首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histidine‐rich, unstructured peptides adsorb to charged interfaces such as mineral surfaces and microbial cell membranes. At a molecular level, we investigate the adsorption mechanism as a function of pH, salt, and multivalent ions showing that (1) proton charge fluctuations are—in contrast to the majority of proteins—optimal at neutral pH, promoting electrostatic interactions with anionic surfaces through charge regulation and (2) specific zinc(II)‐histidine binding competes with protons and ensures an unusually constant charge distribution over a broad pH interval. In turn, this further enhances surface adsorption. Our analysis is based on atomistic molecular dynamics simulations, coarse grained Metropolis Monte Carlo, and classical polymer density functional theory. This multiscale modeling provides a consistent picture in good agreement with experimental data on Histatin 5, an antimicrobial salivary peptide. Biological function is discussed and we suggest that charge regulation is a significant driving force for the remarkably robust activity of histidine‐rich antimicrobial peptides. Proteins 2014; 82:657–667. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
In this study, we have used the coarse-grained model developed for the intrinsically disordered saliva protein (IDP) Histatin 5, on an experimental selection of monomeric IDPs, and we show that the model is generally applicable when electrostatic interactions dominate the intra-molecular interactions. Experimental and theoretically calculated small-angle X-ray scattering data are presented in the form of Kratky plots, and discussions are made with respect to polymer theory and the self-avoiding walk model. Furthermore, the impact of electrostatic interactions is shown and related to estimations of the conformational ensembles obtained from computer simulations and “Flexible-meccano.” Special attention is given to the form factor and how it is affected by the salt concentration, as well as the approximation of using the form factor obtained under physiological conditions to obtain the structure factor.  相似文献   

3.
The addition of fluid phase modifiers provides significant opportunities for increasing the selectivity of multimodal chromatography. In order to optimize this selectivity, it is important to understand the fundamental interactions between proteins and these modifiers. To this end, molecular dynamics (MD) simulations were first performed to study the interactions of guanidine and arginine with three proteins. The simulation results showed that both guanidine and arginine interacted primarily with the negatively charged regions on the proteins and that these regions could be readily predicted using electrostatic potential maps. Protein surface characterization was then carried out using computationally efficient coarse‐grained techniques for a broader set of proteins which exhibited interesting chromatographic retention behavior upon the addition of these modifiers. It was shown that proteins exhibiting an increased retention in the presence of guanidine possessed hydrophobic regions adjacent to negatively charged regions on their surfaces. In contrast, proteins which exhibited a decreased binding in the presence of guanidine did not have hydrophobic regions adjacent to negatively charged patches. These results indicated that the effect of guanidine could be described as a combination of competitive binding, charge neutralization and increased hydrophobic interactions for certain proteins. In contrast, arginine resulted in a significant decrease in protein retention times primarily due to competition for the resin and steric effects, with minimal accompanying increase in hydrophobic interactions. The approach presented in this paper which employs MD simulations to guide the application of coarse‐grained approaches is expected to be extremely useful for methods development in downstream bioprocesses. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:435–447, 2017  相似文献   

4.
We develop a coarse‐grained model where solvent is considered implicitly, electrostatics are included as short‐range interactions, and side‐chains are coarse‐grained to a single bead. The model depends on three main parameters: hydrophobic, electrostatic, and side‐chain hydrogen bond strength. The parameters are determined by considering three level of approximations and characterizing the folding for three selected proteins (training set). Nine additional proteins (containing up to 126 residues) as well as mutated versions (test set) are folded with the given parameters. In all folding simulations, the initial state is a random coil configuration. Besides the native state, some proteins fold into an additional state differing in the topology (structure of the helical bundle). We discuss the stability of the native states, and compare the dynamics of our model to all atom molecular dynamics simulations as well as some general properties on the interactions governing folding dynamics. Proteins 2013; 81:1200–1211. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
Yead Jewel  Prashanta Dutta  Jin Liu 《Proteins》2016,84(8):1067-1074
During lactose/H+ symport, the Escherichia coli lactose permease (LacY) undergoes a series of global conformational transitions between inward‐facing (open to cytoplasmic side) and outward‐facing (open to periplasmic side) states. However, the exact local interactions and molecular mechanisms dictating those large‐scale structural changes are not well understood. All‐atom molecular dynamics simulations have been performed to investigate the molecular interactions involved in conformational transitions of LacY, but the simulations can only explore early or partial global structural changes because of the computational limits (< 100 ns). In this work, we implement a hybrid force field that couples the united‐atom protein models with the coarse‐grained MARTINI water/lipid, to investigate the proton‐dependent dynamics and conformational changes of LacY. The effects of the protonation states on two key glutamate residues (Glu325 and Glu269) have been studied. Our results on the salt‐bridge dynamics agreed with all‐atom simulations at early short time period, validating our simulations. From our microsecond simulations, we were able to observe the complete transition from inward‐facing to outward‐facing conformations of LacY. Our results showed that all helices have participated during the global conformational transitions and helical movements of LacY. The inter‐helical distances measured in our simulations were consistent with the double electron‐electron resonance experiments at both cytoplasmic and periplasmic sides. Our simulations indicated that the deprotonation of Glu325 induced the opening of the periplasmics side and partial closure of the cytoplasmic side of LacY, while protonation of the Glu269 caused a stable cross‐domain salt‐bridge (Glu130‐Arg344) and completely closed the cytoplasmic side. Proteins 2016; 84:1067–1074. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
7.
Iris N. Smith  James M. Briggs 《Proteins》2016,84(11):1625-1643
The phosphatase and tensin homolog deleted on chromosome ten (PTEN) gene encodes a tumor suppressor phosphatase that has recently been found to be frequently mutated in patients with endometriosis, endometrial cancer and ovarian cancer. Here, we present the first computational analysis of 13 somatic missense PTEN mutations associated with these phenotypes. We found that a majority of the mutations are associated in conserved positions within the active site and are clustered within the signature motif, which contain residues that play a crucial role in loop conformation and are essential for catalysis. In silico analyses were utilized to identify the putative effects of these mutations. In addition, coarse‐grained models of both wild‐type (WT) PTEN and mutants were constructed using elastic network models to explore the interplay of the structural and global dynamic effects that the mutations have on the relationship between genotype and phenotype. The effects of the mutations reveal that the local structure and interactions affect polarity, protein structure stability, electrostatic surface potential, and global dynamics of the protein. Our results offer new insight into the role in which PTEN missense mutations contribute to the molecular mechanism and genotypic‐phenotypic correlation of endometriosis, endometrial cancer, and ovarian cancer. Proteins 2016; 84:1625–1643. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
Structure of cholesteric liquid-crystalline dispersions (CLCDs) formed by double-stranded DNA molecules and treated with gadolinium salts was studied by small-angle X-ray scattering (SAXS). The obtained SAXS data open the way for structural modeling of these complexes to obtain a reasonable explanation for the correlated decrease in amplitude of an abnormal negative band in the circular dichroism (CD) spectra and the characteristic Bragg peak in the experimental small-angle X-ray scattering curves observed on treatment of CLCD by gadolinium salts. Model simulations of different kinds of structural organizations of the DNA–gadolinium complex were performed using novel SAXS data analysis methods in combination with several new, complementary modeling techniques, enabling us to build low-resolution three-dimensional structural models of DNA–gadolinium complexes fixed in CLCD particles. The obtained models allow us to suggest that a change takes place in the helical twist of quasinematic layers formed by these molecules at high concentrations of gadolinium salt. This change in the twist can be used to explain the experimentally observed increase in amplitude of an abnormal band in the CD spectra of DNA CLCD.  相似文献   

9.
The effects of pH and electrolyte concentration on protein-protein interactions in lysozyme and chymotrypsinogen solutions were investigated by static light scattering (SLS) and small-angle neutron scattering (SANS). Very good agreement between the values of the virial coefficients measured by SLS and SANS was obtained without use of adjustable parameters. At low electrolyte concentration, the virial coefficients depend strongly on pH and change from positive to negative as the pH increases. All coefficients at high salt concentration are slightly negative and depend weakly on pH. For lysozyme, the coefficients always decrease with increasing electrolyte concentration. However, for chymotrypsinogen there is a cross-over point around pH 5.2, above which the virial coefficients decrease with increasing ionic strength, indicating the presence of attractive electrostatic interactions. The data are in agreement with Derjaguin-Landau-Verwey-Overbeek (DLVO)-type modeling, accounting for the repulsive and attractive electrostatic, van der Waals, and excluded volume interactions of equivalent colloid spheres. This model, however, is unable to resolve the complex short-ranged orientational interactions. The results of protein precipitation and crystallization experiments are in qualitative correlation with the patterns of the virial coefficients and demonstrate that interaction mapping could help outline new crystallization regions.  相似文献   

10.
A combination of small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations based on a coarse grained model is used to examine the effect of glycine substitutions in the short connector between the SH3 and SH2 domains of Hck, a member of the Src-family kinases. It has been shown previously that the activity of cSrc kinase is upregulated by substitution of 3 residues by glycine in the SH3-SH2 connector. Here, analysis of SAXS data indicates that the population of Hck in the disassembled state increases from 25% in the wild type kinase to 76% in the glycine mutant. This is consistent with the results of free energy perturbation calculations showing that the mutation in the connector shifts the equilibrium from the assembled to the disassembled state. This study supports the notion that the SH3-SH2 connector helps to regulate the activity of tyrosine kinases by shifting the population of the active state of the multidomain protein independent of C-terminal phosphorylation.  相似文献   

11.
Understanding how DNA carries out its biological roles requires knowledge of its interactions with biological partners. Since DNA is a polyanionic polymer, electrostatic interactions contribute significantly. These interactions are mediated by positively charged protein residues or charge compensating cations. Direct detection of these partners and/or their effect on DNA conformation poses challenges, especially for monitoring conformational dynamics in real time. Small-angle x-ray scattering (SAXS) is uniquely sensitive to both the conformation and local environment (i.e. protein partner and associated ions) of the DNA. The primary challenge of studying multi-component systems with SAXS lies in resolving how each component contributes to the measured scattering. Here, we review two contrast variation (CV) strategies that enable targeted studies of the structures of DNA or its associated partners. First, solution contrast variation enables measurement of DNA conformation within a protein–DNA complex by masking out the protein contribution to the scattering profile. We review a specific example, in which the real-time unwrapping of DNA from a nucleosome core particle is measured during salt-induced disassembly. The second method, heavy atom isomorphous replacement, reports the spatial distribution of the cation cloud around duplex DNA by exploiting changes in the scattering strength of cations with varying atomic numbers. We demonstrate the application of this approach to provide the spatial distribution of monovalent cations (Na+, K+, Rb+, Cs+) around a standard 25-base pair DNA. The CV strategies presented here are valuable tools for understanding DNA interactions with its biological partners.  相似文献   

12.
Wenjun Zheng 《Proteins》2014,82(7):1376-1386
The SNARE complex, consisting of three proteins (VAMP2, syntaxin, and SNAP‐25), is thought to drive membrane fusion by assembling into a four‐helix bundle through a zippering process. In support of the above zippering model, a recent single‐molecule optical tweezers experiment by Gao et al. revealed a sequential unzipping of SNARE along VAMP2 in the order of the linker domain → the C‐terminal domain → the N‐terminal domain. To offer detailed structural insights to this unzipping process, we have performed all‐atom and coarse‐grained steered molecular dynamics (sMD) simulations of the forced unfolding pathways of SNARE using different models and force fields. Our findings are summarized as follows: First, the sMD simulations based on either an all‐atom force field (with an implicit solvent model) or a coarse‐grained Go model were unable to capture the forced unfolding pathway of SNARE as observed by Gao et al., which may be attributed to insufficient simulation time and inaccurate force fields. Second, the sMD simulations based on a reparameterized coarse‐grained model (i.e., modified elastic network model) were able to predict a sequential unzipping of SNARE in good agreement with the findings by Gao et al. The key to this success is to reparameterize the intrahelix and interhelix nonbonded force constants against the pair‐wise residue–residue distance fluctuations collected from all‐atom MD simulations of SNARE. Therefore, our finding supports the importance of accurately describing the inherent dynamics/flexibility of SNARE (in the absence of force), in order to correctly simulate its unfolding behaviors under force. This study has established a useful computational framework for future studies of the zippering function of SNARE and its perturbations by point mutations with amino‐acid level of details, and more generally the forced unfolding pathways of other helix bundle proteins. Proteins 2014; 82:1376–1386. © 2014 Wiley Periodicals, Inc.  相似文献   

13.
Multidomain proteins in which consecutive globular regions are connected by linkers are prevalent in nature (Levitt in Proc Natl Acad Sci USA 106:11079–11084, 2009). Some members of this family have largely resisted structural characterization as a result of challenges associated with their inherent flexibility. Small-angle scattering (SAS) is often the method of choice for their structural study. An extensive set of simulated data for both flexible and rigid multidomain systems was analyzed and modeled using standard protocols. This study clearly shows that SAXS profiles obtained from highly flexible proteins can be wrongly interpreted as arising from a rigid structure. In this context, it would be important to identify features from the SAXS data or from the derived structural models that indicate interdomain motions to differentiate between these two scenarios. Features of SAXS data that identify flexible proteins are: (1) general attenuation of fine structure in the scattering profiles, which becomes more dramatic in Kratky representations, and (2) a reduced number of interdomain correlation peaks in p(r) functions that also present large D max values and a smooth decrease to 0. When modeling this dynamically averaged SAXS data, the structures obtained present characteristic trends: (1) ab initio models display a decrease in resolution, and (2) rigid-body models present highly extended conformations with a lack of interdomain contacts. The ensemble optimization method represents an excellent strategy to identify interdomain motions unambiguously. This study provides information that should help researchers to select the best modeling strategy for the structural interpretation of SAS experiments of multidomain proteins.  相似文献   

14.
Interactions measurement is a valuable tool to predict equilibrium phase separation of a desired protein in the presence of unwanted macromolecules. In this study, cross‐interactions were measured as the osmotic second virial cross‐coefficients (B23) for the three binary protein systems involving lysozyme, ovalbumin, and α‐amylase in salt solutions (sodium chloride and ammonium sulfate). They were correlated with solubility for the binary protein mixtures. The cross‐interaction behavior at different salt concentrations was interpreted by either electrostatic or hydrophobic interaction forces. At low salt concentrations, the protein surface charge dominates cross‐interaction behavior as a function of pH. With added ovalbumin, the lysozyme solubility decreased linearly at low salt concentration in sodium chloride and increased at high salt concentration in ammonium sulfate. The B23 value was found to be proportional to the slope of the lysozyme solubility against ovalbumin concentration and the correlation was explained by preferential interaction theory. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1203–1211, 2013  相似文献   

15.
Electrostatic potentials were determined for the soluble tryptic core of rat cytochrome b5 (using a structure derived from homology modeling) and a simulated anion-exchange surface through application of the linearized finite-difference Poisson-Boltzmann equation with the simulation code UHBD. Objectives of this work included determination of the contributions of the various charged groups on the protein surface to electrostatic interactions with a simulated anion-exchange surface as a function of orientation, separation distance, and ionic strength, as well as examining the potential existence of a preferred contact orientation. Electrostatic interaction free energies for the complex of the model protein and the simulated surface were computed using the electrostatics section of UHBD employing a 110(3) grid. An initial coarse grid spacing of 2.0 A was required to obtain correct boundary conditions. The boundary conditions of the coarse grid were used in subsequent focusing steps until the electrostatic interaction free energies were relatively independent of grid spacing (at approximately 0.5 A). Explicit error analyses were performed to determine the effects of grid spacing and other model assumptions on the electrostatic interaction free energies. The computational results reveal the presence of a preferred interaction orientation; the interaction energy between these two entities, of opposite net charge, is repulsive over a range of orientations. The electrostatic interaction free energies appear to be the summation of multiple fractional interactions between the protein and the anion-exchange surface. The simulation results are compared with those of ion-exchange adsorption experiments with site-directed mutants of the recombinant protein. Comparisons of the results from the computational and experimental studies should lead to a better understanding of electrostatic interactions of proteins and charged surfaces.  相似文献   

16.
The structure of heat-set systems of the globular protein bovine serum albumin (BSA) was investigated at pH 7 in different salt conditions (NaCl or CaCl(2)) using light scattering. Cross-correlation dynamic light scattering was used to correct for multiple scattering from turbid samples. After heat treatment, aggregates are formed whose size increases as the protein concentration increases. Beyond a critical concentration that decreases with increasing salt concentration, gels are formed. The heterogeneity and the reduced turbidity of the gels were found to increase with increasing salt concentration and to decrease with increasing protein concentration. The structure of the gels is determined by the strength of the repulsive electrostatic interactions between the aggregated proteins. The results obtained in NaCl are similar to those reported in previous studies for other globular proteins. CaCl(2) was found to be much more efficient in reducing electrostatic interactions than NaCl at the same ionic strength.  相似文献   

17.
Virus clearance by depth filtration has not been well‐understood mechanistically due to lack of quantitative data on filter charge characteristics and absence of systematic studies. It is generally believed that both electrostatic interactions and sized based mechanical entrapment contribute to virus clearance by depth filtration. In order to establish whether the effectiveness of virus clearance correlates with the charge characteristics of a given depth filter, a counter‐ion displacement technique was employed to determine the ionic capacity for several depth filters. Two depth filters (Millipore B1HC and X0HC) with significant differences in ionic capacities were selected and evaluated for their ability to eliminate viruses. The high ionic capacity X0HC filter showed complete porcine parvovirus (PPV) clearance (eliminating the spiked viruses to below the limit of detection) under low conductivity conditions (≤2.5 mS/cm), achieving a log10 reduction factor (LRF) of > 4.8. On the other hand, the low ionic capacity B1HC filter achieved only ~2.1–3.0 LRF of PPV clearance under the same conditions. These results indicate that parvovirus clearance by these two depth filters are mainly achieved via electrostatic interactions between the filters and PPV. When much larger xenotropic murine leukemia virus (XMuLV) was used as the model virus, complete retrovirus clearance was obtained under all conditions evaluated for both depth filters, suggesting the involvement of mechanisms other than just electrostatic interactions in XMuLV clearance. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 31:431–437, 2015  相似文献   

18.
Here we perform a systematic exploration of the use of distance constraints derived from small angle X-ray scattering (SAXS) measurements to filter candidate protein structures for the purpose of protein structure prediction. This is an intrinsically more complex task than that of applying distance constraints derived from NMR data where the identity of the pair of amino acid residues subject to a given distance constraint is known. SAXS, on the other hand, yields a histogram of pair distances (pair distribution function), but the identities of the pairs contributing to a given bin of the histogram are not known. Our study is based on an extension of the Levitt-Hinds coarse grained approach to ab initio protein structure prediction to generate a candidate set of C(alpha) backbones. In spite of the lack of specific residue information inherent in the SAXS data, our study shows that the implementation of a SAXS filter is capable of effectively purifying the set of native structure candidates and thus provides a substantial improvement in the reliability of protein structure prediction. We test the quality of our predicted C(alpha) backbones by doing structural homology searches against the Dali domain library, and find that the results are very encouraging. In spite of the lack of local structural details and limited modeling accuracy at the C(alpha) backbone level, we find that useful information about fold classification can be extracted from this procedure. This approach thus provides a way to use a SAXS data based structure prediction algorithm to generate potential structural homologies in cases where lack of sequence homology prevents identification of candidate folds for a given protein. Thus our approach has the potential to help in determination of the biological function of a protein based on structural homology instead of sequence homology.  相似文献   

19.
20.
We have derived radii of gyratin, Rg, from the absolute intensity of the scattered light of mondisperse linear Col E1 LiDNA in solution at various LiCl concentrations up to 5M. The second virial coefficients, A2, decrease strongly with increasing LiCl concentration, and vanish between 3 and 5M LiCl. It was thus possible to calculate a limiting value at a high salt concentration of 28.5 nm for the persistence length, a0, of LiDNA, without the necessity of applying excluded-volume corrections. The value obtained is in good agreement with the value previously obtained for NaDNA at high NaCl concentrations, and can be identified with the high salt limit of DNA flexibility, with long-range electrostatic interactions effectively screened. Sedimentation coefficients in the ultracentrifuge and apparent and translational diffusion coefficients (at finite and vanishing scattering vectors, respectively) from dynamic laser-light scattering have also been obtained up to 5M LiCl. From the sedimentation and apparent diffusion, D(90), (at 90° scattering angle only) above 5M, and up to 9M LiCl, it could be shown that the solutions are stable for reasonable periods of time, and the molecular parameters vary smoothly and moderately at high salt. Conformational transitions were not observed and precipitation occurs between 9 and 10M LiCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号