首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Metallo‐β‐lactamases (MBLs) are some of the best known β‐lactamases produced by common Gram‐positive and Gram‐negative pathogens and are crucial factors in the rise of bacterial resistance against β‐lactam antibiotics. Although many types of β‐lactamase inhibitors have been successfully developed and used in clinical settings, no MBL inhibitors have been identified to date. Nitrocefin, checkerboard and time‐kill assays were used to examine the enzyme behaviour in vitro. Molecular docking calculation, molecular dynamics simulation, calculation of the binding free energy and ligand‐residue interaction decomposition were used for mechanistic research. The behaviour of the enzymes in vivo was investigated by a mouse infection experiment. We showed that theaflavin‐3,3´‐digallate (TFDG), a natural compound lacking antibacterial activities, can inhibit the hydrolysis of MBLs. In the checkerboard and time‐kill assays, we observed a synergistic effect of TFDG with β‐lactam antibiotics against methicillin‐resistant Staphylococcus aureus BAA1717. Molecular dynamics simulations were used to identify the mechanism of the inhibition of MBLs by TFDG, and we observed that the hydrolysis activity of the MBLs was restricted by the binding of TFDG to Gln242 and Ser369. Furthermore, the combination of TFDG with β‐lactam antibiotics showed effective protection in a mouse Staphylococcus aureus pneumonia model. These findings suggest that TFDG can effectively inhibit the hydrolysis activity of MBLs and enhance the antibacterial activity of β‐lactam antibiotics against pathogens in vitro and in vivo.  相似文献   

2.
β‐lactam antibiotics are crucial to the management of bacterial infections in the medical community. Due to overuse and misuse, clinically significant bacteria are now resistant to many commercially available antibiotics. The most widespread resistance mechanism to β‐lactams is the expression of β‐lactamase enzymes. To overcome β‐lactamase mediated resistance, inhibitors were designed to inactivate these enzymes. However, current inhibitors (clavulanic acid, tazobactam, and sulbactam) for β‐lactamases also contain the characteristic β‐lactam ring, making them susceptible to resistance mechanisms employed by bacteria. This presents a critical need for novel, non‐β‐lactam inhibitors that can circumvent these resistance mechanisms. The carbapenem‐hydrolyzing class D β‐lactamases (CHDLs) are of particular concern, given that they efficiently hydrolyze potent carbapenem antibiotics. Unfortunately, these enzymes are not inhibited by clinically available β‐lactamase inhibitors, nor are they effectively inhibited by the newest, non‐β‐lactam inhibitor, avibactam. Boronic acids are known transition state analog inhibitors of class A and C β‐lactamases, and are not extensively characterized as inhibitors of class D β‐lactamases. Importantly, boronic acids provide a novel way to potentially inhibit class D β‐lactamases. Sixteen boronic acids were selected and tested for inhibition of the CHDL OXA‐24/40. Several compounds were identified as effective inhibitors of OXA‐24/40, with Ki values as low as 5 μM. The X‐ray crystal structures of OXA‐24/40 in complex with BA3, BA4, BA8, and BA16 were determined and revealed the importance of interactions with hydrophobic residues Tyr112 and Trp115. These boronic acids serve as progenitors in optimization efforts of a novel series of inhibitors for class D β‐lactamases.  相似文献   

3.
A large number of β‐lactamases have emerged that are capable of conferring bacterial resistance to β‐lactam antibiotics. Comparison of the structural and functional features of this family has refined understanding of the catalytic properties of these enzymes. An arginine residue present at position 244 in TEM‐1 β‐lactamase interacts with the carboxyl group common to penicillin and cephalosporin antibiotics and thereby stabilizes both the substrate and transition state complexes. A comparison of class A β‐lactamase sequences reveals that arginine at position 244 is not conserved, although a positive charge at this structural location is conserved and is provided by an arginine at positions 220 or 276 for those enzymes lacking arginine at position 244. The plasticity of the location of positive charge in the β‐lactamase active site was experimentally investigated by relocating the arginine at position 244 in TEM‐1 β‐lactamase to positions 220, 272, and 276 by site‐directed mutagenesis. Kinetic analysis of the engineered β‐lactamases revealed that removal of arginine 244 by alanine mutation reduced catalytic efficiency against all substrates tested and restoration of an arginine at positions 272 or 276 partially suppresses the catalytic defect of the Arg244Ala substitution. These results suggest an evolutionary mechanism for the observed divergence of the position of positive charge in the active site of class A β‐lactamases.  相似文献   

4.
EstU1 is a unique family VIII carboxylesterase that displays hydrolytic activity toward the amide bond of clinically used β‐lactam antibiotics as well as the ester bond of p‐nitrophenyl esters. EstU1 assumes a β‐lactamase‐like modular architecture and contains the residues Ser100, Lys103, and Tyr218, which correspond to the three catalytic residues (Ser64, Lys67, and Tyr150, respectively) of class C β‐lactamases. The structure of the EstU1/cephalothin complex demonstrates that the active site of EstU1 is not ideally tailored to perform an efficient deacylation reaction during the hydrolysis of β‐lactam antibiotics. This result explains the weak β‐lactamase activity of EstU1 compared with class C β‐lactamases. Finally, structural and sequential comparison of EstU1 with other family VIII carboxylesterases elucidates an operative molecular strategy used by family VIII carboxylesterases to extend their substrate spectrum. Proteins 2013; 81:2045–2051. © 2013 Wiley Periodicals, Inc.  相似文献   

5.
NagZ is an exo‐N‐acetyl‐β‐glucosaminidase, found within Gram‐negative bacteria, that acts in the peptidoglycan recycling pathway to cleave N‐acetylglucosamine residues off peptidoglycan fragments. This activity is required for resistance to cephalosporins mediated by inducible AmpC β‐lactamase. NagZ uses a catalytic mechanism involving a covalent glycosyl enzyme intermediate, unlike that of the human exo‐N‐acetyl‐β‐glucosaminidases: O‐GlcNAcase and the β‐hexosaminidase isoenzymes. These latter enzymes, which remove GlcNAc from glycoconjugates, use a neighboring‐group catalytic mechanism that proceeds through an oxazoline intermediate. Exploiting these mechanistic differences we previously developed 2‐N‐acyl derivatives of O‐(2‐acetamido‐2‐deoxy‐D ‐glucopyranosylidene)amino‐N‐phenylcarbamate (PUGNAc), which selectively inhibits NagZ over the functionally related human enzymes and attenuate antibiotic resistance in Gram‐negatives that harbor inducible AmpC. To understand the structural basis for the selectivity of these inhibitors for NagZ, we have determined its crystallographic structure in complex with N‐valeryl‐PUGNAc, the most selective known inhibitor of NagZ over both the human β‐hexosaminidases and O‐GlcNAcase. The selectivity stems from the five‐carbon acyl chain of N‐valeryl‐PUGNAc, which we found ordered within the enzyme active site. In contrast, a structure determination of a human O‐GlcNAcase homologue bound to a related inhibitor N‐butyryl‐PUGNAc, which bears a four‐carbon chain and is selective for both NagZ and O‐GlcNAcase over the human β‐hexosamnidases, reveals that this inhibitor induces several conformational changes in the active site of this O‐GlcNAcase homologue. A comparison of these complexes, and with the human β‐hexosaminidases, reveals how selectivity for NagZ can be engineered by altering the 2‐N‐acyl substituent of PUGNAc to develop inhibitors that repress AmpC mediated β‐lactam resistance.  相似文献   

6.
NagZ is an N‐acetyl‐β‐d ‐glucosaminidase that participates in the peptidoglycan (PG) recycling pathway of Gram‐negative bacteria by removing N‐acetyl‐glucosamine (GlcNAc) from PG fragments that have been excised from the cell wall during growth. The 1,6‐anhydromuramoyl‐peptide products generated by NagZ activate β‐lactam resistance in many Gram‐negative bacteria by inducing the expression of AmpC β‐lactamase. Blocking NagZ activity can thereby suppress β‐lactam antibiotic resistance in these bacteria. The NagZ active site is dynamic and it accommodates distortion of the glycan substrate during catalysis using a mobile catalytic loop that carries a histidine residue which serves as the active site general acid/base catalyst. Here, we show that flexibility of this catalytic loop also accommodates structural differences in small molecule inhibitors of NagZ, which could be exploited to improve inhibitor specificity. X‐ray structures of NagZ bound to the potent yet non‐selective N‐acetyl‐β‐glucosaminidase inhibitor PUGNAc (O‐(2‐acetamido‐2‐deoxy‐d ‐glucopyranosylidene) amino‐N‐phenylcarbamate), and two NagZ‐selective inhibitors – EtBuPUG, a PUGNAc derivative bearing a 2‐N‐ethylbutyryl group, and MM‐156, a 3‐N‐butyryl trihydroxyazepane, revealed that the phenylcarbamate moiety of PUGNAc and EtBuPUG completely displaces the catalytic loop from the NagZ active site to yield a catalytically incompetent form of the enzyme. In contrast, the catalytic loop was found positioned in the catalytically active conformation within the NagZ active site when bound to MM‐156, which lacks the phenylcarbamate extension. Displacement of the catalytic loop by PUGNAc and its N‐acyl derivative EtBuPUG alters the active site conformation of NagZ, which presents an additional strategy to improve the potency and specificity of NagZ inhibitors.  相似文献   

7.
The increasing interest in click chemistry and its use to stabilize turn structures led us to compare the propensity for β‐turn stabilization of different analogs designed as mimics of the β‐turn structure found in tendamistat. The β‐turn conformation of linear β‐amino acid‐containing peptides and triazole‐cyclized analogs were compared to ‘conventional’ lactam‐ and disulfide‐bridged hexapeptide analogs. Their 3D structures and their propensity to fold in β‐turns in solution, and for those not structured in solution in the presence of α‐amylase, were analyzed by NMR spectroscopy and by restrained molecular dynamics with energy minimization. The linear tetrapeptide Ac‐Ser‐Trp‐Arg‐Tyr‐NH2 and both the amide bond‐cyclized, c[Pro‐Ser‐Trp‐Arg‐Tyr‐D ‐Ala] and the disulfide‐bridged, Ac‐c[Cys‐Ser‐Trp‐Arg‐Tyr‐Cys]‐NH2 hexapeptides adopt dominantly in solution a β‐turn conformation closely related to the one observed in tendamistat. On the contrary, the β‐amino acid‐containing peptides such as Ac‐(R)‐β3‐hSer‐(S)‐Trp‐(S)‐β3‐hArg‐(S)‐β3‐hTyr‐NH2, and the triazole cyclic peptide, c[Lys‐Ser‐Trp‐Arg‐Tyr‐βtA]‐NH2, both specifically designed to mimic this β‐turn, do not adopt stable structures in solution and do not show any characteristics of β‐turn conformation. However, these unstructured peptides specifically interact in the active site of α‐amylase, as shown by TrNOESY and saturation transfer difference NMR experiments performed in the presence of the enzyme, and are displaced by acarbose, a specific α‐amylase inhibitor. Thus, in contrast to amide‐cyclized or disulfide‐bridged hexapeptides, β‐amino acid‐containing peptides and click‐cyclized peptides may not be regarded as β‐turn stabilizers, but can be considered as potential β‐turn inducers. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

8.
The history of modern medicine cannot be written apart from the history of the antibiotics. Antibiotics are cytotoxic secondary metabolites that are isolated from Nature. The antibacterial antibiotics disproportionately target bacterial protein structure that is distinct from eukaryotic protein structure, notably within the ribosome and within the pathways for bacterial cell‐wall biosynthesis (for which there is not a eukaryotic counterpart). This review focuses on a pre‐eminent class of antibiotics—the β‐lactams, exemplified by the penicillins and cephalosporins—from the perspective of the evolving mechanisms for bacterial resistance. The mechanism of action of the β‐lactams is bacterial cell‐wall destruction. In the monoderm (single membrane, Gram‐positive staining) pathogen Staphylococcus aureus the dominant resistance mechanism is expression of a β‐lactam‐unreactive transpeptidase enzyme that functions in cell‐wall construction. In the diderm (dual membrane, Gram‐negative staining) pathogen Pseudomonas aeruginosa a dominant resistance mechanism (among several) is expression of a hydrolytic enzyme that destroys the critical β‐lactam ring of the antibiotic. The key sensing mechanism used by P. aeruginosa is monitoring the molecular difference between cell‐wall construction and cell‐wall deconstruction. In both bacteria, the resistance pathways are manifested only when the bacteria detect the presence of β‐lactams. This review summarizes how the β‐lactams are sensed and how the resistance mechanisms are manifested, with the expectation that preventing these processes will be critical to future chemotherapeutic control of multidrug resistant bacteria.  相似文献   

9.
Stem‐cell antigen 1–positive (Sca‐1+) cardiac stem cells (CSCs), a vital kind of CSCs in humans, promote cardiac repair in vivo and can differentiate to cardiomyocytes with 5′‐azacytizine treatment in vitro. However, the underlying molecular mechanisms are unknown. β‐arrestin2 is an important scaffold protein and highly expressed in the heart. To explore the function of β‐arrestin2 in Sca‐1+ CSC differentiation, we used β‐arrestin2–knockout mice and overexpression strategies. Real‐time PCR revealed that β‐arrestin2 promoted 5′‐azacytizine‐induced Sca‐1+ CSC differentiation in vitro. Because the microRNA 155 (miR‐155) may regulate β‐arrestin2 expression, we detected its role and relationship with β‐arrestin2 and glycogen synthase kinase 3 (GSK3β), another probable target of miR‐155. Real‐time PCR revealed that miR‐155, inhibited by β‐arrestin2, impaired 5′‐azacytizine‐induced Sca‐1+ CSC differentiation. On luciferase report assay, miR‐155 could inhibit the activity of β‐arrestin2 and GSK3β, which suggests a loop pathway between miR‐155 and β‐arrestin2. Furthermore, β‐arrestin2‐knockout inhibited the activity of GSK3β. Akt, the upstream inhibitor of GSK3β, was inhibited in β‐arrestin2‐Knockout mice, so the activity of GSK3β was regulated by β‐arrestin2 not Akt. We transplanted Sca‐1+ CSCs from β‐arrestin2‐knockout mice to mice with myocardial infarction and found similar protective functions as in wild‐type mice but impaired arterial elastance. Furthermore, low level of β‐arrestin2 agreed with decreased phosphorylation of AKT and increased phophorylation of GSK3β, similar to in vitro findings. The β‐arrestin2/miR‐155/GSK3β pathway may be a new mechanism with implications for treatment of heart disease.  相似文献   

10.
β‐dystroglycan (β‐DG) is a widely expressed transmembrane protein that plays important roles in connecting the extracellular matrix to the cytoskeleton, and thereby contributing to plasma membrane integrity and signal transduction. We previously observed nuclear localization of β‐DG in cultured cell lines, implying the existence of a nuclear targeting mechanism that directs it to the nucleus instead of the plasma membrane. In this study, we delineate the nuclear import pathway of β‐DG, characterizing a functional nuclear localization signal (NLS) in the β‐DG cytoplasmic domain, within amino acids 776–782. The NLS either alone or in the context of the whole β‐DG protein was able to target the heterologous GFP protein to the nucleus, with site‐directed mutagenesis indicating that amino acids R779 and K780 are critical for NLS functionality. The nuclear transport molecules Importin (Imp)α and Impβ bound with high affinity to the NLS of β‐DG and were found to be essential for NLS‐dependent nuclear import in an in vitro reconstituted nuclear transport assay; cotransfection experiments confirmed the dependence on Ran for nuclear accumulation. Intriguingly, experiments suggested that tyrosine phosphorylation of β‐DG may result in cytoplasmic retention, with Y892 playing a key role. β‐DG thus follows a conventional Impα/β‐dependent nuclear import pathway, with important implications for its potential function in the nucleus. J. Cell. Biochem. 110: 706–717, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The Wnt/β‐catenin pathway has been implicated in leukemogenesis. We found β‐catenin abnormally accumulated in both human acute T cell leukemia Jurkat cells and human erythroleukemia HEL cells. β‐Catenin can be significantly down‐regulated by the Janus kinase 2 specific inhibitor AG490 in these two cells. AG490 also reduces the luciferase activity of a reporter plasmid driven by LEF/β‐catenin promoter. Similar results were observed in HEL cells infected with lentivirus containing shRNA against JAK2 gene. After treatment with 50 µM AG490 or shRNA, the mRNA expression levels of β‐catenin, APC, Axin, β‐Trcp, GSK3α, and GSK3β were up‐regulated within 12–16 h. However, only the protein levels of GSK3β and β‐Trcp were found to have increased relative to untreated cells. Knockdown experiments revealed that the AG490‐induced inhibition of β‐catenin can be attenuated by shRNA targeting β‐TrCP. Taken together; these results suggest that β‐Trcp plays a key role in the cross‐talk between JAK/STAT and Wnt/β‐catenin signaling in leukemia cells. J. Cell. Biochem. 111: 402–411, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Canonical BMP and Wnt signaling pathways play critical roles in regulation of osteoblast function and bone formation. Recent studies demonstrate that BMP‐2 acts synergistically with β‐catenin to promote osteoblast differentiation. To determine the molecular mechanisms of the signaling cross‐talk between canonical BMP and Wnt signaling pathways, we have used primary osteoblasts and osteoblast precursor cell lines 2T3 and MC3T3‐E1 cells to investigate the effect of BMP‐2 on β‐catenin signaling. We found that BMP‐2 stimulates Lrp5 expression and inhibits the expression of β‐TrCP, the F‐box E3 ligase responsible for β‐catenin degradation and subsequently increases β‐catenin protein levels in osteoblasts. In vitro deletion of the β‐catenin gene inhibits osteoblast proliferation and alters osteoblast differentiation and reduces the responsiveness of osteoblasts to the BMP‐2 treatment. These findings suggest that BMP‐2 may regulate osteoblast function in part through modulation of the β‐catenin signaling. J. Cell. Biochem. 108: 896–905, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

14.
The propensities of peptides that contain the Asn‐Gly segment to form β‐turn and β‐hairpin structures were explored using the density functional methods and the implicit solvation model in CH2Cl2 and water. The populations of preferred β‐turn structures varied depending on the sequence and solvent polarity. In solution, β‐hairpin structures with βI′ turn motifs were most preferred for the heptapeptides containing the Asn‐Gly segment regardless of the sequence of the strands. These preferences in solution are consistent with the corresponding X‐ray structures. The sequence, H‐bond strengths, solvent polarity, and conformational flexibility appeared to interact to determine the preferred β‐hairpin structure of each heptapeptide, although the β‐turn segments played a role in promoting the formation of β‐hairpin structures and the β‐hairpin propensity varied. In the heptapeptides containing the Asn‐Gly segment, the β‐hairpin formation was enthalpically favored and entropically disfavored at 25°C in water. The calculated results for β‐turns and β‐hairpins containing the Asn‐Gly segment imply that these structural preferences may be useful for the design of bioactive macrocyclic peptides containing β‐hairpin mimics and the design of binding epitopes for protein–protein and protein–nucleic acid recognitions. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 653–664, 2016.  相似文献   

15.
β‐Myrcene, a monoterpene widely used as a fragrance and flavoring additive, also possesses analgesic, anti‐mutagenic, and tyrosinase inhibitory properties. In order to get insights into the molecular mechanisms underlying the ability of Pseudomonas sp. M1 to catabolize β‐myrcene, an expression proteomics approach was used in this study. Results indicate that the catabolic enzyme machinery for β‐myrcene utilization (MyrB, MyrC, and MyrD and other uncharacterized proteins) is strongly induced when β‐myrcene is present in the growth medium. Since an M1 mutant, lacking a functional 2‐methylisocitrate dehydratase, is not able to grow in mineral medium with β‐myrcene or propionic acid as the sole C‐source, and also based on the expression proteomic analysis carried out in this study, it is suggested that the β‐myrcene catabolic intermediate propionyl‐CoA is channeled into the central metabolism via the 2‐methylcitrate cycle. Results also suggest that the major alteration occurring in the central carbon metabolism of cells growing in β‐myrcene‐containing media is related with the redistribution of the metabolic fluxes leading to increased oxaloacetate production. Other up‐regulated proteins are believed to prevent protein misfolding and aggregation or to play important structural roles, contributing to the adaptive alteration of cell wall and membrane organization and integrity, which are essential features to allow the bacterium to cope with the highly lipophilic β‐myrcene as C‐source.  相似文献   

16.
Introduction – Bioautographic assays using TLC play an important role in the search for active compounds from plants. A TLC assay has previously been established for the detection of β‐glucosidase inhibitors but not for α‐glucosidase. Nonetheless, α‐glucosidase inhibition is an important target for therapeutic agents against of type 2 diabetes and anti‐viral infections. Objective – To develop a TLC bioautographic method to detect α‐ and β‐glucosidase inhibitors in plant extracts. Methodology – The enzymes α‐ and β‐d ‐glucosidase were dissolved in sodium acetate buffer. After migration of the samples, the TLC plate was sprayed with enzyme solution and incubated at room temperature for 60 min in the case of α‐d ‐glucosidase, and 37°C for 20 min in the case of β‐d ‐glucosidase. For detection of the active enzyme, solutions of 2‐naphthyl‐α‐D‐glucopyranoside or 2‐naphthyl‐β‐D‐glucopyranoside and Fast Blue Salt were mixed at a ratio of 1 : 1 (for α‐d ‐glucosidase) or 1 : 4 (for β‐d ‐glucosidase) and sprayed onto the plate to give a purple background colouration after 2–5 min. Results – Enzyme inhibitors were visualised as white spots on the TLC plates. Conduritol B epoxide inhibited α‐d ‐glucosidase and β‐d ‐glucosidase down to 0.1 µg. Methanol extracts of Tussilago farfara and Urtica dioica after migration on TLC gave enzymatic inhibition when applied in amounts of 100 µg for α‐glucosidase and 50 µg for β‐glucosidase. Conclusion – The screening test was able to detect inhibition of α‐ and β‐glucosidases by pure reference substances and by compounds present in complex matrices, such as plant extracts. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Protein folding has been studied extensively for decades, yet our ability to predict how proteins reach their native state from a mechanistic perspective is still rudimentary at best, limiting our understanding of folding‐related processes in vivo and our ability to manipulate proteins in vitro. Here, we investigate the in vitro refolding mechanism of a large β‐helix protein, pertactin, which has an extended, elongated shape. At 55 kDa, this single domain, all‐β‐sheet protein allows detailed analysis of the formation of β‐sheet structure in larger proteins. Using a combination of fluorescence and far‐UV circular dichroism spectroscopy, we show that the pertactin β‐helix refolds remarkably slowly, with multiexponential kinetics. Surprisingly, despite the slow refolding rates, large size, and β‐sheet‐rich topology, pertactin refolding is reversible and not complicated by off‐pathway aggregation. The slow pertactin refolding rate is not limited by proline isomerization, and 30% of secondary structure formation occurs within the rate‐limiting step. Furthermore, site‐specific labeling experiments indicate that the β‐helix refolds in a multistep but concerted process involving the entire protein, rather than via initial formation of the stable core substructure observed in equilibrium titrations. Hence pertactin provides a valuable system for studying the refolding properties of larger, β‐sheet‐rich proteins, and raises intriguing questions regarding the prevention of aggregation during the prolonged population of partially folded, β‐sheet‐rich refolding intermediates. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

19.
High‐performance liquid chromatographic methods were developed for the separation of the enantiomers of 19 β‐lactams. The direct separations were performed on chiral stationary phases containing either amylose‐tris‐3,5‐dimethylphenyl carbamate, (Kromasil® AmyCoat? column) or cellulose‐tris‐3,5‐dimethylphenyl carbamate, (Kromasil® CelluCoat? column) as chiral selector. The different methods were compared in systematic chromatographic examinations. The separations were carried out with good selectivity and resolution. The AmyCoat? and CelluCoat? columns appear to be highly complementary. The best separations of bi‐ and tricyclic β‐lactam stereoisomers were obtained with the AmyCoat? column, whereas the 4‐aryl‐substituted β‐lactams were better separated on the CelluCoat? column. The elution sequence was determined in all cases; no general rule could be established. Chirality 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

20.

Objective

β‐catenin is one of the most critical oncogenes associated with many kinds of human cancers, especially in the human CRC. Innate immunity recognizes tumour derived damage‐associated molecular patterns (DAMPs) and primes the anti‐tumour adaptive responses. While the function of β‐catenin in CRC tumourigenesis is well established, its impact on innate immune evasion is largely unknown. The aim of this study is to characterize the role of β‐catenin in inhibiting RIG‐I‐like receptor (RLR)‐mediated IFN‐β signalling in colorectal cancer.

Materials and Methods

Immunohistochemical staining and western blotting were conducted to study the expression of β‐catenin, IRF3 and phospho‐IRF3 (p‐IRF3) in CRC samples and cell lines. Plaque assay determining virus replication was performed to assess the regulation of β‐catenin on IFN‐β signalling. The inhibition of β‐catenin on RLR‐mediated IFN‐β signalling was further studied by real‐time analyses and reporter assays in the context of lentiviral‐mediated β‐catenin stably knocking down. Lastly, co‐immunoprecipitation and nuclear fractionation assay were conducted to monitor the interaction between β‐catenin and IRF3.

Results

We found that high expression of β‐catenin positively correlated with the expression of IRF3 in CRC cells. Overexpression of β‐catenin increased the viral replication. Conversely knocking down of β‐catenin inhibited viral replication. Furthermore, our data demonstrated that β‐catenin could inhibit the expression of IFN‐β and interferon‐stimulated gene 56 (ISG56). Mechanistically, we found that β‐catenin interacted with IRF3 and blocked its nuclear translocation.

Conclusion

Our study reveals an unprecedented role of β‐catenin in enabling innate immune evasion in CRC.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号