首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peroxiredoxins (Prxs) are thiol-dependent peroxidases that catalyze the detoxification of various peroxide substrates such as H2O2, peroxinitrite, and hydroperoxides, and control some signal transduction in eukaryotic cells. Prxs are found in all cellular organisms and represent an enormous superfamily. Recent genome sequencing projects and biochemical studies have identified a novel subfamily, the archaeal Prxs. Their primary sequences are similar to those of the 1-Cys Prxs, which use only one cysteine residue in catalysis, while their catalytic properties resemble those of the typical 2-Cys Prxs, which utilize two cysteine residues from adjacent monomers within a dimer in catalysis. We present here the X-ray crystal structure of an archaeal Prx from the aerobic hyperthermophilic crenarchaeon, Aeropyrum pernix K1, determined at 2.3 A resolution (Rwork of 17.8% and Rfree of 23.0%). The overall subunit arrangement of the A.pernix archaeal Prx is a toroid-shaped pentamer of homodimers, or an (alpha2)5 decamer, as observed in the previously reported crystal structures of decameric Prxs. The basic folding topology and the peroxidatic active site structure are essentially the same as those of the 1-Cys Prx, hORF6, except that the C-terminal extension of the A.pernix archaeal Prx forms a unique helix with its flanking loops. The thiol group of the peroxidatic cysteine C50 is overoxidized to sulfonic acid. Notably, the resolving cysteine C213 forms the intra-monomer disulfide bond with the third cysteine, C207, which should be a unique structural characteristic in the many archaeal Prxs that retain two conserved cysteine residues in the C-terminal region. The conformational flexibility near the intra-monomer disulfide linkage might be necessary for the dramatic structural rearrangements that occur in the catalytic cycle.  相似文献   

2.
3.
The inhibition of axon regeneration upon mechanical injury is dependent on interactions between Nogo receptors (NgRs) and their myelin-derived ligands. NgRs are composed of a leucine-rich repeat (LRR) region, thought to be structurally similar among the different isoforms of the receptor, and a divergent "stalk" region. It has been shown by others that the LRR and stalk regions of NgR1 and NgR2 have distinct roles in conferring binding affinity to the myelin associated glycoprotein (MAG) in vivo. Here, we show that purified recombinant full length NgR1 and NgR2 maintain significantly higher binding affinity for purified MAG as compared to the isolated LRR region of either NgR1 or NgR2. We also present the crystal structure of the LRR and part of the stalk regions of NgR2 and compare it to the previously reported NgR1 structure with respect to the distinct signaling properties of the two receptor isoforms.  相似文献   

4.
5.
Inaka K  Kanaya E  Kikuchi M  Miki K 《Proteins》2001,43(4):413-419
The three-dimensional structure of a mutant human lysozyme, W64CC65A, in which a non-native disulfide bond Cys64--Cys81 is substituted for the Cys65--Cys81 of the wild type protein by replacing Trp64 and Cys65 with Cys and Ala, respectively, was determined by X-ray crystallography and refined to an R-value of 0.181, using 33,187 reflections at 1.87-A resolution. The refined model of the W64CC65A protein consisted of four molecules, which were related by two noncrystallographic twofold axes and a translation vector. Although no specific structural differences could be observed among these four molecules, the overall B-factors of each molecule were quite different. The overall structure of W64CC65A, especially in the alpha-helical domain, was found to be quite similar to that of the wild type protein. Moreover, the side-chain conformation of the newly formed Cys64--Cys81 bond was quite similar to that of the Cys65--Cys81 bond of the wild-type protein. However, in the beta-sheet domain, the main-chain atoms of the loop region from positions 66-75 could not be determined, and significant structural changes due to the formation of the non-native disulfide bond could be observed. From these results, it is clear that the loop region of the mutant protein does not fold with the specific folding as observed in the wild-type protein.  相似文献   

6.
In the final step of tRNA splicing, the 2'-phosphotransferase catalyzes the transfer of the extra 2'-phosphate from the precursor-ligated tRNA to NAD. We have determined the crystal structure of the 2'-phosphotransferase protein from Aeropyrum pernix K1 at 2.8 Angstroms resolution. The structure of the 2'-phosphotransferase contains two globular domains (N and C-domains), which form a cleft in the center. The N-domain has the winged helix motif, a subfamily of the helix-turn-helix family, which is shared by many DNA-binding proteins. The C-domain of the 2'-phosphotransferase superimposes well on the NAD-binding fold of bacterial (diphtheria) toxins, which catalyze the transfer of ADP ribose from NAD to target proteins, indicating that the mode of NAD binding by the 2'-phosphotransferase could be similar to that of the bacterial toxins. The conserved basic residues are assembled at the periphery of the cleft and could participate in the enzyme contact with the sugar-phosphate backbones of tRNA. The modes by which the two functional domains recognize the two different substrates are clarified by the present crystal structure of the 2'-phosphotransferase.  相似文献   

7.
Translation initiation factor eIF5B promotes GTP-dependent ribosomal subunit joining in the final step of the translation initiation pathway. The protein resembles a chalice with the α-helix H12 forming the stem connecting the GTP-binding domain cup to the domain IV base. Helix H12 has been proposed to function as a rigid lever arm governing domain IV movements in response to nucleotide binding and as a molecular ruler fixing the distance between domain IV and the G domain of the factor. To investigate its function, helix H12 was lengthened or shortened by one or two turns. In addition, six consecutive residues in the helix were substituted by Gly to alter the helical rigidity. Whereas the mutations had minimal impacts on the factor's binding to the ribosome and its GTP binding and hydrolysis activities, shortening the helix by six residues impaired the rate of subunit joining in vitro and both this mutation and the Gly substitution mutation lowered the yield of Met-tRNA(i)(Met) bound to 80S complexes formed in the presence of nonhydrolyzable GTP. Thus, these two mutations, which impair yeast cell growth and enhance ribosome leaky scanning in vivo, impair the rate of formation and stability of the 80S product of subunit joining. These data support the notion that helix H12 functions as a ruler connecting the GTPase center of the ribosome to the P site where Met-tRNA(i)(Met) is bound and that helix H12 rigidity is required to stabilize Met-tRNA(i)(Met) binding.  相似文献   

8.
Deltarhodopsin, a new member of the microbial rhodopsin family, functions as a light‐driven proton pump. Here, we report the three‐dimensional structure of deltarhodopsin (dR3) from Haloterrigena thermotolerans at 2.7 Å resolution. A crystal belonging to space group R32 (a, b = 111.71 Å, c = 198.25 Å) was obtained by the membrane fusion method. In this crystal, dR3 forms a trimeric structure as observed for bacteriorhodopsin (bR). Structural comparison of dR with bR showed that the inner part (the proton release and uptake pathways) is highly conserved. Meanwhile, residues in the protein–protein contact region are largely altered so that the diameter of the trimeric structure at the cytoplasmic side is noticeably larger in dR3. Unlike bR, dR3 possesses a helical segment at the C‐terminal region that fills the space between the AB and EF loops. A significant difference is also seen in the FG loop, which is one residue longer in dR3. Another peculiar property of dR3 is a highly crowded distribution of positively charged residues on the cytoplasmic surface, which may be relevant to a specific interaction with some cytoplasmic component.Proteins 2013; © 2013 Wiley Periodicals, Inc.  相似文献   

9.
Kalle Gehring 《Proteins》2018,86(2):263-267
Legionella pneumophila is a pathogen causing severe pneumonia in humans called Legionnaires’ disease. Lem22 is a previously uncharacterized effector protein conserved in multiple Legionella strains. Here, we report the crystal structure of Lem22 from the Philadelphia strain, also known as lpg2328, at 1.40 Å resolution. The structure shows an up‐and‐down three‐helical bundle with a significant structural similarity to a number of protein‐binding domains involved in apoptosis and membrane trafficking. Sequence conservation identifies a putative functional site on the interface of helices 2 and 3. The structure is an important step toward a functional characterization of Lem22.  相似文献   

10.
Makino M  Sawai H  Shiro Y  Sugimoto H 《Proteins》2011,79(4):1143-1153
Cytoglobin (Cgb) is a vertebrate heme‐containing globin‐protein expressed in a broad range of mammalian tissues. Unlike myoglobin, Cgb displays a hexa‐coordinated (bis‐hystidyl) heme iron atom, having the heme distal His81(E7) residue as the endogenous sixth ligand. In the present study, we crystallized human Cgb in the presence of a reductant Na2S2O4 under a carbon monoxide (CO) atmosphere, and determined the crystal structure at 2.6 Å resolution. The CO ligand occupies the sixth axial position of the heme ferrous iron. Eventually, the imidazole group of His81(E7) is expelled from the sixth position and swings out of the distal heme pocket. The flipping motion of the His81 imidazole group accompanies structural readjustments of some residues (Gln62, Phe63, Gln72, and Ser75) in both the CD‐corner and D‐helix regions of Cgb. On the other hand, no significant structural changes were observed in other Cgb regions, for example, on the proximal side. These structural alterations that occurred as a result of exogenous ligand (CO) binding are clearly different from those observed in other vertebrate hexa‐coordinated globins (mouse neuroglobin, Drosophila melanogaster hemoglobin) and penta‐coordinated sperm whale myoglobin. The present study provides the structural basis for further discussion of the unique ligand‐binding properties of Cgb. Proteins 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

11.
The Antigen I/II (AgI/II) family of proteins are cell wall anchored adhesins expressed on the surface of oral streptococci. The AgI/II proteins interact with molecules on other bacteria, on the surface of host cells, and with salivary proteins. Streptococcus gordonii is a commensal bacterium, and one of the primary colonizers that initiate the formation of the oral biofilm. S. gordonii expresses two AgI/II proteins, SspA and SspB that are closely related. One of the domains of SspB, called the variable (V‐) domain, is significantly different from corresponding domains in SspA and all other AgI/II proteins. As a first step to elucidate the differences among these proteins, we have determined the crystal structure of the V‐domain from S. gordonii SspB at 2.3 Å resolution. The domain comprises a β‐supersandwich with a putative binding cleft stabilized by a metal ion. The overall structure of the SspB V‐domain is similar to the previously reported V‐domain of the Streptococcus mutans protein SpaP, despite their low sequence similarity. In spite of the conserved architecture of the binding cleft, the cavity is significantly smaller in SspB, which may provide clues about the difference in ligand specificity. We also verified that the metal in the binding cleft is a calcium ion, in concurrence with previous biological data. It was previously suggested that AgI/II V‐domains are carbohydrate binding. However, we tested that hypothesis by screening the SspB V‐domain for binding to over 400 glycoconjucates and found that the domain does not interact with any of the carbohydrates.  相似文献   

12.
13.
14.
The obligate intracellular, gram‐negative bacterium Rickettsia is the causative agent of spotted fevers and typhus in humans. Surface cell antigen (sca) proteins surround these bacteria. We recently reported the co‐localization of one of these proteins, sca4, with vinculin in cells at sites of focal adhesions and demonstrated that two vinculin binding sites directed the sca4/vinculin interaction. Here we report the 2.2 Å crystal structure of the conserved N‐terminal 38 kDa domain of sca4 from Rickettsia rickettsii. The structure reveals two subdomains. The first is an all‐helical domain that is folded in a fashion similar to the dimeric assembly chaperone for rubisco, namely RbcX. The following and highly conserved β‐strand domain lacks significant structural similarity with other known structures and to the best of our knowledge represents a new protein fold.  相似文献   

15.
An open and a closed conformation of a surface loop in PhaZ7 extracellular poly(3‐hydroxybutyrate) depolymerase were identified in two high‐resolution crystal structures of a PhaZ7 Y105E mutant. Molecular dynamics (MD) simulations revealed high root mean square fluctuations (RMSF) of the 281–295 loop, in particular at residue Asp289 (RMSF 7.62 Å). Covalent docking between a 3‐hydroxybutyric acid trimer and the catalytic residue Ser136 showed that the binding energy of the substrate is significantly more favorable in the open loop conformation compared to that in the closed loop conformation. MD simulations with the substrate covalently bound depicted 1 Å RMSF higher values for the residues 281–295 in comparison to the apo (substrate‐free) form. In addition, the presence of the substrate in the active site enhanced the ability of the loop to adopt a closed form. Taken together, the analysis suggests that the flexible loop 281–295 of PhaZ7 depolymerase can act as a lid domain to control substrate access to the active site of the enzyme. Proteins 2017; 85:1351–1361. © 2017 Wiley Periodicals, Inc.  相似文献   

16.
17.
Receptor activity-modifying protein (RAMP) 1 forms a heterodimer with calcitonin receptor-like receptor (CRLR) and regulates its transport to the cell surface. The CRLR.RAMP1 heterodimer functions as a specific receptor for calcitonin gene-related peptide (CGRP). Here, we report the crystal structure of the human RAMP1 extracellular domain. The RAMP1 structure is a three-helix bundle that is stabilized by three disulfide bonds. The RAMP1 residues important for cell-surface expression of the CRLR.RAMP1 heterodimer are clustered to form a hydrophobic patch on the molecular surface. The hydrophobic patch is located near the tryptophan residue essential for binding of the CGRP antagonist, BIBN4096BS. These results suggest that the hydrophobic patch participates in the interaction with CRLR and the formation of the ligand-binding pocket when it forms the CRLR.RAMP1 heterodimer.  相似文献   

18.
Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ~150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme‐Nitric Oxide Oxygen (H‐NOX), Per‐ARNT‐Sim (PAS), coiled‐coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H‐NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction.  相似文献   

19.
FtsY and Ffh are structurally similar prokaryotic Signal Recognition Particle GTPases that play an essential role in the Signal Recognition Particle (SRP)-mediated cotranslational targeting of proteins to the membrane. The two GTPases assemble in a GTP-dependent manner to form a heterodimeric SRP targeting complex. We report here the 2.1 A X-ray structure of FtsY from T. aquaticus bound to GDP. The structure of the monomeric protein reveals, unexpectedly, canonical binding interactions for GDP. A comparison of the structures of the monomeric and complexed FtsY NG GTPase domain suggests that it undergoes a conformational change similar to that of Ffh NG during the assembly of the symmetric heterodimeric complex. However, in contrast to Ffh, in which the C-terminal helix shifts independently of the other subdomains, the C-terminal helix and N domain of T. aquaticus FtsY together behave as a rigid body during assembly, suggesting distinct mechanisms by which the interactions of the NG domain "module" are regulated in the context of the two SRP GTPases.  相似文献   

20.
The ecto‐nucleoside triphosphate diphosphohydrolases (NTPDases) are a family of enzymes found on the cell surface and in the lumen of certain organelles, that are major regulators of purinergic signaling. Their intracellular roles, however, have not been clearly defined. NTPDase4 (UDPase, ENTPD4) is a Golgi protein potentially involved in nucleotide recycling as part of protein glycosylation, and is also found in lysosomes, where its purpose is unknown. To further our understanding of NTPDase4 function, we determined its crystal structure. The enzyme adopts a wide open, inactive conformation. Differences in the nucleotide‐binding site relative to its homologs could account for its substrate selectivity. The putative membrane‐interacting loop of cell‐surface NTPDases is drastically altered in NTPDase4, potentially affecting its interdomain dynamics at the Golgi membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号