首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
《Journal of molecular biology》2019,431(6):1298-1307
The conformations accessible to proteins are determined by the inter-residue interactions between amino acid residues. During evolution, structural constraints that are required for protein function providing biologically relevant information can exist. Here, we studied the proportion of sites evolving under structural constraints in two very different types of ensembles, those coming from ordered and disordered proteins. Using a structurally constrained model of protein evolution, we found that both types of ensembles show comparable, near 40%, number of positions evolving under structural constraints. Among these sites, ~ 68% are in disordered regions and ~ 57% of them show long-range inter-residue contacts. Also, we found that disordered ensembles are redundant in reference to their structurally constrained evolutionary information and could be described on average with ~ 11 conformers. Despite the different complexity of the studied ensembles and proteins, the similar constraints reveal a comparable level of selective pressure to maintain their biological functions. These results highlight the importance of the evolutionary information to recover meaningful biological information to further characterize conformational ensembles.  相似文献   

2.
Site‐directed spin labeling (SDSL) was used to investigate local structure and conformational exchange in two bacterial outer‐membrane TonB‐dependent transporters, BtuB and FecA. Protecting osmolytes, such as polyethylene glycols (PEGs) are known to modulate a substrate‐dependent conformational equilibrium in the energy coupling motif (Ton box) of BtuB. Here, we demonstrate that a segment that is N‐terminal to the Ton box in BtuB, is in conformational exchange between ordered and disordered states with or without substrate. Protecting osmolytes shift this equilibrium to favor the more ordered, folded state. However, a segment of BtuB that is C‐terminal to the Ton box that is not solvent exposed is insensitive to PEGs. Protecting osmolytes also modulate a conformational equilibrium in the Ton box of FecA, with larger molecular weight PEGs producing the largest shifts in the conformational free energy. These data indicate that solvent‐exposed regions of these transporters undergo conformational exchange and that regions of these transporters that are involved in protein–protein interactions sample multiple conformational substates. The sensitivity to solute provides an explanation for differences seen between two high‐resolution structures of BtuB, which each likely represent one conformation from a subset of states that are normally sampled by the protein. This work also illustrates how SDSL and osmolytes may be used to characterize and quantitate conformational equilibria in membrane proteins.  相似文献   

3.
The dominant view in protein science is that a three-dimensional (3-D) structure is a prerequisite for protein function. In contrast to this dominant view, there are many counterexample proteins that fail to fold into a 3-D structure, or that have local regions that fail to fold, and yet carry out function. Protein without fixed 3-D structure is called intrinsically disordered. Motivated by anecdotal accounts of higher rates of sequence evolution in disordered protein than in ordered protein we are exploring the molecular evolution of disordered proteins. To test whether disordered protein evolves more rapidly than ordered protein, pairwise genetic distances were compared between the ordered and the disordered regions of 26 protein families having at least one member with a structurally characterized region of disorder of 30 or more consecutive residues. For five families, there were no significant differences in pairwise genetic distances between ordered and disordered sequences. The disordered region evolved significantly more rapidly than the ordered region for 19 of the 26 families. The functions of these disordered regions are diverse, including binding sites for protein, DNA, or RNA and also including flexible linkers. The functions of some of these regions are unknown. The disordered regions evolved significantly more slowly than the ordered regions for the two remaining families. The functions of these more slowly evolving disordered regions include sites for DNA binding. More work is needed to understand the underlying causes of the variability in the evolutionary rates of intrinsically ordered and disordered protein.  相似文献   

4.
Proteins can exist in at least three forms: the ordered form (solid-like), the partially folded form (collapsed, molten globule-like or liquid-like) and the extended form (extended, random coil-like or gas-like). The protein trinity hypothesis has two components: (i) a given native protein can be in any one of the three forms, depending on the sequence and the environment; and (ii) function can arise from any one of the three forms or from transitions between them. In this study, bioinformatics and data mining were used to investigate intrinsic disorder in proteins and develop neural network-based predictors of natural disordered regions (PONDR) that can discriminate between ordered and disordered residues with up to 84% accuracy. Predictions of intrinsic disorder indicate that the three kingdoms follow the disorder ranking eubacteria < archaebacteria < eukaryotes, with approximately half of eukaryotic proteins predicted to contain substantial regions of intrinsic disorder. Many of the known disordered regions are involved in signalling, regulation or control. Involvement of highly flexible or disordered regions in signalling is logical: a flexible sensor more readily undergoes conformational change in response to environmental perturbations than does a rigid one. Thus, the increased disorder in the eukaryotes is likely the direct result of an increased need for signalling and regulation in nucleated organisms. PONDR can also be used to detect molecular recognition elements that are disordered in the unbound state and become structured when bound to a biologically meaningful partner. Application of disorder predictions to cell-signalling, cancer-associated and control protein databases supports the widespread occurrence of protein disorder in these processes.  相似文献   

5.
Conformational changes in proteins often involve secondary structure transitions. Such transitions can be divided into two types: disorder‐to‐order changes, in which a disordered segment acquires an ordered secondary structure (e.g., disorder to α‐helix, disorder to β‐strand), and order‐to‐order changes, where a segment switches from one ordered secondary structure to another (e.g., α‐helix to β‐strand, α‐helix to turn). In this study, we explore the distribution of these transitions in the proteome. Using a comprehensive, yet highly conservative method, we compared solved three‐dimensional structures of identical protein sequences, looking for differences in the secondary structures with which they were assigned. Protein chains in which such secondary structure transitions were detected, were classified into two sets according to the type of transition that is involved (disorder‐to‐order or order‐to‐order), allowing us to characterize each set by examining enrichment of gene ontology terms. The results reveal that the disorder‐to‐order set is significantly enriched with nucleotide binding proteins, whereas the order‐to‐order set is more diverse. Remarkably, further examination reveals that >22% of the purine nucleotide binding proteins include segments which undergo disorder‐to‐order transitions, suggesting that such transitions play an important role in this process. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
7.
Proteins evolve through point mutations as well as by insertions and deletions (indels). During the last decade it has become apparent that protein regions that do not fold into three-dimensional structures, i.e. intrinsically disordered regions, are quite common. Here, we have studied the relationship between protein disorder and indels using HMM–HMM pairwise alignments in two sets of orthologous eukaryotic protein pairs. First, we show that disordered residues are much more frequent among indel residues than among aligned residues and, also are more prevalent among indels than in coils. Second, we observed that disordered residues are particularly common in longer indels. Disordered indels of short-to-medium size are prevalent in the non-terminal regions of proteins while the longest indels, ordered and disordered alike, occur toward the termini of the proteins where new structural units are comparatively well tolerated. Finally, while disordered regions often evolve faster than ordered regions and disorder is common in indels, there are some previously recognized protein families where the disordered region is more conserved than the ordered region. We find that these rare proteins are often involved in information processes, such as RNA processing and translation. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   

8.
9.
GM1-induced structural transitions of native and unfolded conformers of bovine serum albumin (BSA) have been studied where in the unfolded conformers, the secondary structures were disrupted either chemically by 8 M urea or thermally by heating at 65 degrees C. With decreasing protein:ganglioside ratio at pH 7.0, the native BSA partially unfolds and expands, while the urea-denatured BSA forms an alpha-helical structural pattern with shrinking in the conformational space. However, a continuous loss of alpha-helicity with minor increase in size was observed for the thermally altered protein in the presence of the GM1 micelle. The changes in the secondary structural content were followed by far-UV circular dichroism (CD) analysis. The dynamic light scattering (DLS) experiments were used to study the variation of the size of the protein-GM1 complexes with increasing concentration of the GM1. Fluorescence experiments show that tryptophan residues of BSA experience a more hydrophobic environment in the presence of the GM1 micelle with a decreasing protein:ganglioside ratio at pH 7.0. The present study shows that GM1 has a strong effect on the conformation of BSA depending on the conformational states of the protein that would relate to a physiological function of GM1 such as acting as the receptor of proteins in the cell membrane.  相似文献   

10.

Background

Intrinsically disordered proteins (IDPs) or proteins with disordered regions (IDRs) do not have a well-defined tertiary structure, but perform a multitude of functions, often relying on their native disorder to achieve the binding flexibility through changing to alternative conformations. Intrinsic disorder is frequently found in all three kingdoms of life, and may occur in short stretches or span whole proteins. To date most studies contrasting the differences between ordered and disordered proteins focused on simple summary statistics. Here, we propose an evolutionary approach to study IDPs, and contrast patterns specific to ordered protein regions and the corresponding IDRs.

Results

Two empirical Markov models of amino acid substitutions were estimated, based on a large set of multiple sequence alignments with experimentally verified annotations of disordered regions from the DisProt database of IDPs. We applied new methods to detect differences in Markovian evolution and evolutionary rates between IDRs and the corresponding ordered protein regions. Further, we investigated the distribution of IDPs among functional categories, biochemical pathways and their preponderance to contain tandem repeats.

Conclusions

We find significant differences in the evolution between ordered and disordered regions of proteins. Most importantly we find that disorder promoting amino acids are more conserved in IDRs, indicating that in some cases not only amino acid composition but the specific sequence is important for function. This conjecture is also reinforced by the observation that for of our data set IDRs evolve more slowly than the ordered parts of the proteins, while we still support the common view that IDRs in general evolve more quickly. The improvement in model fit indicates a possible improvement for various types of analyses e.g. de novo disorder prediction using a phylogenetic Hidden Markov Model based on our matrices showed a performance similar to other disorder predictors.  相似文献   

11.
Protein misfolding is conformational transition dramatically facilitating the assembly of protein molecules into aggregates of various morphologies. Spontaneous formation of specific aggregates, mostly amyloid fibrils, was initially believed to be limited to proteins involved in the development of amyloidoses. However, recent studies show that, depending on conditions, the majority of proteins undergo structural transitions leading to the appearance of amyloidogenic intermediates followed by aggregate formation. Various techniques have been used to characterize the protein misfolding facilitating the aggregation process, but no direct evidence as to how such a conformational transition increases the intermolecular interactions has been obtained as of yet. We have applied atomic force microscopy (AFM) to follow the interaction between protein molecules as a function of pH. These studies were performed for three unrelated and structurally distinctive proteins, alpha-synuclein, amyloid beta-peptide (Abeta) and lysozyme. It was shown that the attractive force between homologous protein molecules is minimal at physiological pH and increases dramatically at acidic pH. Moreover, the dependence of the pulling forces is sharp, suggesting a pH-dependent conformational transition within the protein. Parallel circular dichroism (CD) measurements performed for alpha-synuclein and Abeta revealed that the decrease in pH is accompanied by a sharp conformational transition from a random coil at neutral pH to the more ordered, predominantly beta-sheet, structure at low pH. Importantly, the pH ranges for these conformational transitions coincide with those of pulling forces changes detected by AFM. In addition, protein self-assembly into filamentous aggregates studied by AFM imaging was shown to be facilitated at pH values corresponding to the maximum of pulling forces. Overall, these results indicate that proteins at acidic pH undergo structural transition into conformations responsible for the dramatic increase in interprotein interaction and promoting the formation of protein aggregates.  相似文献   

12.
Molecular recognition features (MoRFs) are intrinsically disordered protein regions that bind to partners via disorder‐to‐order transitions. In one‐to‐many binding, a single MoRF binds to two or more different partners individually. MoRF‐based one‐to‐many protein–protein interaction (PPI) examples were collected from the Protein Data Bank, yielding 23 MoRFs bound to 2–9 partners, with all pairs of same‐MoRF partners having less than 25% sequence identity. Of these, 8 MoRFs were bound to 2–9 partners having completely different folds, whereas 15 MoRFs were bound to 2–5 partners having the same folds but with low sequence identities. For both types of partner variation, backbone and side chain torsion angle rotations were used to bring about the conformational changes needed to enable close fits between a single MoRF and distinct partners. Alternative splicing events (ASEs) and posttranslational modifications (PTMs) were also found to contribute to distinct partner binding. Because ASEs and PTMs both commonly occur in disordered regions, and because both ASEs and PTMs are often tissue‐specific, these data suggest that MoRFs, ASEs, and PTMs may collaborate to alter PPI networks in different cell types. These data enlarge the set of carefully studied MoRFs that use inherent flexibility and that also use ASE‐based and/or PTM‐based surface modifications to enable the same disordered segment to selectively associate with two or more partners. The small number of residues involved in MoRFs and in their modifications by ASEs or PTMs may simplify the evolvability of signaling network diversity.  相似文献   

13.
A key concept in template‐based modeling (TBM) is the high correlation between sequence and structural divergence, with the practical consequence that homologous proteins that are similar at the sequence level will also be similar at the structural level. However, conformational diversity of the native state will reduce the correlation between structural and sequence divergence, because structural variation can appear without sequence diversity. In this work, we explore the impact that conformational diversity has on the relationship between structural and sequence divergence. We find that the extent of conformational diversity can be as high as the maximum structural divergence among families. Also, as expected, conformational diversity impairs the well‐established correlation between sequence and structural divergence, which is nosier than previously suggested. However, we found that this noise can be resolved using a priori information coming from the structure‐function relationship. We show that protein families with low conformational diversity show a well‐correlated relationship between sequence and structural divergence, which is severely reduced in proteins with larger conformational diversity. This lack of correlation could impair TBM results in highly dynamical proteins. Finally, we also find that the presence of order/disorder can provide useful beforehand information for better TBM performance.  相似文献   

14.
Biologically active proteins without stable ordered structure (i.e., intrinsically disordered proteins) are attracting increased attention. Functional repertoires of ordered and disordered proteins are very different, and the ability to differentiate whether a given function is associated with intrinsic disorder or with a well-folded protein is crucial for modern protein science. However, there is a large gap between the number of proteins experimentally confirmed to be disordered and their actual number in nature. As a result, studies of functional properties of confirmed disordered proteins, while helpful in revealing the functional diversity of protein disorder, provide only a limited view. To overcome this problem, a bioinformatics approach for comprehensive study of functional roles of protein disorder was proposed in the first paper of this series (Xie, H.; Vucetic, S.; Iakoucheva, L. M.; Oldfield, C. J.; Dunker, A. K.; Obradovic, Z.; Uversky, V. N. Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J. Proteome Res. 2007, 5, 1882-1898). Applying this novel approach to Swiss-Prot sequences and functional keywords, we found over 238 and 302 keywords to be strongly positively or negatively correlated, respectively, with long intrinsically disordered regions. This paper describes approximately 90 Swiss-Prot keywords attributed to the cellular components, domains, technical terms, developmental processes, and coding sequence diversities possessing strong positive and negative correlation with long disordered regions.  相似文献   

15.
The evolution of disordered proteins or regions of proteins differs from that of ordered proteins because of the differences in their sequence composition, intramolecular contacts, and function. Recent assessments of disordered protein evolution at the sequence, structural, and functional levels support this hypothesis. Disordered proteins have a different pattern of accepted point mutations, exhibit higher rates of insertions and deletions, and generally, but not always, evolve more rapidly than ordered proteins. Even with these high rates of sequence evolution, a few examples have shown that disordered proteins maintain their flexibility under physiological conditions, and it is hypothesized that they maintain specific structural ensembles.  相似文献   

16.
Water mobility, denaturation and the glass transition in proteins   总被引:1,自引:0,他引:1  
A quantitative mechanism is presented that links protein denaturation and the protein-water glass transition through an energy criterion for the onset of mobility of strong protein-water bonds. Differences in the zero point vibrational energy in the ordered and disordered bonded states allow direct prediction of the two transition temperatures. While the onset of water mobility induces the same change in heat capacity for both transitions, the order-disorder transition of denaturation also predicts the observed excess enthalpy gain. The kinetics of the water and protein components through the glass transition are predicted and compared with dielectric spectroscopy observations. The energetic approach provides a consistent mechanism for processes such as refolding and aggregation of proteins involved in protein maintenance and adaptability, as the conformational constraints of strong water-amide bonds are lost with increased molecular mobility. Moreover, we suggest that the ordered state of peptide-water bonds is induced at the point of protein synthesis and could play a key role in the function of proteins through the enhancement of electronic activity by ferroelectric domains in the protein hydration shell, which is lost upon denaturation.  相似文献   

17.
Determining the energetics of the unfolded state of a protein is essential for understanding the folding mechanics of ordered proteins and the structure–function relation of intrinsically disordered proteins. Here, we adopt a coil‐globule transition theory to develop a general scheme to extract interaction and free energy information from single‐molecule fluorescence resonance energy transfer spectroscopy. By combining protein stability data, we have determined the free energy difference between the native state and the maximally collapsed denatured state in a number of systems, providing insight on the specific/nonspecific interactions in protein folding. Both the transfer and binding models of the denaturant effects are demonstrated to account for the revealed linear dependence of inter‐residue interactions on the denaturant concentration, and are thus compatible under the coil‐globule transition theory to further determine the dimension and free energy of the conformational ensemble of the unfolded state. The scaling behaviors and the effective θ‐state are also discussed.  相似文献   

18.
Conformational malleability allows intrinsically disordered proteins (IDPs) to respond agilely to their environments, such as nonspecifically interacting with in vivo bystander macromolecules (or crowders). Previous studies have emphasized conformational compaction of IDPs due to steric repulsion by macromolecular crowders, but effects of soft attraction are largely unexplored. Here we studied the conformational ensembles of the IDP FlgM in both polymer and protein crowders by small-angle neutron scattering. As crowder concentrations increased, the mean radius of gyration of FlgM first decreased but then exhibited an uptick. Ensemble optimization modeling indicated that FlgM conformations under protein crowding segregated into two distinct populations, one compacted and one extended. Coarse-grained simulations showed that compacted conformers fit into an interstitial void and occasionally bind to a surrounding crowder, whereas extended conformers snake through interstitial crevices and bind multiple crowders simultaneously. Crowder-induced conformational segregation may facilitate various cellular functions of IDPs.  相似文献   

19.
Proteins and their complexes can be heterogeneously disordered. In ensemble modeling of such systems with restraints from several experimental techniques the following problems arise: (a) integration of diverse restraints obtained on different samples under different conditions; (b) estimation of a realistic ensemble width; (c) sufficient sampling of conformational space; (d) representation of the ensemble by an interpretable number of conformers; (e) recognition of weak order with site resolution. Here, I introduce several tools that address these problems, focusing on utilization of distance distribution information for estimating ensemble width. The RigiFlex approach integrates such information with high‐resolution structures of ordered domains and small‐angle scattering data. The EnsembleFit module provides moderately sized ensembles by fitting conformer populations and discarding conformers with low population. EnsembleFit balances the loss in fit quality upon combining restraint subsets from different techniques. Pair correlation analysis for residues and local compaction analysis help in feature detection. The RigiFlex pipeline is tested on data simulated from the structure 70 kDa protein‐RNA complex RsmE/RsmZ. It recovers this structure with ensemble width and difference from ground truth both being on the order of 4.2 Å. EnsembleFit reduces the ensemble of the proliferating‐cell‐nuclear‐antigen‐associated factor p15PAF from 4,939 to 75 conformers while maintaining good fit quality of restraints. Local compaction analysis for the PaaA2 antitoxin from E. coli O157 revealed correlations between compactness and enhanced residual dipolar couplings in the original NMR restraint set.  相似文献   

20.
Hisashi Ishida 《Proteins》2014,82(9):1985-1999
Proteasome is involved in the degradation of proteins. Proteasome activators bind to the proteasome core particle (CP) and facilitate opening a gate of the CP, where Tyr8 and Asp9 in the N‐termini tails of the CP form the ordered open gate. In a double mutant (Tyr8Gly/Asp9Gly), the N‐termini tails are disordered and the stabilized open‐gate conformation cannot be formed. To understand the gating mechanism of the CP for the translocation of the substrate, four different molecular dynamics simulations were carried out: ordered‐ and Tyr8Gly/Asp9Gly disordered‐gate models of the CP complexed with an ATP‐independent PA26 and ordered‐ and disordered‐gate models of the CP complexed with an ATP‐dependent PAN‐like activator. The free‐energies of the translocation of a polypeptide substrate moving through the gate were estimated. In the ordered‐gate models, the substrate in the activator was more stable than that in the CP. The conformational entropy of the N‐termini tails of the CP was larger when the substrate was in the activator than in the CP. In the disordered‐gate models, the substrate in the activator was more destabilized than in the ordered‐gate models. The mutated N‐termini tails became randomized and their increased conformational entropy could no longer increase further even when the substrate was in the activator, meaning the randomized N‐termini tails had lost the ability to stabilize the substrate in the activator. Thus, it was concluded that the dynamics of the N‐termini tails entropically play a key role in the translocation of the substrate. Proteins 2014; 82:1985–1999. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号