首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ORF 8a is a short 39 amino acid bitopic membrane protein encoded by severe acute respiratory syndrome causing corona virus (SARS‐CoV). It has been identified to increase permeability of the lipid membrane for cations. Permeability is suggested to occur due to the assembly of helical bundles. Computational models of a pentameric assembly of 8a peptides are generated using the first 22 amino acids, which include the transmembrane domain. Low energy structures reveal a hydrophilic pore mantled by residues Thr‐8, and ?18, Ser‐11, Cys‐13, and Arg‐22. Potential of mean force (PMF) profiles for mono (Na+, K+, Cl?) and divalent (Ca2+) ions along the pore are calculated. The data support experimental findings of a weak cation selectivity of the channel. Calculations on 8a are compared to data derived for a pentameric bundle consisting of the M2 helices of the bacterial pentameric ligand gated ion channel GLIC (3EHZ). PMF curves of both, bundles 8a and M2, show sigmoidal shaped profiles. In comparison to the data for the M2‐GLIC model, data of the 8a bundle show lower amplitude of the PMF values between maximum and minimum and less discrimination amongst ions. Proteins 2015; 83:300–308. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
Potassium (K+)‐channel gating is choreographed by a complex interplay between external stimuli, K+ concentration and lipidic environment. We combined solid‐state NMR and electrophysiological experiments on a chimeric KcsA–Kv1.3 channel to delineate K+, pH and blocker effects on channel structure and function in a membrane setting. Our data show that pH‐induced activation is correlated with protonation of glutamate residues at or near the activation gate. Moreover, K+ and channel blockers distinctly affect the open probability of both the inactivation gate comprising the selectivity filter of the channel and the activation gate. The results indicate that the two gates are coupled and that effects of the permeant K+ ion on the inactivation gate modulate activation‐gate opening. Our data suggest a mechanism for controlling coordinated and sequential opening and closing of activation and inactivation gates in the K+‐channel pore.  相似文献   

3.
The bacterial flagellar type III export apparatus utilizes ATP and proton motive force (PMF) to transport flagellar proteins to the distal end of the growing flagellar structure for self-assembly. The transmembrane export gate complex is a H+–protein antiporter, of which activity is greatly augmented by an associated cytoplasmic ATPase complex. Here, we report that the export gate complex can use sodium motive force (SMF) in addition to PMF across the cytoplasmic membrane to drive protein export. Protein export was considerably reduced in the absence of the ATPase complex and a pH gradient across the membrane, but Na+ increased it dramatically. Phenamil, a blocker of Na+ translocation, inhibited protein export. Overexpression of FlhA increased the intracellular Na+ concentration in the presence of 100 mM NaCl but not in its absence, suggesting that FlhA acts as a Na+ channel. In wild-type cells, however, neither Na+ nor phenamil affected protein export, indicating that the Na+ channel activity of FlhA is suppressed by the ATPase complex. We propose that the export gate by itself is a dual fuel engine that uses both PMF and SMF for protein export and that the ATPase complex switches this dual fuel engine into a PMF-driven export machinery to become much more robust against environmental changes in external pH and Na+ concentration.  相似文献   

4.
The functional role of ligand-gated ion channels depends critically on whether they are predominantly permeable to cations or anions. However, these, and other ion channels, are not perfectly selective, allowing some counterions to also permeate. To address the mechanisms by which such counterion permeation occurs, we measured the anion-cation permeabilities of different alkali cations, Li+ Na+, and Cs+, relative to either Cl or anions in both a wild-type glycine receptor channel (GlyR) and a mutant GlyR with a wider pore diameter. We hypothesized and showed that counterion permeation in anionic channels correlated inversely with an equivalent or effective hydrated size of the cation relative to the channel pore radius, with larger counterion permeabilities being observed in the wider pore channel. We also showed that the anion component of conductance was independent of the nature of the cation. We suggest that anions and counterion cations can permeate through the pore as neutral ion pairs, to allow the cations to overcome the large energy barriers resulting from the positively charged selectivity filter in small GlyR channels, with the permeability of such ion pairs being dependent on the effective hydrated diameter of the ion pair relative to the pore diameter.  相似文献   

5.
In this paper, one nanoporous graphene grafting several zwitterionic polymer chains was designed as the osmosis membrane for seawater desalination. Using molecular dynamics simulation, the efficiency and mechanism of salt rejection were discussed. The simulated results showed that the zwitterionic polymer chains on nanoporous graphene can form the charge channel to block Na+ and Cl? ions pass through, and the slat rejection efficiency of functionalised graphene can reach to about 90%. In the simulation, the steric hindrance and electrostatic interaction are the main factors for the salt rejection. With time evolution, the charge channel formed by the soft polymer chains can decrease the effective pore area of membrane, leading to the increase of steric hindrance; the positive and negative centres of polymer chains can adsorb Na+ and Cl? ions under electrostatic interaction in the solution, contributing into the increase of charge density above the membrane. These conclusions are consistent with experimental report. Our designed osmosis membrane about the graphene is helpful for improving the potential application of defect graphene in water desalination and reducing the trouble of obtaining appropriate graphene sheet with small aperture.  相似文献   

6.
The Cl? transport properties of the luminal border of bovine tracheal epithelium have been investigated using a highly purified preparation of apical plasma membrane vesicles. Transport of Cl? into an intravesicular space was demonstrated by (1) a linear inverse correlation between Cl? uptake and medium osmolarity and (2) complete release of accumulated Cl? by treatment with detergent. The rate of Cl? uptake was highly temperature-sensitive and was enhanced by exchange diffusion, providing evidence for a carrier-mediated transport mechanism. Transport of Cl? was not affected by the ‘loop’ diuretic bumetanide or by the stilbene-derivative anion-exchange inhibitors SITS (4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid) and DIDS (4,4′-diisothiocyanostilbene-2,2′-disulfonic acid). In the presence of the impermeant cation, tetramethylammonium (TMA+), uptake of Cl? was minimal; transport was stimulated equally by the substitution of either K+ or Na+ for TMA+. Valinomycin in the presence of K+ enhanced further Cl? uptake, while amiloride reduced Na+-stimulated Cl? uptake towards the minimal level observed with TMA+. These results suggest the following conclusions: (1) the tracheal vesicle membrane has a finite permeability to both Na+ and K+; (2) the membrane permeability to the medium counterion determines the rate of Cl? uptake; (3) Cl? transport is not specifically coupled with either Na+ or K+; and, finally (4) Cl? crosses the tracheal luminal membrane via an electrogenic transport mechanism.  相似文献   

7.
The Na+/l-glutamate (l-aspartate) cotransport system present at the level of rat intestinal brush-border membrane vesicles is specifically activated by the ions K+ and Cl?. The presence of 100 mM K+ inside the vesicles drastically enhances the uptake rate and the transient intravesicular accumulation (overshoot) of the two acidic amino acids. It has been demonstrated that the activation of the transport system depended only in the intravesicular K+ concentration and that in the absence of any sodium gradient, an outward K+ gradient was unable to influence the Na+/acidic amino acid transport system. It was also found that Cl? could specifically activate the Na+-dependent l-glutamate (l-aspartate) uptake either in the presence or in the absence of K+. Also the effect of Cl? was observed only in the presence of an inward Na+ gradient and it was noted to be higher when chloride ion was present on both sides of the membrane vesicles. No influence (activation or accumulation) was observed in the absence of the Na+ gradient and in the presence of chloride gradient. l-Glutamate uptake measured in the presence of an imposed diffusion potential and in the presence of K+ or Cl? did not show any translocation of net charge.  相似文献   

8.
Transporters and ion channels are conventionally categorised into distinct classes of membrane proteins. However, some membrane proteins have a split personality and can function as both transporters and ion channels. The excitatory amino acid transporters (EAATs) in particular, function as both glutamate transporters and chloride (Cl?) channels. The EAATs couple the transport of glutamate to the co-transport of three Na+ ions and one H+ ion into the cell, and the counter-transport of one K+ ion out of the cell. The EAAT Cl? channel is activated by the binding of glutamate and Na+, but is thermodynamically uncoupled from glutamate transport and involves molecular determinants distinct from those responsible for glutamate transport. Several crystal structures of an EAAT archaeal homologue, GltPh, at different stages of the transport cycle, alongside numerous functional studies and molecular dynamics simulations, have provided extensive insights into the mechanism of substrate transport via these transporters. However, the molecular determinants involved in Cl? permeation, and the mechanism by which this channel is activated are not entirely understood. Here we will discuss what is currently known about the molecular determinants involved in EAAT-mediated Cl? permeation and the mechanisms that underlie their split personality.  相似文献   

9.
Abstract Radioisotope equilibration techniques have been used to determine the intracellular concentration of K+, Na+ and Cl?, together with the unidirectional ion fluxes across the plasmalemma of Porphyra purpurea. Influx and efflux of 42K+, 24Na+ and 36C1? are biphasic, the rapid, initial uptake and loss of tracer from individual thalli being attributable to desorption from extracellular regions. Cellular fluxes are slower and monophasic, cells discriminating in favour of K+ and Cl? and against Na+. A comparison between the equilibrium potential of individual ion species and the measured membrane potential demonstrates that there is an active component of K+ and Cl? influx and Na+ efflux. ‘Active’ uptake and ‘passive’ loss of K+ and Cl? are reduced when plants are kept in darkness, suggesting that a fraction of the transport of K+ and Cl? may be due to ‘exchange diffusion’ (K+/K+ and Cl?/Cl?antiport).  相似文献   

10.
The effect of the incorporation of phosphorylated phospholamban (pPLN) and sarcolipin (SLN) in mercury-supported self-assembled lipid monolayers and in lipid bilayers tethered to mercury via a hydrophilic spacer was investigated by voltammetric techniques and electrochemical impedance spectroscopy. It was shown that pPLN and SLN do not permeabilize lipid bilayers toward ions at physiological pH. However, they exert a permeabilizing action toward inorganic monovalent cations such as K+ and Tl+, but not toward divalent cations such as Ca2+ and Cd2 +, following a small decrease in pH. This behavior can be associated with their regulatory action on the Ca-ATPase of the sarcoplasmic reticulum (SERCA). SERCA pumps two Ca2+ ions from the cytosol to the lumen of the sarcoplasmic reticulum (SR) and two protons in the opposite direction, causing a transient decrease of pH in the immediate vicinity of its cytoplasmic domain. This decrease is expected to activate the liberated pPLN molecules and SLN to make the SR membrane leakier toward K+ and Na+ and the SLN ion channel to translocate small inorganic anions, such as Cl. The effect of pPLN and SLN, which becomes synergic when they are both present in the SR membrane, is expected to favor a rapid equilibration of ions on both sides of the membrane.  相似文献   

11.
Salinity tolerance in wild (Glendale) and hatchery (Quinsam) pink salmon Oncorhynchus gorbuscha (average mass 0·2 g) was assessed by measuring whole body [Na+] and [Cl?] after 24 or 72 h exposures to fresh water (FW) and 33, 66 or 100% sea water (SW). Gill Na+, K+‐ATPase activity was measured following exposure to FW and 100% SW and increased significantly in both populations after a 24 h exposure to 100% SW. Whole body [Na+] and whole body [Cl?] increased significantly in both populations after 24 h in 33, 66 and 100% SW, where whole body [Cl?] differed significantly between Quinsam and Glendale populations. Extending the seawater exposure to 72 h resulted in no further increases in whole body [Na+] and whole body [Cl?] at any salinity, but there was more variability among the responses of the two populations. Per cent whole body water (c. 81%) was maintained in all groups of fish regardless of salinity exposure or population, indicating that the increase in whole body ion levels may have been related to maintaining water balance as no mortality was observed in this study. Thus, both wild and hatchery juvenile O. gorbuscha tolerated abrupt salinity changes, which triggered an increase in gill Na+, K+‐ATPase within 24 h. These results are discussed in terms of the preparedness of emerging O. gorbuscha for the marine phase of their life cycle.  相似文献   

12.
《Journal of molecular biology》2019,431(8):1619-1632
Membrane-embedded pyrophosphatase (M-PPase) hydrolyzes pyrophosphate to drive ion (H+ and/or Na+) translocation. We determined crystal structures and functions of Vigna radiata M-PPase (VrH+-PPase), the VrH+-PPase–2Pi complex and mutants at hydrophobic gate (residue L555) and exit channel (residues T228 and E225). Ion pore diameters along the translocation pathway of three VrH+-PPases complexes (Pi-, 2Pi- and imidodiphosphate-bound states) present a unique wave-like profile, with different pore diameters at the hydrophobic gate and exit channel, indicating that the ligands induced pore size alterations. The 2Pi-bound state with the largest pore diameter might mimic the hydrophobic gate open. In mutant structures, ordered waters detected at the hydrophobic gate among VrH+-PPase imply the possibility of solvation, and numerous waters at the exit channel might signify an open channel. A salt-bridge, E225–R562 is at the way out of the exit channel of VrH+-PPase; E225A mutant makes the interaction eliminated and reveals a decreased pumping ability. E225–R562 might act as a latch to regulate proton release. A water wire from the ion gate (R-D-K-E) through the hydrophobic gate and into the exit channel may reflect the path of proton transfer.  相似文献   

13.
The existence of an electrogenic Na+ pump in Ehrlich cells which substantially contributes to the membrane potential, previously derived from the distribution of the lipid soluble cation tetraphenylphosphonium (TPP+), could be confirmed by an independent method based on the quenching of fluorescence of a cyanine dye derivative, after the mitochondrial respiration had been suppressed by appropriate inhibitors. The mitochondrial membrane potential, by adding to the overall potential as measured in this way is likely to cause an overestimation of the membrane potential difference (p.d.). But since this error tends to diminish with increasing pump activity, the true p.d. of the plasma membrane should easily account for the driving force to drive the active accumulation of amino acids in the absence of an adequate Na+ concentration gradient. Accordingly, the F2-aminoisobutyric acid (AIB) uptake rises linearly with the distribution of TPP+ at constant Na+ concentrations, suggesting that each responds directly to membrane potential. There is evidence that the electrogenic (free) movement of Cl? is slow, at least at normal p.d., whereas a major part of the Cl? movement across the cellular membrane appears to occur by an electrically silent Cl?-base exchange mechanism. By such a mode Cl?, together with an almost stoichiometric amount of K+, may under certain conditions move into the cell against a high adverse electrical potential difference. This “paradoxical” movement of K+Cl? contributing to the deviation of the Cl? distribution from the electrochemical equilibrium distribution, is not completely understood. It is insensitive towards ouabain but can almost specifically be inhibited by furosemide. As a likely explanation a H+–K+ exchange pump was previously offered, even though unequivocal evidence of such a pump is so far lacking. According to available evidence the electrogenic movement of free Cl? is too small, at least at normal orientation of the p.d., to significantly shunt the electrogenic pump potential so that the establishment of such a potential is plausible. The evidence presented is considered strong in favor of the gradient hypothesis since even in the absence of an adequate Na+ concentration gradient, the electrogenic Na+ pump will contribute sufficient extra driving force to actively transport amino acid into the cells.  相似文献   

14.
A constrained molecular dynamics technique has been used to study the structures and dynamics of the solvation shells of three sodium halides, namely sodium chloride (Na+–Cl?), sodium bromide (Na+–Br?) and sodium iodide (Na+–I?) in DMSO–MeOH mixtures. In the case of Na+–Cl? and Na+–Br?, Na+ is preferentially solvated by DMSO and Cl? and Br? are preferentially solvated by methanol in the contact ion pair (CIP) state. In the solvent-assisted ion pair (SAIP) configuration, Na+ ions of Na+–Cl? and Na+–Br? are preferentially solvated by methanol and Cl? and Br? also show preferential solvation by methanol over DMSO. In the case of Na+–I?, the only preferential solvation is in the SAIP state for I? ion by methanol. These observations are supported by the calculated excess coordination numbers and spatial density maps. The heights of the transition states barriers for CIPs and SAIPs/solvent-shared ion pairs (SSHIPs) are significantly affected when the mole fraction of methanol (xMeOH) changes from 0.0 to 0.25 because of a significant increase in the methanol density around halides. From the analysis of angular distribution functions of DMSO and methanol around the cations and anions, it is seen that DMSO and methanol molecules are present in parallel dipolar orientations (with respect to cation–solvent vector) in the first coordination shell of these three ion pairs at the CIP and SAIP states. Methanol molecules are nearly in an antiparallel (with respect to ion–solvent vector) orientation around the three halide ions.  相似文献   

15.
Abstract. Slightly vacuolated cells, i.e. microalgae and meristematic cells of vascular plants, maintain low Cl? and Na+ concentrations even when exposed to a highly saline environment. The factors regulating the internal ion concentration are the relative rate of volume expansion, the membrane permeability to ions, the electrical potential, and the active ion fluxes. For ion species which are not actively transported, a formula is developed which relates the internal concentration to the rate of expansion of cell volume, the permeability of membranes to that ion, and the electrical potential. For example, when the external concentration of Cl? is high, and Cl? influx is probably mainly passive, the formula predicts that rapid growth keeps the internal Cl? concentration lower than that in a non-growing cell with the same electrical potential; this effect is substantial if the plasmalemma has a low permeability to Cl?. For ion species which are actively transported, the rate of pumping must be considered. For instance Na+ concentrations are kept low mainly by an efficient Na+ extrusion pump which works against the electric field across the membrane. The requirement for Na+ extrusion is related to the external Na+ concentration, the rate of expansion of cell volume, the membrane permeability, and the electrical potential. It is possible that microalgae have a more positive electrical potential than many other plant cells; if so, requirements for high rates of active Na+ extrusion will be lower. The required rates of Na+ extrusion are lower during rapid growth, provided that the permeability of the plasmalemma to Na+ is low. The energy required for the regulation of Cl? and Na+ concentrations is low, especially in rapidly expanding cells where Na+ extrusion requires only 1–2% of the energy normally produced in respiration. The exclusion of these ions, however, must be accompanied by the synthesis of enough organic compounds to provide adequate osmotic solutes for the increases in volume accompanying growth. This process reduces the substrates available for respiration and synthesis of cell constituents, but the reduction is not prohibitively large—even for cells growing in 750 mol m?3 NaCl, the carbohydrate accumulated as osmotic solute is only 10% of that consumed in respiration.  相似文献   

16.
Biological membranes composed of lipids and proteins are in contact with electrolytes like aqueous NaCl solutions. Based on molecular dynamics studies it is widely believed that Na+ ions specifically bind to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes, whereas Cl ions stay in solution. Here, we present a careful comparison of recent data from electrophoresis and isothermal titration calorimetry experiments as well as molecular dynamics simulations suggesting that in fact both ions show very similar affinities. The corresponding binding constants are 0.44(±0.05) M−1 for Na+ and 0.40(±0.04) M−1 for Cl ions. This is highlighted by our observation that a widely used simulation setup showing asymmetric affinities of Na+ and Cl for POPC bilayers overestimates the effect of NaCl on the electrophoretic mobility of a POPC membrane by an order of magnitude. Implications for previous simulation results on the effect of NaCl on polarization of interfacial water, transmembrane potentials, and mechanisms for ion transport through bilayers are discussed. Our findings suggest that a range of published simulations results on the interaction of NaCl with phosphocholine bilayers have to be reconsidered and revised and that force field refinements are necessary for reliable simulation studies of membranes at physiological conditions on a molecular level.  相似文献   

17.
Background information. TSPO (translocator protein), known previously as PBR (peripheral‐type benzodiazepine receptor), is a 18 kDa protein expressed in the mitochondrial membrane of a variety of tissues. TSPO has been reported to be over‐expressed in human colorectal tumours and cancer cell lines, but its function is not well characterized. Results. We investigated the expression and function of TSPO in the human colon cancer cells HT‐29. Immunohistochemical studies revealed that TSPO is localized in mitochondria, and its endogenous ligand, the polypeptide diazepam‐binding inhibitor, in the cytosol. Radioligand binding studies using the specific high‐affinity drug ligand [3H]PK 11195 and membrane fraction demonstrated saturable binding, with Kd and Bmax values of 13.5±1.5 nM and 10.1±1.0 pmol/mg respectively. PK 11195 induced a rapid and transient dose‐dependent rise in intracellular [Ca2+], which was unaffected by extracellular Ca2+, but was blocked by the PTP (permeability transition pore) inhibitor, cyclosporin A, and by the TSPO partial agonist, flunitrazepam. Using HT‐29 clone 19A cell line, which forms cell monolayers, we demonstrated that TSPO ligand stimulated a Ca2+‐dependent transepithelial Cl? secretion. This secretion was inhibited: (i) after removal of extracellular Cl?; (ii) by apical addition of the Cl? channel blocker NPPB [5‐nitro‐2‐(3‐phenylpropylamino)‐benzoate]; and (iii) by basolateral addition of the Na+–K+–2Cl? co‐transporter inhibitor bumetanide. Furthermore, the intracellular Ca2+ chelator BAPTA/AM [bis‐(o‐aminophenoxy)ethane‐N,N,N′,N′‐tetra‐acetic acid tetrakis(acetoxymethyl ester)] and cyclosporin A abolished the rise in PK 11195‐induced Cl? secretion. Conclusions. These findings indicate that TSPO is located in mitochondrial membranes of HT‐29 and reveal that its activation induces a rise in cytosolic Ca2+, leading to the stimulation of Cl? secretion.  相似文献   

18.
Accumulating evidence indicates that increased intracellular Na+ concentration ([Na+]i) in astroglial cells is associated with the development of brain edema under ischemic conditions, but the underlying mechanisms are still elusive. Here, we report that in primary cultured rat cortical astrocytes, elevations of [Na+]i reflecting those achieved during ischemia cause a marked decrease in hypotonicity‐evoked current mediated by volume‐regulated anion channel (VRAC). Pharmacological manipulations revealed that VRAC inhibition was not due to the reverse mode of the plasma membrane sodium/calcium exchanger. The negative modulation of VRAC was also observed in an astrocytic cell line lacking the predominant astrocyte water channel aquaporin 4, indicating that [Na+]i effect was not mediated by the regulation of aquaporin 4 activity. The inward rectifier Cl? current, which is also expressed by cultured astrocytes, was not affected by [Na+]i increase. VRAC depression by high [Na+]i was confirmed in adult astrocytes, suggesting that it was not developmentally regulated. Altogether, these results provide the first evidence that intracellular Na+ dynamics can modulate astrocytic membrane conductance that controls functional processes linked to cell volume regulation and add further support to the concept that limiting astrocyte intracellular Na+ accumulation might be a favorable strategy to counteract the development of brain edema.

  相似文献   


19.
M2 transmembrane domain channel (M2‐TMD) permeation properties are studied using molecular dynamics simulations of M2‐TMD (1NYJ) embedded in a lipid bilayer (DMPC) with 1 mol/kg NaCl or KCl saline solution. This study allows examination of spontaneous cation and anion entry into the selectivity filter. Three titration states of the M2‐TMD tetramer are modeled for which the four His37 residues, forming the selectivity filter, are net uncharged, +2 charged, or +3 charged. M2‐TMD structural properties from our simulations are compared with the properties of other models extracted from NMR and X‐ray studies. During 10 ns simulations, chloride ions occasionally occupy the positively‐charged selectivity filter region, and from umbrella sampling simulations, Cl? has a lower free‐energy barrier in the selectivity‐filter region than either Na+ or NH, and NH has a lower free‐energy barrier than Na+. For Na+ and Cl?, the free‐energy barriers are less than 5 kcal/mol, suggesting that the 1NYJ conformation would probably not be exquisitely proton selective. We also point out a rotameric configuration of Trp41 that could fully occlude the channel. Proteins 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

20.
The Na+/Mg2+ exchanger represents the main Mg2+ extrusion mechanism operating in mammalian cells including hepatocytes. We have previously reported that this exchanger, located in the basolateral domain of the hepatocyte, promotes the extrusion of intravesicular trapped Mg2+ for extravesicular Na+ with ratio 1. This electrogenic exchange is supported by the accumulation of tetraphenyl-phosphonium within the vesicles at the time when Mg2+ efflux occurs. In this present study, the role of extra- and intra-vesicular Cl? on the Na+/Mg2+ exchange ratio was investigated. The results reported here suggest that Cl? ions are not required for the Na+ to Mg2+ exchange to occur, but the stoichiometry ratio of the exchanger switches from electrogenic (1Na in + :1 Mg out 2+ ) in the presence of intravesicular Cl? to electroneutral (2Na in + :1 Mg out 2+ ) in their absence. In basolateral liver plasma membrane vesicles loaded with MgCl2 labeled with 36Cl?, a small but significant Cl? efflux (~30 nmol Cl?/mg protein/1 min) is observed following addition of NaCl or Na-isethionate to the extravesicular medium. Both Cl? and Mg2+ effluxes are inhibited by imipramine but not by amiloride, DIDS, niflumic acid, bumetanide, or furosemide. In vesicles loaded with Mg-gluconate and stimulated by Na-isethionate, an electroneutral Mg2+ extrusion is observed. Taken together, these results suggest that the Na+/Mg2+ exchanger can operate irrespective of the absence or the presence of Cl? in the extracellular or intracellular environment. Changes in trans-cellular Cl? content, however, can affect the modus operandi of the Na+/Mg2+ exchanger, and consequently impact "cellular" Na+ and Mg2+ homeostasis as well as the hepatocyte membrane potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号