer52 and/or pThr53 of the conserved P‐loop that directly binds nucleotide/phosphate, pThr164, and pSer175 from αE helix in the intramolecular domain interface for nucleotide exchange and GTP hydrolysis, and pThr193 and/or pThr194 in Switch I (SwI) that coordinates nucleotide exchange and protein partner binding. Several AtGPA1 S/T phosphorylation sites are potentially nucleotide‐dependent phosphorylation patterns, such as Ser52/Thr53 in the P‐loop and Thr193 and/or Thr194 in SwI.  相似文献   

10.
The goal of this work was to improve the bioluminescence‐based signaling assay system to create a practical application of a biomimetic odor sensor using an engineered yeast‐expressing olfactory receptors (ORs). Using the yeast endogenous pheromone receptor (Ste2p) as a model GPCR, we determined the suitable promoters for the firefly luciferase (luc) reporter and GPCR genes. Additionally, we deleted some genes to further improve the sensitivity of the luc reporter assay. By replacing the endogenous yeast G‐protein α‐subunit (Gpa1p) with the olfactory‐specific Gαolf, the optimized yeast strain successfully transduced signal through both OR and yeast Ste2p. Our results will assist the development of a bioluminescence‐based odor‐sensing system using OR‐expressing yeast. Biotechnol. Bioeng. 2012; 109: 3143–3151. © 2012 Wiley Periodicals, Inc.  相似文献   

11.
The global fold of human cannabinoid type 2 (CB2) receptor in the agonist‐bound active state in lipid bilayers was investigated by solid‐state 13C‐ and 15N magic‐angle spinning (MAS) NMR, in combination with chemical‐shift prediction from a structural model of the receptor obtained by microsecond‐long molecular dynamics (MD) simulations. Uniformly 13C‐ and 15N‐labeled CB2 receptor was expressed in milligram quantities by bacterial fermentation, purified, and functionally reconstituted into liposomes. 13C MAS NMR spectra were recorded without sensitivity enhancement for direct comparison of Cα, Cβ, and C?O bands of superimposed resonances with predictions from protein structures generated by MD. The experimental NMR spectra matched the calculated spectra reasonably well indicating agreement of the global fold of the protein between experiment and simulations. In particular, the 13C chemical shift distribution of Cα resonances was shown to be very sensitive to both the primary amino acid sequence and the secondary structure of CB2. Thus the shape of the Cα band can be used as an indicator of CB2 global fold. The prediction from MD simulations indicated that upon receptor activation a rather limited number of amino acid residues, mainly located in the extracellular Loop 2 and the second half of intracellular Loop 3, change their chemical shifts significantly (≥1.5 ppm for carbons and ≥5.0 ppm for nitrogens). Simulated two‐dimensional 13Cα(i)? 13C?O(i) and 13C?O(i)? 15NH(i + 1) dipolar‐interaction correlation spectra provide guidance for selective amino acid labeling and signal assignment schemes to study the molecular mechanism of activation of CB2 by solid‐state MAS NMR. Proteins 2014; 82:452–465. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
In contrast with the common belief that all the amino acid residues in higher organisms are l ‐forms, d ‐amino acid residues have been recently detected in various aging tissues. Aspartic acid (Asp) residues are known to be the most prone to stereoinvert via cyclic imide intermediate. Although the glutamic acid (Glu) is similar in chemical structure to Asp, little has been reported to detect d ‐Glu residues in human proteins. In this study, we investigated the mechanism of the Glu‐residue stereoinversion catalyzed by water molecules using B3LYP/6‐31+G(d,p) density functional theory calculations. We propose that the Glu‐residue stereoinversion proceeds via a cyclic imide intermediate, i.e., glutarimide (GI). All calculations were performed by using a model compound in which a Glu residue was capped with acetyl and methylamino groups on the N‐ and C‐termini, respectively. We found that two water molecules catalyze the three steps involved in the GI formation: iminolization, cyclization, and dehydration. The activation energy required for the Glu residue to form a GI intermediate was estimated to be 32.3 kcal mol?1, which was higher than that of the experimental Asp‐residue stereoinversion. This calculation result suggests that the Glu‐residue stereoinversion is not favored under the physiological condition.  相似文献   

13.
Thrombin, the ultimate protease in the blood coagulation cascade, mediates its known cellular effects by unique proteolytic activation of G‐protein‐coupled protease‐activated receptors (PARs), such as PAR1, PAR3, and PAR4, and a “tethered ligand” mechanism. PAR1 is variably expressed in subpopulations of neurons and largely determines thrombin's effects on morphology, calcium mobilization, and caspase‐mediated apoptosis. In spinal cord motoneurons, PAR1 expression correlates with transient thrombin‐mediated [Ca2+]i flux, receptor cleavage, and elevation of rest [Ca2+]i activating intracellular proteases. At nanomolar concentrations, thrombin retracts neurites via PAR1 activation of the monomeric, 21 kDa Ras G‐protein RhoA, which is also involved in neuroprotection at lower thrombin concentrations. Such results suggest potential downstream targets for thrombin's injurious effects. Consequently, we employed several G‐protein‐specific modulators prior to thrombin exposure in an attempt to uncouple both heterotrimeric and monomeric G‐proteins from motoneuronal PAR1. Cholera toxin, stimulating Gs, and lovastatin, which blocks isoprenylation of Rho, reduced thrombin‐induced calcium mobilization. In contrast, pertussis toxin and mastoparan, inhibiting or stimulating Go/Gi, were found to exacerbate thrombin action. Effects on neuronal rounding and apoptosis were also detected, suggesting therapeutic utility may result from interference with downstream components of thrombin signaling pathways in human motor neuron disorders, and possibly other neurodegenerative diseases. Published 2001 John Wiley & Sons, Inc. J Neurobiol 48: 87–100, 2001  相似文献   

14.
The cannabinoid receptor 1 (CB1), a member of the class A G‐protein‐coupled receptor (GPCR) family, possesses an observable level of constitutive activity. Its activation mechanism, however, has yet to be elucidated. Previously we discovered dramatic changes in CB1 activity due to single mutations; T3.46A, which made the receptor inactive, and T3.46I and L3.43A, which made it essentially fully constitutively active. Our subsequent prediction of the structures of these mutant receptors indicated that these changes in activity are explained in terms of the pattern of salt‐bridges in the receptor region involving transmembrane domains 2, 3, 5, and 6. Here we identified key salt‐bridges, R2.37 + D6.30 and D2.63 + K3.28, critical for CB1 inactive and active states, respectively, and generated new mutant receptors that we predicted would change CB1 activity by either precluding or promoting these interactions. We find that breaking the R2.37 + D6.30 salt‐bridge resulted in substantial increase in G‐protein coupling activity and reduced thermal stability relative to the wild‐type reflecting the changes in constitutive activity from inactive to active. In contrast, breaking the D2.63 + K3.28 salt‐bridge produced the opposite profile suggesting this interaction is critical for the receptor activation. Thus, we demonstrate an excellent correlation with the predicted pattern of key salt‐bridges and experimental levels of activity and conformational flexibility. These results are also consistent with the extended ternary complex model with respect to shifts in agonist and inverse agonist affinity and provide a powerful framework for understanding the molecular basis for the multiple stages of CB1 activation and that of other GPCRs in general. Proteins 2013; 81:1304–1317. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
In Saccharomyces cerevisiae, mechanisms modulating the mating steps following cell cycle arrest are not well characterized. However, the N‐terminal domain of Ste2p, a G protein‐coupled pheromone receptor, was recently proposed to mediate events at this level. Toward deciphering receptor mechanisms associated with this mating functionality, scanning mutagenesis of targeted regions of the N‐terminal domain has been completed. Characterization of ste2 yeast overexpressing Ste2p variants indicated that residues Ile 24 and Ile 29 as well as Pro 15 are critical in mediating mating efficiency. This activity was shown to be independent of Ste2p mediated G1 arrest signaling. Further analysis of Ile 24 and Ile 29 highlight the residues' solvent accessibility, as well as the importance of the hydrophobic nature of the sites, and in the case of Ile 24 the specific size and shape of the side chain. Mutation of these Ile's led to arrest of mating after cell contact, but before completion of cell wall degradation. We speculate that these extracellular residues mediate novel receptor interactions with ligand or proteins, leading to stimulation of alternate signaling effector pathways. J. Cell. Biochem. 107: 630–638, 2009. © 2009 Crown in the right of Canada.  相似文献   

16.
Recent research has implicated the C‐terminus of G‐protein coupled receptors in key events such as receptor activation and subsequent intracellular sorting, yet obtaining structural information of the entire C‐tail has proven a formidable task. Here, a peptide corresponding to the full‐length C‐tail of the human CB1 receptor (residues 400–472) was expressed in E.coli and purified in a soluble form. Circular dichroism (CD) spectroscopy revealed that the peptide adopts an α‐helical conformation in negatively charged and zwitterionic detergents (48–51% and 36–38%, respectively), whereas it exhibited the CD signature of unordered structure at low concentration in aqueous solution. Interestingly, 27% helicity was displayed at high peptide concentration suggesting that self‐association induces helix formation in the absence of a membrane mimetic. NMR spectroscopy of the doubly labeled (15N‐ and 13C‐) C‐terminus in dodecylphosphocholine (DPC) identified two amphipathic α‐helical domains. The first domain, S401‐F412, corresponds to the helix 8 common to G protein‐coupled receptors while the second domain, A440‐M461, is a newly identified structural motif in the distal region of the carboxyl‐terminus of the receptor. Molecular modeling of the C‐tail in DPC indicates that both helices lie parallel to the plane of the membrane with their hydrophobic and hydrophilic faces poised for critical interactions. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 565–573, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

17.
In the developing cerebellum granule cell precursors (GCPs) proliferate in the external granule cell layer before differentiating and migrating to the inner granule cell layer. Aberrant GCP proliferation leads to medulloblastoma, the most prevalent form of childhood brain cancer. Here, we demonstrate that the calcium‐sensing receptor (CaSR), a homodimeric G‐protein coupled receptor, functions in conjunction with cell adhesion proteins, the integrins, to enhance GCP migration and cell homing by promoting GCP differentiation. During the second postnatal week a robust peak in CaSR expression was observed in GCPs; reciprocal immunoprecipitation experiments conducted during this period established that the CaSR and β1 integrins are present together in a macromolecular protein complex. Analysis of cell‐surface proteins demonstrated that activation of the CaSR by positive allosteric modulators promoted plasma membrane expression of β1 integrins via ERK2 and AKT phosphorylation and resulted in increased GCP migration toward an extracellular matrix protein. The results of in vivo experiments whereby CaSR modulators were injected i.c.v. revealed that CaSR activation promoted radial migration of GCPs by enhancing GCP differentiation, and conversely, a CaSR inhibitor disrupted GCP differentiation and promoted GCP proliferation. Our results demonstrate that an ion‐sensing G‐protein coupled receptor acts to promote neuronal differentiation and homing during cerebellar maturation. These findings together with those of others also suggest that CaSR/integrin complexes act to transduce extracellular calcium signals into cellular movement, and may function in this capacity as a universal cell migration/homing complex in the developing brain. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 375–389, 2016  相似文献   

18.
Plant heterotrimeric G proteins modulate numerous developmental stress responses. Recently, receptor‐like kinases (RLKs) have been implicated as functioning with G proteins and may serve as plant G‐protein‐coupled‐receptors. The RLK FERONIA (FER), in the Catharantus roseus RLK1‐like subfamily, is activated by a family of polypeptides called rapid alkalinization factors (RALFs). We previously showed that the Arabidopsis G protein β subunit, AGB1, physically interacts with FER, and that RALF1 regulation of stomatal movement through FER requires AGB1. Here, we investigated genetic interactions of AGB1 and FER in plant salinity response by comparing salt responses in the single and double mutants of agb1 and fer. We show that AGB1 and FER act additively or synergistically depending on the conditions of the NaCl treatments. We further show that the synergism likely occurs through salt‐induced ROS production. In addition, we show that RALF1 enhances salt toxicity through increasing Na+ accumulation and decreasing K+ accumulation rather than by inducing ROS production, and that the RALF1 effect on salt response occurs in an AGB1‐independent manner. Our results indicate that RLK epistatic relationships are not fixed, as AGB1 and FER display different genetic relationships to RALF1 in stomatal versus salinity responses.  相似文献   

19.
We reconstituted D2 like dopamine receptor (D2R) and the delta opioid receptor (DOR) coupling to G‐protein gated inwardly rectifying potassium channels (Kir3) and directly compared the effects of co‐expression of G‐protein coupled receptor kinase (GRK) and arrestin on agonist‐dependent desensitization of the receptor response. We found, as described previously, that co‐expression of a GRK and an arrestin synergistically increased the rate of agonist‐dependent desensitization of DOR. In contrast, only arrestin expression was required to produce desensitization of D2R responses. Furthermore, arrestin‐dependent GRK‐independent desensitization of D2R‐Kir3 coupling could be transferred to DOR by substituting the third cytoplasmic loop of DOR with that of D2R. The arrestin‐dependent GRK‐independent desensitization of D2R desensitization was inhibited by staurosporine treatment, and blocked by alanine substitution of putative protein kinase C phosphorylation sites in the third cytoplasmic loop of D2R. Finally, the D2R construct in which putative protein kinase C phosphorylation sites were mutated did not undergo significant agonist‐dependent desensitization even after GRK co‐expression, suggesting that GRK phosphorylation of D2R does not play an important role in uncoupling of the receptor.

  相似文献   


20.
G protein‐coupled receptors (GPCRs) have critical functions in intercellular communication. Although a wide range of different receptors have been identified in the same cells, the mechanism by which signals are integrated remains elusive. The ability of GPCRs to form dimers or larger hetero‐oligomers is thought to generate such signal integration. We examined the molecular mechanisms responsible for the GABAB receptor‐mediated potentiation of the mGlu receptor signalling reported in Purkinje neurons. We showed that this effect does not require a physical interaction between both receptors. Instead, it is the result of a more general mechanism in which the βγ subunits produced by the Gi‐coupled GABAB receptor enhance the mGlu‐mediated Gq response. Most importantly, this mechanism could be generally applied to other pairs of Gi‐ and Gq‐coupled receptors and the signal integration varied depending on the time delay between activation of each receptor. Such a mechanism helps explain specific properties of cells expressing two different Gi‐ and Gq‐coupled receptors activated by a single transmitter, or properties of GPCRs naturally coupled to both types of the G protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号