首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Proper folding of the (Gly‐Xaa‐Yaa)n sequence of animal collagens requires adjacent N‐ or C‐terminal noncollagenous trimerization domains which often contain coiled‐coil or beta sheet structure. Collagen‐like proteins have been found recently in a number of bacteria, but little is known about their folding mechanism. The Scl2 collagen‐like protein from Streptococcus pyogenes has an N‐terminal globular domain, designated Vsp, adjacent to its triple‐helix domain. The Vsp domain is required for proper refolding of the Scl2 protein in vitro. Here, recombinant Vsp domain alone is shown to form trimers with a significant α‐helix content and to have a thermal stability of Tm = 45°C. Examination of a new construct shows that the Vsp domain facilitates efficient in vitro refolding only when it is located N‐terminal to the triple‐helix domain but not when C‐terminal to the triple‐helix domain. Fusion of the Vsp domain N‐terminal to a heterologous (Gly‐Xaa‐Yaa)n sequence from Clostridium perfringens led to correct folding and refolding of this triple‐helix, which was unable to fold into a triple‐helical, soluble protein on its own. These results suggest that placement of a functional trimerization module adjacent to a heterologous Gly‐Xaa‐Yaa repeating sequence can lead to proper folding in some cases but also shows specificity in the relative location of the trimerization and triple‐helix domains. This information about their modular nature can be used in the production of novel types of bacterial collagen for biomaterial applications.  相似文献   

3.
The 173–195 segment corresponding to the helix 2 of the globular PrP domain is a good candidate to be one of the several ‘spots’ of intrinsic structural flexibility, which might induce local destabilization and concur to protein transformation, leading to aggregation‐prone conformations. Here, we report CD and NMR studies on the α2‐helix‐derived peptide of maximal length (hPrP[180–195]) that is able to exhibit a regular structure different from the prevalently random arrangement of other α2‐helix‐derived peptides. This peptide, which has previously been shown to be affected by buffer composition via the ion charge density dependence typical of Hofmeister effects, corresponds to the C‐terminal sequence of the PrPC full‐length α2‐helix and includes the highly conserved threonine‐rich 188–195 segment. At neutral pH, its conformation is dominated by β‐type contributions, which only very strong environmental modifications are able to modify. On TFE addition, an increase of α‐helical content can be observed, but a fully helical conformation is only obtained in neat TFE. However, linking of the 173–179 segment, as occurring in wild‐type and mutant peptides corresponding to the full‐length α2‐helix, perturbs these intrinsic structural propensities in a manner that depends on whether the environment is water or TFE. Overall, these results confirm that the 180–195 parental region in hPrPC makes a strong contribution to the chameleon conformational behavior of the segment corresponding to the full‐length α2‐helix, and could play a role in determining structural rearrangements of the entire globular domain. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

4.
In striated muscle, the binding of calcium to troponin C (TnC) results in the removal of the C‐terminal region of the inhibitory protein troponin I (TnI) from actin. While structural studies of the muscle system have been successful in determining the overall organization of most of the components involved in force generation at the atomic level, the structure and dynamics of the C‐terminal region of TnI remains controversial. This domain of TnI is highly flexible, and it has been proposed that this intrinsically disordered region (IDR) regulates contraction via a “fly‐casting” mechanism. Different structures have been presented for this region using different methodologies: a single α‐helix, a “mobile domain” containing a small β‐sheet, an unstructured region, and a two helix segment. To investigate whether this IDR has in fact any nascent structure, we have constructed a skeletal TnC‐TnI chimera that contains the N‐domain of TnC (1–90), a short linker (GGAGG), and the C‐terminal region of TnI (97–182) and have acquired 15N NMR relaxation data for this chimera. We compare the experimental relaxation parameters with those calculated from molecular dynamic simulations using four models based upon the structural studies. Our experimental results suggest that the C‐terminal region of TnI does not contain any defined secondary structure, supporting the “fly‐casting” mechanism. We interpret the presence of a “plateau” in the 15N NMR relaxation data as being an intrinsic property of IDRs. We also identified a more rigid adjacent region of TnI that has implications for muscle performance under ischemic conditions. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

5.
The binary toxin (Bin), produced by Lysinibacillus sphaericus, is composed of BinA (42 kDa) and BinB (51 kDa) proteins, which are both required for full toxicity against Culex and Anopheles mosquito larvae. Specificity of Bin toxin is determined by the binding of BinB component to a receptor present on the midgut epithelial membranes, while BinA is proposed to be a toxic component. Here, we determined the first crystal structure of the active form of BinB at a resolution of 1.75 Å. BinB possesses two distinct structural domains in its N‐ and C‐termini. The globular N‐terminal domain has a β‐trefoil scaffold which is a highly conserved architecture of some sugar binding proteins or lectins, suggesting a role of this domain in receptor‐binding. The BinB β‐rich C‐terminal domain shares similar three‐dimensional folding with aerolysin type β‐pore forming toxins, despite a low sequence identity. The BinB structure, therefore, is a new member of the aerolysin‐like toxin family, with probably similarities in the cytolytic mechanism that takes place via pore formation. Proteins 2014; 82:2703–2712. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
The ASPP proteins are apoptosis regulators: ASPP1 and ASPP2 promote, while iASPP inhibits, apoptosis. The mechanism by which these different outcomes are achieved is still unknown. The C‐terminal ankyrin repeats and SH3 domain (ANK‐SH3) mediate the interactions of the ASPP proteins with major apoptosis regulators such as p53, Bcl‐2, and NFκB. The structure of the complex between ASPP2ANK‐SH3 and the core domain of p53 (p53CD) was previously determined. We have recently characterized the individual interactions of ASPP2ANK‐SH3 with Bcl‐2 and NFκB, as well as a regulatory intramolecular interaction with the proline rich domain of ASPP2. Here we compared the ASPP interactions at two levels: ASPP2ANK‐SH3 with different proteins, and different ASPP family members with each protein partner. We found that the binding sites of ASPP2 to p53CD, Bcl‐2, and NFκB are different, yet lie on the same face of ASPP2ANK‐SH3. The intramolecular binding site to the proline rich domain overlaps the three intermolecular binding sites. To reveal the basis of functional diversity in the ASPP family, we compared their protein‐binding domains. A subset of surface‐exposed residues differentiates ASPP1 and ASPP2 from iASPP: ASPP1/2 are more negatively charged in specific residues that contact positively charged residues of p53CD, Bcl‐2, and NFκB. We also found a gain of positive charge at the non‐protein binding face of ASPP1/2, suggesting a role in electrostatic direction towards the negatively charged protein binding face. The electrostatic differences in binding interfaces between the ASPP proteins may be one of the causes for their different function. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Knr4, recently characterized as an intrinsically disordered Saccharomyces cerevisiae protein, participates in cell wall formation and cell cycle regulation. It is constituted of a functional central globular core flanked by a poorly structured N‐terminal and large natively unfolded C‐terminal domains. Up to now, about 30 different proteins have been reported to physically interact with Knr4. Here, we used an in vivo two‐hybrid system approach and an in vitro surface plasmon resonance (BIAcore) technique to compare the interaction level of different Knr4 deletion variants with given protein partners. We demonstrate the indispensability of the N‐terminal domain of Knr4 for the interactions. On the other hand, presence of the unstructured C‐terminal domain has a negative effect on the interaction strength. In protein interactions networks, the most highly connected proteins or “hubs” are significantly enriched in unstructured regions, and among them the transient hub proteins contain the largest and most highly flexible regions. The results presented here of our analysis of Knr4 protein suggest that these large disordered regions are not always involved in promoting the protein–protein interactions of hub proteins, but in some cases, might rather inhibit them. We propose that this type of regions could prevent unspecific protein interactions, or ensure the correct timing of occurrence of transient interactions, which may be of crucial importance for different signaling and regulation processes.  相似文献   

8.
The hERG (human ether‐a‐go‐go related gene) potassium channel is a voltage‐gated potassium channel containing an N‐terminal domain, a voltage‐sensor domain, a pore domain and a C‐terminal domain. The transmembrane segment 4 (S4) is important for sensing changes of membrane potentials through positively charge residues. A construct containing partial S2–S3 linker, S3, S4 and the S4–S5 linker of the hERG channel was purified into detergent micelles. This construct exhibits good quality NMR spectrum when it was purified in lyso‐myristoyl phosphatidylglycerol (LMPG) micelles. Structural study showed that S3 contains two short helices with a negatively charged surface. The S4 and S4–S5 linker adopt helical structures. The six positively charged residues in S4 localize at different sides, suggesting that they may have different functions in channel gating. Relaxation studies indicated that S3 is more flexible than S4. The boundaries of S3–S4 and S4–S4–S5 linker were identified. Our results provided structural information of the S3 and S4, which will be helpful to understand their roles in channel gating. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

9.
Pat proteins regulate the transition of mRNAs from a state that is translationally active to one that is repressed, committing targeted mRNAs to degradation. Pat proteins contain a conserved N‐terminal sequence, a proline‐rich region, a Mid domain and a C‐terminal domain (Pat‐C). We show that Pat‐C is essential for the interaction with mRNA decapping factors (i.e. DCP2, EDC4 and LSm1–7), whereas the P‐rich region and Mid domain have distinct functions in modulating these interactions. DCP2 and EDC4 binding is enhanced by the P‐rich region and does not require LSm1–7. LSm1–7 binding is assisted by the Mid domain and is reduced by the P‐rich region. Structural analysis revealed that Pat‐C folds into an α–α superhelix, exposing conserved and basic residues on one side of the domain. This conserved and basic surface is required for RNA, DCP2, EDC4 and LSm1–7 binding. The multiplicity of interactions mediated by Pat‐C suggests that certain of these interactions are mutually exclusive and, therefore, that Pat proteins switch decapping partners allowing transitions between sequential steps in the mRNA decapping pathway.  相似文献   

10.
A 34‐residue α/β peptide [IG(28–61)], derived from the C‐terminal part of the B3 domain of the immunoglobulin binding protein G from Streptoccocus, was studied using CD and NMR spectroscopy at various temperatures and by differential scanning calorimetry. It was found that the C‐terminal part (a 16‐residue‐long fragment) of this peptide, which corresponds to the sequence of the β‐hairpin in the native structure, forms structure similar to the β‐hairpin only at T = 313 K, and the structure is stabilized by non‐native long‐range hydrophobic interactions (Val47–Val59). On the other hand, the N‐terminal part of IG(28–61), which corresponds to the middle α‐helix in the native structure, is unstructured at low temperature (283 K) and forms an α‐helix‐like structure at 305 K, and only one helical turn is observed at 313 K. At all temperatures at which NMR experiments were performed (283, 305, and 313 K), we do not observe any long‐range connectivities which would have supported packing between the C‐terminal (β‐hairpin) and the N‐terminal (α‐helix) parts of the sequence. Such interactions are absent, in contrast to the folding pathway of the B domain of protein G, proposed recently by Kmiecik and Kolinski (Biophys J 2008, 94, 726–736), based on Monte‐Carlo dynamics studies. Alternative folding mechanisms are proposed and discussed. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 469–480, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
Protein folding problem remains a formidable challenge as main chain, side chain and solvent interactions remain entangled and have been difficult to resolve. Alanine‐based short peptides are promising models to dissect protein folding initiation and propagation structurally as well as energetically. The effect of N‐terminal diproline and charged side chains is assessed on the stabilization of helical conformation in alanine‐based short peptides using circular dichroism (CD) with water and methanol as solvent. A1 (Ac–Pro–Pro–Ala–Lys–Ala–Lys–Ala–Lys–Ala–NH2) is designed to assess the effect of N‐terminal homochiral diproline and lysine side chains to induce helical conformation. A2 (Ac–Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) and A3 (Ac–d Pro–Pro–Glu–Glu–Ala–Ala–Lys–Lys–Ala–NH2) with N‐terminal homochiral and heterochiral diproline, respectively, are designed to assess the effect of Glu...Lys (i , i  + 4) salt bridge interactions on the stabilization of helical conformation. The CD spectra of A1 , A2 and A3 in water manifest different amplitudes of the observed polyproline II (PPII) signals, which indicate different conformational distributions of the polypeptide structure. The strong effect of solvent substitution from water to methanol is observed for the peptides, and CD spectra in methanol evidence A2 and A3 as helical folds. Temperature‐dependent CD spectra of A1 and A2 in water depict an isodichroic point reflecting coexistence of two conformations, PPII and β‐strand conformation, which is consistent with the previous studies. The results illuminate the effect of N‐terminal diproline and charged side chains in dictating the preferences for extended‐β, semi‐extended PPII and helical conformation in alanine‐based short peptides. The results of the present study will enhance our understanding on stabilization of helical conformation in short peptides and hence aid in the design of novel peptides with helical structures. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
13.
Protein import into peroxisomes depends on a complex and dynamic network of protein–protein interactions. Pex14 is a central component of the peroxisomal import machinery and binds the soluble receptors Pex5 and Pex19, which have important function in the assembly of peroxisome matrix and membrane, respectively. We show that the N‐terminal domain of Pex14, Pex14(N), adopts a three‐helical fold. Pex5 and Pex19 ligand helices bind competitively to the same surface in Pex14(N) albeit with opposite directionality. The molecular recognition involves conserved aromatic side chains in the Pex5 WxxxF/Y motif and a newly identified F/YFxxxF sequence in Pex19. The Pex14–Pex5 complex structure reveals molecular details for a critical interaction in docking Pex5 to the peroxisomal membrane. We show that mutations of Pex14 residues located in the Pex5/Pex19 binding region disrupt Pex5 and/or Pex19 binding in vitro. The corresponding full‐length Pex14 variants are impaired in peroxisomal membrane localisation in vivo, showing that the molecular interactions mediated by the N‐terminal domain modulate peroxisomal targeting of Pex14.  相似文献   

14.
15.
EccA1 is an important component of the type VII secretion system (T7SS) that is responsible for transport of virulence factors in pathogenic mycobacteria. EccA1 has an N‐terminal domain of unknown function and a C‐terminal AAA+ (ATPases associated with various cellular activities) domain. Here we report the crystal structure of the N‐terminal domain of EccA1 from Mycobacterium tuberculosis, which shows an arrangement of six tetratricopeptide repeats that may mediate interactions of EccA1 with secreted substrates. Furthermore, the size and shape of the N‐terminal domain suggest its orientation in the context of a hexamer model of full‐length EccA1. Proteins 2014; 82:159–163. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
Mutations in p97, a major cytosolic AAA (ATPases associated with a variety of cellular activities) chaperone, cause inclusion body myopathy associated with Paget's disease of the bone and frontotemporal dementia (IBMPFD). IBMPFD mutants have single amino‐acid substitutions at the interface between the N‐terminal domain (N‐domain) and the adjacent AAA domain (D1), resulting in a reduced affinity for ADP. The structures of p97 N–D1 fragments bearing IBMPFD mutations adopt an atypical N‐domain conformation in the presence of Mg2+·ATPγS, which is reversible by ADP, showing for the first time the nucleotide‐dependent conformational change of the N‐domain. The transition from the ADP‐ to the ATPγS‐bound state is accompanied by a loop‐to‐helix conversion in the N–D1 linker and by an apparent re‐ordering in the N‐terminal region of p97. X‐ray scattering experiments suggest that wild‐type p97 subunits undergo a similar nucleotide‐dependent N‐domain conformational change. We propose that IBMPFD mutations alter the timing of the transition between nucleotide states by destabilizing the ADP‐bound form and consequently interfere with the interactions between the N‐domains and their substrates.  相似文献   

17.
In Saccharomyces cerevisiae, mechanisms modulating the mating steps following cell cycle arrest are not well characterized. However, the N‐terminal domain of Ste2p, a G protein‐coupled pheromone receptor, was recently proposed to mediate events at this level. Toward deciphering receptor mechanisms associated with this mating functionality, scanning mutagenesis of targeted regions of the N‐terminal domain has been completed. Characterization of ste2 yeast overexpressing Ste2p variants indicated that residues Ile 24 and Ile 29 as well as Pro 15 are critical in mediating mating efficiency. This activity was shown to be independent of Ste2p mediated G1 arrest signaling. Further analysis of Ile 24 and Ile 29 highlight the residues' solvent accessibility, as well as the importance of the hydrophobic nature of the sites, and in the case of Ile 24 the specific size and shape of the side chain. Mutation of these Ile's led to arrest of mating after cell contact, but before completion of cell wall degradation. We speculate that these extracellular residues mediate novel receptor interactions with ligand or proteins, leading to stimulation of alternate signaling effector pathways. J. Cell. Biochem. 107: 630–638, 2009. © 2009 Crown in the right of Canada.  相似文献   

18.
The dopamine transporter (DAT) is a transmembrane protein belonging to the family of neurotransmitter:sodium symporters (NSS). Members of the NSS are responsible for the clearance of neurotransmitters from the synaptic cleft, and for their translocation back into the presynaptic nerve terminal. The DAT contains long intracellular N‐ and C‐terminal domains that are strongly implicated in the transporter function. The N‐terminus (N‐term), in particular, regulates the reverse transport (efflux) of the substrate through DAT. Currently, the molecular mechanisms of the efflux remain elusive in large part due to lack of structural information on the N‐terminal segment. Here we report a computational model of the N‐term of the human DAT (hDAT), obtained through an ab initio structure prediction, in combination with extensive atomistic molecular dynamics (MD) simulations in the context of a lipid membrane. Our analysis reveals that whereas the N‐term is a highly dynamic domain, it contains secondary structure elements that remain stable in the long MD trajectories of interactions with the bilayer (totaling >2.2 μs). Combining MD simulations with continuum mean‐field modeling we found that the N‐term engages with lipid membranes through electrostatic interactions with the charged lipids PIP2 (phosphatidylinositol 4,5‐Biphosphate) or PS (phosphatidylserine) that are present in these bilayers. We identify specific motifs along the N‐term implicated in such interactions and show that differential modes of N‐term/membrane association result in differential positioning of the structured segments on the membrane surface. These results will inform future structure‐based studies that will elucidate the mechanistic role of the N‐term in DAT function. Proteins 2015; 83:952–969. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
HIV‐1 Vpu is an 81‐residue protein with a single N‐terminal transmembrane (TM) helical segment that is involved in the release of new virions from host cell membranes. Vpu and its TM segment form ion channels in phospholipid bilayers, presumably by oligomerization of TM helices into a pore‐like structure. We describe measurements that provide new constraints on the oligomerization state and supramolecular structure of residues 1–40 of Vpu (Vpu1–40), including analytical ultracentrifugation measurements to investigate oligomerization in detergent micelles, photo‐induced crosslinking experiments to investigate oligomerization in bilayers, and solid‐state nuclear magnetic resonance measurements to obtain constraints on intermolecular contacts between and orientations of TM helices in bilayers. From these data, we develop molecular models for Vpu TM oligomers. The data indicate that a variety of oligomers coexist in phospholipid bilayers, so that a unique supramolecular structure can not be defined. Nonetheless, since oligomers of various sizes have similar intermolecular contacts and orientations, molecular models developed from our data are most likely representative of Vpu TM oligomers that exist in host cell membranes.  相似文献   

20.
Increased efforts have been undertaken to better understand the formation of signaling complexes at cellular membranes. Since the preparation of proteins containing a transmembrane domain or a prenylation motif is generally challenging an alternative membrane anchoring unit that is easy to attach, water‐soluble and binds to different membrane mimetics would find broad application. The 33‐residue long FATC domain of yeast TOR1 (y1fatc) fulfills these criteria and binds to neutral and negatively charged micelles, bicelles, and liposomes. As a case study, we fused it to the FKBP506‐binding region of the protein FKBP38 (FKBP38‐BD) and used 1H–15N NMR spectroscopy to characterize localization of the chimeric protein to micelles, bicelles, and liposomes. Based on these and published data for y1fatc, its use as a C‐terminally attachable membrane anchor for other proteins is compatible with a wide range of buffer conditions (pH circa 6–8.5, NaCl 0 to >150 mM, presence of reducing agents, different salts such as MgCl2 and CaCl2). The high water‐solubility of y1fatc enables its use for titration experiments against a membrane‐localized interaction partner of the fused target protein. Results from studies with peptides corresponding to the C‐terminal 17–11 residues of the 33‐residue long domain by 1D 1H NMR and CD spectroscopy indicate that they still can interact with membrane mimetics. Thus, they may be used as membrane anchors if the full y1fatc sequence is disturbing or if a chemically synthesized y1fatc peptide shall be attached by native chemical ligation, for example, unlabeled peptide to 15N‐labeled target protein for NMR studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号