首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bruton's tyrosine kinase (Btk) is mutated in X-linked agammaglobulinemia patients and plays an essential role in B cell receptor signal transduction. Btk is a member of the Tec family of nonreceptor protein-tyrosine kinases that includes Bmx, Itk, Tec, and Txk. Cell lines deficient for Btk are impaired in phospholipase C-gamma2 (PLCgamma2)-dependent signaling. Itk and Tec have recently been shown to reconstitute PLCgamma2-dependent signaling in Btk-deficient human cells, but it is not known whether the atypical Tec family members, Bmx and Txk, can reconstitute function. Here we reconstitute Btk-deficient DT40 B cells with Bmx and Txk to compare their function with other Tec kinases. We show that in common with Itk and Tec, Bmx reconstituted PLCgamma2-dependent responses including calcium mobilization, extracellular signal-regulated kinase (ERK) mitogen-activated protein kinase (MAPK) activation, and apoptosis. Txk also restored PLCgamma2/calcium signaling but, unlike other Tec kinases, functioned in a phosphatidylinositol 3-kinase-independent manner and failed to reconstitute apoptosis. These results are consistent with a common role for Tec kinases as amplifiers of PLCgamma2-dependent signal transduction, but suggest that the pleckstrin homology domain of Tec kinases, absent in Txk, is essential for apoptosis.  相似文献   

2.
Tec is the prototypic member of a family of intracellular tyrosine kinases that includes Txk, Bmx, Itk, and Btk. Tec family kinases share similarities in domain structure with Src family kinases, but one of the features that differentiates them is a proline-rich region (PRR) preceding their Src homology (SH) 3 domain. Evidence that the PRR of Itk can bind in an intramolecular fashion to its SH3 domain and the lack of a regulatory tyrosine in the C terminus indicates that Tec kinases must be regulated by a different set of intramolecular interactions to the Src kinases. We have determined the solution structure of the Tec SH3 domain and have investigated interactions with its PRR, which contains two SH3-binding sites. We demonstrate that in vitro, the Tec PRR can bind in an intramolecular fashion to the SH3. However, the affinity is lower than that for dimerization via reciprocal PRR-SH3 association. Using site-directed mutagenesis we show that both sites can bind the Tec SH3 domain; site 1 (155KTLPPAP161) binds intramolecularly, while site 2 (165KRRPPPPIPP174) cannot and binds in an intermolecular fashion. These distinct roles for the SH3 binding sites in Tec family kinases could be important for protein targeting and enzyme activation.  相似文献   

3.
The HIV-1 Nef virulence factor interacts with multiple host cell-signaling proteins. Nef binds to the Src homology 3 domains of Src family kinases, resulting in kinase activation important for viral infectivity, replication, and MHC-I down-regulation. Itk and other Tec family kinases are also present in HIV target cells, and Itk has been linked to HIV-1 infectivity and replication. However, the molecular mechanism linking Itk to HIV-1 is unknown. In this study, we explored the interaction of Nef with Tec family kinases using a cell-based bimolecular fluorescence complementation assay. In this approach, interaction of Nef with a partner kinase juxtaposes nonfluorescent YFP fragments fused to the C terminus of each protein, resulting in YFP complementation and a bright fluorescent signal. Using bimolecular fluorescence complementation, we observed that Nef interacts with the Tec family members Bmx, Btk, and Itk but not Tec or Txk. Interaction with Nef occurs through the kinase Src homology 3 domains and localizes to the plasma membrane. Allelic variants of Nef from all major HIV-1 subtypes interacted strongly with Itk in this assay, demonstrating the highly conserved nature of this interaction. A selective small molecule inhibitor of Itk kinase activity (BMS-509744) potently blocked wild-type HIV-1 infectivity and replication, but not that of a Nef-defective mutant. Nef induced constitutive Itk activation in transfected cells that was sensitive to inhibitor treatment. Taken together, these results provide the first evidence that Nef interacts with cytoplasmic tyrosine kinases of the Tec family and suggest that Nef provides a mechanistic link between HIV-1 and Itk signaling in the viral life cycle.  相似文献   

4.
Tec family non-receptor tyrosine kinases (Itk, Btk, Tec, Rlk and Bmx) are characterized by the presence of an autophosphorylation site within the non-catalytic Src homology 3 (SH3) domain. The full-length Itk mutant containing phenylalanine in place of the autophosphorylated tyrosine has been studied in Itk-deficient primary T cells. These studies revealed that the non-phosphorylated enzyme restores Itk mediated signaling only partially. In spite of these insights, the precise role of the Tec kinase autophosphorylation site is unclear and the mechanism of the autophosphorylation reaction within the Tec kinases is not known. Here, we show both in vitro and in vivo that Itk autophosphorylation on Y180 within the SH3 domain occurs exclusively via an intramolecular, in cis mechanism. Using an in vitro kinase assay, we show that mutation of the Itk autophosphorylation site Y180 to Phe decreases kinase activity of the full-length enzyme by increasing Km for a peptide substrate. Moreover, mutation of Y180 to Glu, a residue chosen to mimic the phosphorylated tyrosine, alters the ligand-binding capability of the Itk SH3 domain in a ligand-dependent fashion. NMR chemical shift mapping gives residue-specific structural insight into the effect of the Y180E mutation on ligand binding. These data provide a molecular level context with which to interpret in vivo functional data and allow development of a structural model for Itk autophosphorylation.  相似文献   

5.
Heinonen JE  Smith CI  Nore BF 《FEBS letters》2002,527(1-3):274-278
Tec family tyrosine kinases, Bruton's tyrosine kinase (Btk), Itk, Bmx, Tec, and Txk, are multi-domain proteins involved in hematopoietic signaling. Here, we demonstrate that human Btk protein can transiently be depleted using double-stranded short RNA interference (siRNA) oligonucleotides. Imaging and Western blotting analysis demonstrate that Btk expression is down regulated in heterologous systems as well as in hematopoietic lineages, following transfection or microinjection of Btk siRNA duplexes. The induction of histamine release, a pro-inflammatory mediator, in RBL-2H3 mast cells was reduced by 20-25% upon Btk down regulation. Similar, results were obtained when the Btk activity was inhibited using the kinase blocker LFM-A13. These results demonstrate a direct role of Btk for the efficient secretion of histamine in allergic responses.  相似文献   

6.
The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the βD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.  相似文献   

7.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

8.
The Tec family is a recently emerging subfamily of non-receptor protein-tyrosine kinases (PTKs) represented by its first member, Tec. This family is composed of five members, namely Tec, Btk, Itk/Emt/Tsk, Bmx and Txk/Rlk. The most characteristic feature of this family is the presence of a pleckstrin homology (PH) domain in their protein structure. The PH domain is known to bind phosphoinositides; on this basis, Tec family PTKs may act as merge points of phosphotyrosine-mediated and phospholipid-mediated signaling systems. Many Tec family proteins are abundantly expressed in hematopoietic tissues, and are presumed to play important roles in the growth and differentiation processes of blood cells. Supporting this, mutations in the Btk gene cause X chromosome-linked agammaglobulinemia (XLA) in humans and X chromosome-linked immunodeficiency (Xid) in mice, indicating that Btk activity is indispensable for B-cell ontogeny. In addition, Tec family kinases have been shown to be involved in the intracellular signaling mechanisms of cytokine receptors, lymphocyte surface antigens, heterotrimeric G-protein-coupled receptors and integrin molecules. Efforts are being made to identify molecules which interact with Tec kinases to transfer Tec-mediated signals in vivo. Candidates for such second messengers include PLC-γ2, guanine nucleotide exchange factors for RhoA and TFII-I/BAP-135. This review summarizes current knowledge concerning the input and output factors affecting the Tec kinases.  相似文献   

9.
Pleckstrin homology domains of tec family protein kinases.   总被引:2,自引:0,他引:2  
Pleckstrin homology (PH) domains have been shown to be involved in different interactions, including binding to inositol compounds, protein kinase C isoforms, and heterotrimeric G proteins. In some cases, the most important function of PH domains is transient localisation of proteins to membranes, where they can interact with their partners. Tec family protein tyrosine kinases contain a PH domain. In Btk, also PH domain mutations lead into an immunodeficiency, X-linked agammaglobulinemia (XLA). A new disease-causing mutation was identified in the PH domain. The structures for the PH domains of Bmx, Itk, and Tec were modelled based on Btk structure. The domains seem to have similar scaffolding and electrostatic polarisation but to have some differences in the binding regions. The models provide new insight into the specificity, function, and regulation of Tec family kinases.  相似文献   

10.
11.
Joseph RE  Min L  Xu R  Musselman ED  Andreotti AH 《Biochemistry》2007,46(18):5595-5603
During T cell signaling, Itk selectively phosphorylates a tyrosine within its own SH3 domain and a tyrosine within PLCgamma1. We find that the remote SH2 domain in each of these substrates is required to achieve efficient tyrosine phosphorylation by Itk and extend this observation to two other Tec family kinases, Btk and Tec. Additionally, we detect a stable interaction between the substrate SH2 domains and the kinase domain of Itk and find that addition of specific, exogenous SH2 domains to the in vitro kinase assay competes directly with substrate phosphorylation. On the basis of these results, we show that the kinetic parameters of a generic peptide substrate of Itk are significantly improved via fusion of the peptide substrate to the SH2 domain of PLCgamma1. This work is the first characterization of a substrate docking mechanism for the Tec kinases and provides evidence of a novel, phosphotyrosine-independent regulatory role for the ubiquitous SH2 domain.  相似文献   

12.
The thermal unfolding of three SH3 domains of the Tec family of tyrosine kinases was studied by differential scanning calorimetry and CD spectroscopy. The unfolding transition of the three protein domains in the acidic pH region can be described as a reversible two-state process. For all three SH3 domains maximum stability was observed in the pH region 4.5 < pH < 7.0 where these domains unfold at temperatures of 353K (Btk), 342K (Itk), and 344K (Tec). At these temperatures an enthalpy change of 196 kJ/mol, 178 kJ/mol, and 169 kJ/mol was measured for Btk-, Itk-, and Tec-SH3 domains, respectively. The determined changes in heat capacity between the native and the denatured state are in an usual range expected for small proteins. Our analysis revealed that all SH3 domains studied are only weakly stabilized and have free energies of unfolding which do not exceed 12–16 kJ/mol but show quite high melting temperatures. Comparing unfolding free energies measured for eukaryotic SH3 domains with those of the topologically identical Sso7d protein from the hyperthermophile Sulfolobus solfataricus, the increased melting temperature of the thermostable protein is due to a broadening as well as a significant lifting of its stability curve. However, at their physiological temperatures, 310K for mesophilic SH3 domains and 350K for Sso7d, eukaryotic SH3 domains and Sso7d show very similar stabilities. Proteins 31:309–319, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

13.
Tec, the prototypical member of the Tec family of tyrosine kinases, is abundantly expressed in T cells and other hemopoietic cell types. Although the functions of Itk and Txk have recently been investigated, little is known about the role of Tec in T cells. Using antisense oligonucleotide treatment to deplete Tec protein from primary T cells, we demonstrate that Tec plays a role in TCR signaling leading to IL-2 gene induction. Interestingly, Tec kinases are the only known family of tyrosine kinases containing a pleckstrin homology (PH) domain. Using several PH domain mutants overexpressed in Jurkat T cells, we show that the Tec PH domain is required for Tec-mediated IL-2 gene induction and TCR-mediated Tec tyrosine phosphorylation. Furthermore, we show that Tec colocalizes with the TCR after TCR cross-linking, and that both the Tec PH and Src homology (SH) 2 domains play a role in this association. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, abolishes Tec-mediated IL-2 gene induction and Tec tyrosine phosphorylation, and partially suppresses Tec colocalization with the activated TCR. Thus, our data implicate the Tec kinase PH domain and phosphatidylinositol 3-kinase in Tec signaling downstream of the TCR.  相似文献   

14.
Proteolytic activation of ETK/Bmx tyrosine kinase by caspases   总被引:1,自引:0,他引:1  
Etk/Bmx is a member of the Btk/Tec family of kinases, which are characterized by having a pleckstrin homology domain at the N terminus, in addition to the Src homology 3 (SH3), SH2, and the catalytic domains, shared with the Src family kinases. Etk, or Btk kinases in general, has been implicated in the regulation of apoptosis. To test whether Etk is the substrate for caspases during apoptosis, in vitro translated [(35)S]methionine-labeled Etk was incubated with different apoptotic extracts and recombinant caspases, respectively. Results showed that Etk was proteolyzed in all conditions tested with identical cleavage patterns. Caspase-mediated cleavage of Etk generated a C-terminal fragment, containing the complete SH2 and tyrosine kinase domains, but without intact pleckstrin homology and SH3 domains. This fragment has 4-fold higher kinase activity than that of the full-length Etk. Ectopic expression of the C-terminal fragment of Etk sensitized the PC3 prostate cancer cells to apoptosis in response to apoptosis-inducing stimuli. The finding, together with an earlier report that Etk is potentially antiapoptotic, suggests that Etk may serve as an apoptotic switch, depending on the forms of Etk existing inside the cells. To our knowledge, this is the first case where the activity of a tyrosine kinase is induced by caspase cleavage.  相似文献   

15.
The Tec family of protein-tyrosine kinases (PTKs), that includes Tec, Itk, Btk, Bmx, and Txk, plays an essential role in phospholipase Cgamma (PLCgamma) activation following antigen receptor stimulation. This function requires activation of phosphatidylinositol 3-kinase (PI 3-kinase), which promotes Tec membrane localization through phosphatidylinositol 3,4,5-trisphosphate (PtdIns 3,4,5-P(3)) generation. The mechanism of negative regulation of Tec family PTKs is poorly understood. In this study, we show that the inositol 5' phosphatases SHIP1 and SHIP2 interact preferentially with Tec, compared with other Tec family members. Four lines of evidence suggest that SHIP phosphatases are negative regulators of Tec. First, SHIP1 and SHIP2 are potent inhibitors of Tec activity. Second, inactivation of the Tec SH3 domain, which is necessary and sufficient for SHIP binding, generates a hyperactive form of Tec. Third, SHIP1 inhibits Tec membrane localization. Finally, constitutively targeting Tec to the membrane relieves SHIP1-mediated inhibition. These data suggest that SHIP phosphatases can interact with and functionally inactivate Tec by de-phosphorylation of local PtdIns 3,4,5-P(3) and inhibition of Tec membrane localization.  相似文献   

16.
Joseph RE  Min L  Andreotti AH 《Biochemistry》2007,46(18):5455-5462
Tec family nonreceptor tyrosine kinases are key immunological enzymes that control processes that range from T and B cell development to reorganization of the actin cytoskeleton. The full-length Tec kinases have been resistant to crystallization. This lack of structural data and the paucity of in vitro biochemical data for this kinase family leave a void in our understanding of Tec kinase regulation. In this report we have used interleukin-2 tyrosine kinase (Itk) as a model system to gain insight into the regulatory apparatus of the Tec kinases. Use of a quantitative in vitro kinase assay has uncovered an essential role for the short linker region flanked by the SH2 and kinase domains of Itk in positively regulating Itk catalytic activity. The precise residues that allosterically regulate Itk are conserved among Tec kinases, pointing to the conserved nature of this regulatory mechanism within the family. These findings indicate that Tec kinases are not regulated in the same manner as the Src kinases but rather share some of the regulatory features of Csk instead.  相似文献   

17.
SH3 domains are small, modular domains that are found in many proteins, especially signal transduction proteins such as tyrosine kinases. While much is known about the sequences and tertiary structures of SH3 domains, far less is known about their solution dynamics. A slow, partial unfolding event that occurs under physiological conditions was previously identified in the Hck SH3 domain using hydrogen exchange (HX) mass spectrometry (MS). To determine if this unfolding was unique to Hck SH3, HX MS was used to analyze 11 other SH3 domains: seven SH3 domains from Src-family kinases and five SH3 domains from various proteins. A wide variety of unfolding rates were found, with unfolding half-lives ranging from 1s to 1h. The Lyn and alpha-spectrin SH3 domains exhibited slow, partial unfolding in beta strands D and E and part of the RT-loop. Hck SH3 also underwent partial unfolding in the same region, implying that a unique feature in this area of the domains is responsible for the partial unfolding. Partial unfolding was, however, not a function of sequence conservation. Although the Fyn and Yes SH3 domains are very similar to Hck SH3 in sequence, they exhibited no evidence of partial unfolding. Overall, the results suggest that while the tertiary structure of SH3 domains is highly conserved, the dynamics of SH3 domains are variable.  相似文献   

18.
Interleukin-2 tyrosine kinase (Itk), is a T-cell specific tyrosine kinase of the Tec family. We have examined a novel intermolecular interaction between the SH3 and SH2 domains of Itk. In addition to the interaction between the isolated domains, we have found that the dual SH3/SH2 domain-containing fragment of Itk self-associates in a specific manner in solution. Tec family members contain the SH3, SH2 and catalytic domains common to many kinase families but are distinguished by a unique amino-terminal sequence, which contains a proline-rich stretch. Previous work has identified an intramolecular regulatory association between the proline-rich region and the adjacent SH3 domain of Itk. The intermolecular interaction between the SH3 and SH2 domains of Itk that we describe provides a possible mechanism for displacement of this intramolecular regulatory sequence, a step that may be required for full Tec kinase activation. Additionally, localization of the interacting surfaces on both the SH3 and SH2 domains by chemical shift mapping has provided information about the molecular details of this recognition event. The interaction involves the conserved aromatic binding pocket of the SH3 domain and a newly defined binding surface on the SH2 domain. The interacting residues on the SH2 domain do not conform to the consensus motif for an SH3 proline-rich ligand. Interestingly, we note a striking correlation between the SH2 residues that mediate this interaction and those residues that, when mutated in the Tec family member Btk, cause the hereditary immune disorder, X-linked agamaglobulinemia.  相似文献   

19.
The regulatory spine is a set of conserved residues that are assembled and disassembled upon activation and inactivation of kinases. We recently identified the regulatory spine within the immunologically important Tec family kinases and have shown that in addition to the core spine residues within the kinase domain itself, contributions from the SH2-kinase linker region result in an extended spine structure for this kinase family. Disruption of the regulatory spine, either by mutation or by removal of the amino-terminal SH2-kinase linker region or by mutation of core spine residues, leads to inactivation of the Tec kinases. With a focus on the Tec family members, Itk and Btk, we now show that the gatekeeper residue is also critical for the assembly of the regulatory spine. Mutation of the bulky Itk F434 gatekeeper residue to alanine or glycine inactivates Itk. The activity of the Itk F434A mutant can be recovered by a secondary site mutation within the N-terminal lobe, specifically L432I. The Itk L432I mutation likely rescues the activity of the gatekeeper F434A mutation by promoting the assembly of the regulatory spine. We also show that mutation of the Itk and Btk gatekeeper residues to methionine is sufficient to activate the isolated kinase domains of Tec kinases in the absence of the amino-terminal SH2-kinase linker. Thus, shifting the conformational equilibrium between the assembled and disassembled states of the regulatory spine by changing the nature of the gatekeeper residue is key to regulating the activity of Tec kinases.  相似文献   

20.
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-γ. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both αβ and γδ T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.The Tec family nonreceptor tyrosine kinases, Tec, Btk, Itk/Emt/Tsk, Rlk/Txk, and Bmx/Etk, are expressed primarily in hematopoietic cells and serve as important mediators of antigen receptor signaling in lymphocytes (Berg et al. 2005; Felices et al. 2007; Readinger et al. 2009). The demonstration that the human B-cell immunodeficiency, X-linked agammaglobulinemia (XLA), is caused by mutations in Btk first underscored the importance of this tyrosine kinase family in lymphocyte development and antigen receptor signaling (Rawlings et al. 1993; Thomas et al. 1993; Tsukada et al. 1993; Vetrie et al. 1993). T lymphocytes express three Tec kinases: Itk, Rlk and Tec. To date, only Itk has been found to have a clearly defined function in T cells, leading to the conclusion that Itk is the predominant Tec kinase in T cells. In this review, we will cover recent findings that highlight the critical role of Itk in T-cell signaling and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号