首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Enterohemorrhagic (EHEC) and enteroaggregative (EAEC) are two pathotypes of diarrheagenic Escherichia coli. EAEC strains express adhesins called aggregate adherence fimbriae (AAFs) which the bacteria use to adhere to intestinal mucosa. EHEC virulence factor is Shiga toxin which belongs to the AB5 toxin family. B subunit, the nontoxic part of Shiga toxin (StxB), forms a homo pentamer and is responsible for binding to target cells. StxB has recently been proven to have adjuvant activity. In the current study we fused StxB encoding gene to 3' end of genes encoding two variants of AAFs, i.e., AAF/I and AAF/II. The in silico studies on tertiary structure and biochemical characteristics of Shiga toxin A subunit (StxA) revealed more resemblance to AAF/II than AAF/I. The constructs were prepared in a way that StxB could imitate its natural structure (pentamer formation) and its position (C-terminus) in the native toxin complex. The expression of these constructs showed the formation of AAF/II-B as a protein complex but with lower molecular mass than its expected size. In contrast, the AAF/I-B complex was not formed. Overall, the results of in silico studies and expression experiments together revealed that despite AAF/II-B expression, StxB failed to form pentamer. Therefore the observed protein complex has lower molecular mass. Since StxB is bound to AAF/II through disulfide bond, this bond prevents pentamer formation of StxB. However, due to the lack of disulfide bond between AAF/I and StxB, no protein complex is formed, thus StxB maintains its pentamer structure.  相似文献   

2.
Enteroaggregative Escherichia coli (EAEC), increasingly recognized as an important cause of infant and travelers' diarrhoea, exhibits an aggregative, stacked-brick pattern of adherence to epithelial cells. Adherence is mediated by aggregative adherence fimbriae (AAFs), which are encoded on the pAA virulence plasmid. We recently described a highly prevalent pAA plasmid-borne gene, aap, which encodes a protein (nicknamed dispersin) that is secreted to the bacterial cell surface. Dispersin-null mutants display a unique hyper-aggregating phenotype, accompanied by collapse of AAF pili onto the bacterial cell surface. To study the mechanism of this effect, we solved the structure of dispersin from EAEC strain 042 using solution NMR, revealing a stable beta-sandwich with a conserved net positive surface charge of +3 to +4 among 23 dispersin alleles. Experimental data suggest that dispersin binds non-covalently to lipopolysaccharide on the surface of the bacterium. We also show that the AAF organelles contribute positive charge to the bacterial surface, suggesting that dispersin's role in fimbrial function is to overcome electrostatic attraction between AAF and the bacterial surface.  相似文献   

3.
The interaction of enteroaggregative Escherichia coli (EAEC) strains with the colonic gut mucosa is characterized by the ability of the bacteria to form robust biofilms, to bind mucin, and induce a local inflammatory response. These events are mediated by a repertoire of five different aggregative adherence fimbriae variants (AAF/I-V) typically encoded on virulence plasmids. In this study, we report the production in EAEC strains of a new Y ehD f imbriae (YDF), which is encoded by the chromosomal gene cluster yehABCD, also present in most E. coli strains. Immuno-labelling of EAEC strain 042 with anti-AAF/II and anti-YDF antibodies demonstrated the presence of both AAF/II and YDF on the bacterial surface. We investigated the role of YDF in cell adherence, biofilm formation, colonization of spinach leaves, and induction of pro-inflammatory cytokines release. To this aim, we constructed yehD deletion mutants in different EAEC backgrounds (strains 17-2, 042, 55989, C1010, 278-1, J7) each harbouring one of the five AAFs. The effect of the YDF mutation was strain dependent and AAF independent as the lack of YDF had a different impact on the phenotypes manifested by the different EAECs tested. Expression of the yehABCD operon in a E. coli K12 ORN172 showed that YDF is important for biofilm formation but not for adherence to HeLa cells. Lastly, screening of pro-inflammatory cytokines in supernatants of Caco-2 cells infected with EAEC strains 042 and J7 and their isogenic ΔyehD mutants showed that these mutants were significantly defective in release of IL-8 and TNF-α. This study contributes to the understanding of the complex and diverse mechanisms of adherence of EAEC strains and identifies a new potential target for preventive measures of gastrointestinal illness caused by EAEC and other E. coli pathogroups.  相似文献   

4.
5.
Enteroaggregative Escherichia coli (EAEC) are causative agents of diarrhea, being characterized by aggregative adherence to cultured epithelial cells. In this study, phenotypic properties of EAEC were analyzed with respect to AA, hemagglutination, clump and biofilm formation, all of which are mediated by aggregative adherence fimbriae (AAF). The strains were also screened for AAF types, AAF adhesin variants and Dr adhesin by PCR. Of the three known AAF types, AAF/I and AAF/II adhesin variants were identified. An association between the AAF/adhesin genotypes and the subtypes/scores of phenotypic properties was sought and it was observed that strains harboring same adhesins displayed different subtypes/scores and vice versa.  相似文献   

6.
Interbacterial interactions between oral streptococci and actinomyces and their adherence to tooth surface and the associated host cells are key early events that promote development of the complex oral biofilm referred to as dental plaque. These interactions depend largely on a lectin‐like activity associated with the Actinomyces oris type 2 fimbria, a surface structure assembled by sortase (SrtC2)‐dependent polymerization of the shaft and tip fimbrillins, FimA and FimB respectively. To dissect the function of specific fimbrillins in various adherence processes, we have developed a convenient new technology for generating unmarked deletion mutants of A. oris. Here, we show that the fimB mutant, which produced type 2 fimbriae composed only of FimA, like the wild type co‐aggregated strongly with receptor‐bearing streptococci, agglutinated with sialidase‐treated red blood cells, and formed monospecies biofilm. In contrast, the fimA and srtC2 mutants lacked type 2 fimbriae and were non‐adherent in each of these assays. Plasmid‐based expression of the deleted gene in respective mutants restored adherence to wild‐type levels. These findings uncover the importance of the lectin‐like activity of the polymeric FimA shaft rather than the tip. The multivalent adhesive function of FimA makes it an ideal molecule for exploring novel intervention strategies to control plaque biofilm formation.  相似文献   

7.
The aggregative pattern of adherence (AA) exhibited by enteroaggregative Escherichia coli upon HEp-2 cells is a plasmid-associated property which correlates with aggregative adherence fimbria I (AAF/I) expression and human erythrocyte hemagglutination. By using cloning and mutagenesis strategies, two noncontiguous plasmid segments (designated regions 1 and 2) required for AA expression have previously been identified in enteroaggregative E. coli 17-2. TnphoA mutagenesis was performed on clones containing region 1, and 16 TnphoA mutants which were negative for the AA phenotype were analyzed. The TnphoA insertion site for each mutant was determined by junctional DNA sequencing. All 16 mutations occurred within a 4.6-kb span in region 1. Nucleotide sequence analysis of the region revealed four contiguous open reading frames, designated aggDCBA, in the same span. AA-negative TnphoA insertions into all open reading frames except aggB were obtained. On the basis of mutational analysis and protein homology data, it is inferred that aggA, aggC, and aggD are involved in biogenesis of AAF/I, encoding a major fimbrial subunit, outer membrane usher, and periplasmic fimbrial chaperone, respectively. By immunogold electron microscopy, polyclonal antiserum raised against the aggA gene product decorated AAF/I fimbriae, affirming that AggA encodes an AAF/I subunit.  相似文献   

8.
Commensal and pathogenic Escherichia coli adherence to host and environmental surfaces is mediated by a variety of adhesins. Although extensively studied as a model bacterium, 34% of the genes in the E. coli K‐12 genome have no known function. We hypothesized that some of them may correspond to functional adhesins. We characterized E. coli K‐12 ycb, ybg, yfc, yad, yra, sfm and yeh operons, which display sequence and organizational homologies to type 1 fimbriae exported by the chaperone/usher pathway. We showed that, although these operons are poorly expressed under laboratory conditions, six of them are nevertheless functional when expressed, and promote adhesion to abiotic and/or epithelial cell surfaces. While the studied fimbriae display different binding specificities, we obtained evidence of synergy/interference with other adhesins such as Ag43 or type 1 fimbriae. We showed that their expression is under the negative control of H‐NS and, except for yad, subjected to cAMP receptor protein‐mediated activation and carbon catabolite repression. These results therefore demonstrate that ycb, yfc, yad, yra, sfm and yeh operons encode cryptic but functional fimbriae adhesins whose expression following environmental modifications could contribute to E. coli's ability to adhere to and colonize a wide diversity of surfaces in its various ecological niches.  相似文献   

9.
Tissue damage predisposes humans to life‐threatening disseminating infection by the opportunistic pathogen Pseudomonas aeruginosa. Bacterial adherence to host tissue is a critical first step in this infection process. It is well established that P. aeruginosa attachment to host cells involves type IV pili (TFP), which are retractile surface fibres. The molecular details of attachment and the identity of the bacterial adhesin and host receptor remain controversial. Using a mucosal epithelium model system derived from primary human tissue, we show that the pilus‐associated protein PilY1 is required for bacterial adherence. We establish that P. aeruginosa preferentially binds to exposed basolateral host cell surfaces, providing a mechanistic explanation for opportunistic infection of damaged tissue. Further, we demonstrate that invasion and fulminant infection of intact host tissue requires the coordinated and mutually dependent action of multiple bacterial factors, including pilus fibre retraction and the host cell intoxication system, termed type III secretion. Our findings offer new and important insights into the complex interactions between a pathogen and its human host and provide compelling evidence that PilY1 serves as the principal P. aeruginosa adhesin for human tissue and that it specifically recognizes a host receptor localized or enriched on basolateral epithelial cell surfaces.  相似文献   

10.
11.
12.
Rickettsia conorii, a member of the spotted fever group (SFG) of the genus Rickettsia and causative agent of Mediterranean spotted fever, is an obligate intracellular pathogen capable of infecting various mammalian cell types. SFG rickettsiae express two major immunodominant s urface c ell a ntigen (Sca) proteins, OmpB (Sca5) and OmpA (Sca0). While OmpB‐mediated entry has been characterized, the contribution of OmpA has not been well defined. Here we show OmpA expression in Escherichia coli is sufficient to mediate adherence to and invasion of non‐phagocytic human endothelial cells. A recombinant soluble C‐terminal OmpA protein domain (954–1735) with predicted structural homology to the Bordetella pertussis pertactin protein binds mammalian cells and perturbs R. conorii invasion by interacting with several mammalian proteins including β1 integrin. Using functional blocking antibodies, small interfering RNA transfection, and mouse embryonic fibroblast cell lines, we illustrate the contribution of α2β1 integrin as a mammalian ligand involved in R. conorii invasion of primary endothelial cells. We further demonstrate that OmpA‐mediated attachment to mammalian cells is in part dependent on a conserved non‐continuous RGD motif present in a predicted C‐terminal ‘pertactin’ domain in OmpA.Our results demonstrate that multiple adhesin–receptor pairs are sufficient in mediating efficient bacterial invasion of R. conorii.  相似文献   

13.
Establishment of infection by spotted fever group rickettsial species is dependent on the ability of these bacteria to adhere to and invade the host endothelium. Recent studies have attributed these processes to a handful of rickettsial surface proteins from the surface cell antigen (sca) family of autotransporters. A rickettsial autotransporter from Rickettsia conorii, Sca2, has been shown to be sufficient to mediate both adherence and invasion of human endothelial cells and to participate in intracellular actin‐based motility. Here we identify a region of Sca2 capable of interacting with the mammalian cell surface and show that this function of Sca2 is independent and separable from its actin nucleation activity. Furthermore, pre‐incubation of mammalian cells with the Sca2 mammalian association region prior to R. conorii infection can competitively inhibit rickettsial invasion, suggesting that Sca2 plays an important role in the initial interaction with mammalian cells. Together, our results demonstrate that the Sca2 autotransporter protein in R. conorii contains distinct functional domains that likely are involved in mediating cellular interactions at the plasma membrane and the host cytosol.  相似文献   

14.
Adhesion to brain microvascular endothelial cells, which constitute the blood-brain barrier is considered important in Escherichia coli K1 bacterial penetration into the central nervous system. Type 1 fimbriae are known to mediate bacterial interactions with human brain microvascular endothelial cells (HBMEC). Here, we demonstrate that type 1 fimbriae, specifically FimH adhesin is not only an adhesive organelle that provides bacteria with a foothold on brain endothelial cells but also triggers signalling events that promote E. coli K1 invasion in HBMEC. This is shown by our demonstrations that exogenous FimH increases cytosolic-free-calcium levels as well as activates RhoA. Using purified recombinant mannose-recognition domain of FimH, we identified a glycosylphosphatidylinositol-anchored receptor, CD48, as a putative HBMEC receptor for FimH. Furthermore, E. coli K1 binding to and invasion of HBMEC were blocked by CD48 antibody. Taken together, these findings indicate that FimH induces host cell signalling cascades that are involved in E. coli K1 invasion of HBMEC and CD48 is a putative HBMEC receptor for FimH.  相似文献   

15.
Type I fimbriae commonly expressed by Escherichia coli mediate initial attachment of bacteria to host epithelial cells. However, the role of type I fimbriae in the adherence of porcine enterotoxigenic E. coli (ETEC) to host receptors is unclear. In this study, we examined the role of type I fimbriae in the adherence and biofilm formation of F18ac+ ETEC by constructing mutant strains with deletion of type I fimbrial major subunit (fimA) or minor subunit (fimH). The data indicated that the isogenic ΔfimA and ΔfimH mutants showed significantly lower adherence to porcine epithelial IPEC-1 and IPEC-J2 cells as compared to the F18ac+ ETEC parent strain. In addition, the adherence of F18ac+ ETEC to both cell lines was blocked by the presence of 0.5% D-mannose in the cell culture medium. In addition, both mutant strains impaired their ability to form biofilm in vitro. Interestingly, the deletion of fimA or fimH genes resulted in remarkable up-regulation of the expression of adhesin involved in diffuse adherence (AIDA-I). These results indicated that type I fimbriae may be required for efficient adherence of F18ac+ ETEC to pig epithelial cells and, perhaps, biofilm formation.  相似文献   

16.
Type 1 and F1C fimbriae are surface organelles of Escherichia coli which mediate receptor-specific binding to different host surfaces. Such fimbriae are found on strains associated with urinary tract infections. The specific receptor binding of the fimbriae is due to the presence of receptor recognition proteins present in the organelles as minor structural elements. The organization of the fim and foc gene clusters encoding these fimbriae, as well as the structures of the organelles, are very similar, although the actual sequence homology of the structural elements is not remarkable; notably, the sequence identity between the minor components of the type 1 and F1C fimbriae is only 34 to 41%. Type 1 fimbriae mediate agglutination of guinea pig erythrocytes, whereas F1C fimbriae do not confer agglutination of any types of erythrocytes tested. However, F1C fimbriae mediate specific adhesion to epithelial cells in the collecting ducts of the human kidney as well as to cells of various cell lines. This report addresses the question of fimbrial promiscuity. Our data indicate that minor fimbrial structural elements can be exchanged between the two fimbrial systems, resulting in hybrid organelles with changed receptor specificity. This is the first study on reciprocal exchange of structural components from two different fimbrial systems.  相似文献   

17.
Proteus mirabilis is an important cause of urinary tract infection (UTI) in patients with complicated urinary tracts. Thirty-five strains of P. mirabilis isolated from UTI were examined for the adherence capacity to epithelial cells. All isolates displayed the aggregative adherence (AA) to HEp-2 cells, a phenotype similarly presented in LLC-MK(2) cells. Biofilm formation on polystyrene was also observed in all strains. The mannose-resistant Proteus-like fimbriae (MR/P), Type I fimbriae and AAF/I, II and III fimbriae of enteroaggregative Escherichia coli were searched by the presence of their respective adhesin-encoding genes. Only the MR/P fimbrial subunits encoding genes mrpA and mrpH were detected in all isolates, as well as MR/P expression. A mutation in mrpA demonstrated that MR/P is involved in aggregative adherence to HEp-2 cells, as well as in biofilm formation. However, these phenotypes are multifactorial, because the mrpA mutation reduced but did not abolish both phenotypes. The present results reinforce the importance of MR/P as a virulence factor in P. mirabilis due to its association with AA and biofilm formation, which is an important step for the establishment of UTI in catheterized patients.  相似文献   

18.
The type III secretion system effector EseJ plays a regulatory role inside bacteria. It suppresses the adherence of Edwardsiella piscicida (E. piscicida) to host epithelial cells by down regulating type 1 fimbriae. In this study, we observed that more macrophages infected with ΔeseJ strain of E. piscicida detached as compared with those infected with the wild‐type (WT) strain. Terminal deoxynucleotidyl transferase dUTP nick‐end labelling (TUNEL) staining and cleaved caspase‐3 examination revealed that the detachment is due to increased apoptosis, suggesting that EseJ suppresses macrophage apoptosis. However, apoptosis inhibition by EseJ is not relative to a type III secretion system (T3SS) and is not related to EseJ's translocation. Since EseJ negatively regulates type 1 fimbriae, murine J774A.1 cells were infected with ΔeseJΔfimA or ΔeseJΔfimH strains. It was demonstrated that ΔeseJ stimulates macrophage apoptosis through type 1 fimbriae. Moreover, we found that infecting J774A.1 cells with the ΔeseJ strain increased levels of cleaved caspase‐8, caspase‐9, and caspase‐3, demonstrating that EseJ inhibits apoptosis through either an extrinsic or a combination of extrinsic and intrinsic pathways. Pre‐treatment of macrophages with caspase‐8 inhibitor prior to infection with the ΔeseJ strain decreased the levels of cleaved caspase‐8, caspase‐9, and caspase‐3, indicating that the ΔeseJ strain stimulates apoptosis, mainly through an extrinsic pathway by up regulating type 1 fimbriae. Zebrafish larvae or blue gourami fish infected with the ΔeseJ strain consistently exhibited higher apoptosis than those infected with the E. piscicida WT strain or ΔeseJΔfimA strain. Taken together, we revealed that the T3SS protein EseJ of E. piscicida inhibits host apoptosis, mainly through an extrinsic pathway by down regulating type 1 fimbriae.  相似文献   

19.
Pathogenic enterotoxigenic Escherichia coli (ETEC) are the major bacterial cause of diarrhea in young children in developing countries and in travelers, causing significant mortality in children. Adhesive fimbriae are a prime virulence factor for ETEC, initiating colonization of the small intestinal epithelium. Similar to other Gram‐negative bacteria, ETEC express one or more diverse fimbriae, some assembled by the chaperone‐usher pathway and others by the alternate chaperone pathway. Here, we elucidate structural and biophysical aspects and adaptations of each fimbrial type to its respective host niche. CS20 fimbriae are compared with colonization factor antigen I (CFA/I) fimbriae, which are two ETEC fimbriae assembled via different pathways, and with P‐fimbriae from uropathogenic E. coli. Many fimbriae unwind from their native helical filament to an extended linear conformation under force, thereby sustaining adhesion by reducing load at the point of contact between the bacterium and the target cell. CFA/I fimbriae require the least force to unwind, followed by CS20 fimbriae and then P‐fimbriae, which require the highest unwinding force. We conclude from our electron microscopy reconstructions, modeling and force spectroscopy data that the target niche plays a central role in the biophysical properties of fimbriae that are critical for bacterial pathophysiology.  相似文献   

20.
Enterotoxigenic Escherichia coli (ETEC) colonize the human gut, causing severe cholera‐like diarrhoea. ETEC utilize a diverse array of pili and fimbriae for host colonization, including the Type IVb pilus CFA/III. The CFA/III pilus machinery is encoded on the cof operon, which is similar in gene sequence and synteny to the tcp operon that encodes another Type IVb pilus, the Vibrio cholerae toxin co‐regulated pilus (TCP). Both pilus operons possess a syntenic gene encoding a protein of unknown function. In V. cholerae, this protein, TcpF, is a critical colonization factor secreted by the TCP apparatus. Here we show that the corresponding ETEC protein, CofJ, is a soluble protein secreted via the CFA/III apparatus. We present a 2.6 Å resolution crystal structure of CofJ, revealing a large β‐sandwich protein that bears no sequence or structural homology to TcpF. CofJ has a cluster of exposed hydrophobic side‐chains at one end and structural homology to the pore‐forming proteins perfringolysin O and α‐haemolysin. CofJ binds to lipid vesicles and epithelial cells, suggesting a role in membrane attachment during ETEC colonization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号