首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The complex pathway of tetrapyrrole biosynthesis can be dissected into five sections: the pathways that produce 5-aminolevulinate (the C-4 and the C-5 pathways), the steps that transform ALA to uroporphyrinogen III, which are ubiquitous in the biosynthesis of all tetrapyrroles, and the three branches producing specialized end products. These end products include corrins and siroheme, chlorophylls and hemes and linear tetrapyrroles. These branches have been subjects of recent reviews. This review concentrates on the early steps leading up to uroporphyrinogen III formation which have been investigated intensively in recent years in animals, in plants, and in a wide range of bacteria.Abbreviations ALA 5-aminolevulinic acid - ALAS 5-aminolevulinic acid synthase - GR glutamyl-tRNA reductase - GSA glutamate-1-semialdehyde - GSAT glutamate-1-semialdehyde aminotransferase - HMB hydroxymethylbilane - PBG porphobilinogen - PBGD porphobilinogen deaminase - PBGS porphobilinogen synthase - URO uroporphyrin - URO'gen uroporphyrinogen - US uroporphyrinogen III synthase  相似文献   

2.
Rat hepatic uroporphyrinogen III cosynthase has been isolated and purified 50-fold with a 36% yield by ammonium sulfate fractionation and sequential chromatography on DEAE-Sephacel and Sephadex G-100SF. Inhibition of uroporphyrinogen III formation with increasing porphobilinogen concentration was observed. Cosynthase was shown to be thermolabile, and a time-dependent loss of enzyme activity during reaction with uroporphyrinogen I synthase and porphobilinogen was observed. The pH optimum for the complete system (synthase and cosynthase) was pH 7.8 in 50 mm Tris-HCl or 50 mm sodium phosphate buffer. Various metals (KCl, NaCl, MgCl2, CaCl2) increased formation of Uroporphyrinogen III. Heavy metals including ZnCl2, CdCl2, and CuCl2 were shown to selectively inhibit cosynthase activity, whereas other metals (HgCl2, PbCl2) were less selective and inhibited both synthase and cosynthase at similar concentrations.  相似文献   

3.
Porphobilinogen deaminase (hydroxymethylbilane synthase; EC 4.3.1.8), the third enzyme of the heme biosynthetic pathway, catalyzes the stepwise condensation of four porphobilinogen units to yield hydroxymethylbilane, which is in turn converted to uroporphyrinogen III by cosynthetase. We compared the apparent molecular mass of porphobilinogen deaminase from erythropoietic and from non-erythropoietic cells by sodium dodecyl sulfate/polyacrylamide gel electrophoresis and immune-blotting. The results indicate that two isoforms of porphobilinogen deaminase can be distinguished and differ by 2000 Da. Analysis of cell-free translation products directed by mRNAs from human erythropoietic spleen and from human liver demonstrates that the two isoforms of porphobilinogen deaminase are encoded by distinct messenger RNAs. We cloned and sequenced cDNAs complementary to the non-erythropoietic form of porphobilinogen deaminase encoding RNA. Comparison of these sequences to that of human erythropoietic mRNA [Raich et al. (1986) Nucleic Acids Res. 14, 5955-5968] revealed that the two mRNA species differ by their 5' extremity. From the mRNA sequences we could deduce that an additional peptide of 17 amino acid residues at the NH2 terminus of the non-erythropoietic isoform of porphobilinogen deaminase accounts for its higher molecular mass. RNase mapping experiments demonstrate that the two porphobilinogen deaminase mRNAs are distributed according to a strict tissue-specificity, the erythropoietic form being restricted to erythropoietic cells. We propose that a single porphobilinogen deaminase gene is transcribed from two different promoters, yielding the two forms of porphobilinogen deaminase mRNAs. Our present finding may have some relevance for further understanding the porphobilinogen deaminase deficiency in certain cases of acute intermittent porphyria with an enzymatic defect restricted in non-erythropoietic cells.  相似文献   

4.
A cloned 5.8-kb genomic fragment of the green sulfur bacteriumChlorobium vibrioforme encodes the genes for three enzymes catalyzing early steps in the biosynthetic pathway of tetrapyrroles, common to chlorophyll and heme. ThehemA, hemC andhemD genes encode the enzymes glutamyl tRNA dehydrogenase, porphobilinogen deaminase and uroporphyrinogen III synthase, respectively. The cloned genes were expressed in transformedEscherichia coli orSalmonella typhimurium and conferred autotrophy on the respective auxotrophs. Activities of the enzymes encoded by the cloned genes were demonstrated in vitro, with cell extracts obtained from the transformed enterobacteria. The proximity of these genes indicates that they form a cluster inChlorobium vibrioforme, while in most other organisms they appear to be scattered. The presence of this cluster may imply coordinate regulation of the genes involved and they may constitute an operon.  相似文献   

5.
The enzymic self-polymerization of prophobilinogen gives rise to the cyclic tetrapyrroles uroporphyrinogen III and uroporphyrinogen I. The former is the precursor of all the natural porphyrins and chlorins. The formation of uroporphyrinogen III is catalysed by a dual enzymic system, porphobilinogen deaminase and uroporphyrinogen III cosynthase. Deaminase polymerizes four porphobilinogen units on the enzymic surface, without liberation of free intermediates into the reaction medium, and forms uroporphyrinogen I. Cosynthase enters into association with the deaminase, and acts as a 'specifier protein' of the latter, changing the mode of porphobilinogen condensation on the enzymic surface. The association is independent of the presence of substrate. While deaminase catalyses the head-to-tail condensation of the porphobilinogen units, the association deaminase-cosynthase catalyses the head-to-head condensation of the same units. As a result different enzyme-bound dipyrrylmethanes are formed form the beginning of the process, and this can be demonstrated by using synthetic dipyrrylmethanes and tripyrranes.  相似文献   

6.
Many hypotheses on uroporphyrinogen biosynthesis advanced the possibility that 2-aminomethyltripyrranes formed by porphobilinogen deaminase are further substrates or uroporphyrinogen III co-synthase in the presence of porphobilinogen. These proposals were put to test by employing synthetic 2-aminomethyltripyrranes formally derived from porphobilinogen. None of them was found to be by itself a substrate of deaminase or of co-synthase in the presence of porphobilinogen. The tripyrranes chemically formed uroporphyrinogens by dimerization reactions, and the latter had to be deducted in control runs during the enzymatic studies. Two of the tripyrranes examined, the 2-aminomethyltripyrrane 7 and the 2-aminomethyltripyrrane 8, were found to be incorporated into enzymatically formed uroporphyrinogen III in the presence of porphobilinogen and of the deaminase-co-synthase system. While the former gave only a slight incorporation, the latter was incorporated in about 16%. No incorporation of 8 into uroporphyrinogen I was detected. On the basis of these results, and of the previous results obtained with 2-aminomethyldipyrrylmethanes, an outline of the most likely pathway of uroporphyrinogen III biosynthesis from porphobilinogen is given.  相似文献   

7.
A recombinant plasmid, pArab8, harbouring the cDNA encoding the mature form of the tetrapyrrole synthesis enzyme porphobilinogen deaminase (EC 4.3.1.8; also known as hydroxymethylbilane synthase) from Arabidopsis thaliana (L.) Heynh. has been constructed, and used to transform Escherichia coli. The porphobilinogen deaminase protein from Arabidopsis was overexpressed in this strain, and purified to homogeneity (3000-fold) with a yield of 20%. Antibodies were raised against the purified plant enzyme, and used in Western blot analysis, immunoprecipitation of enzyme activity and immuno-gold electron microscopy. The results indicate that the enzyme is confined to plastids in both leaves and roots. The implications of this finding for plant tetrapyrrole synthesis are discussed.Abbreviations DEAE diethylaminoethyl - FPLC fast protein liquid chromatography - PBG porphobilinogen This work was supported by Science and Engineering Research Council (SERC) and Agricultural and Food Research Council (AFRC) grants to P.M.J. and an AFRC grant to A.G.S. The protein sequencing was carried out by Mr Lawrence Hunt of the SERC MRI Protein Sequencing Unit (Director Dr M.G. Gore) at Southampton University. We acknowledge the Wellcome Foundation for financial support of the Protein and Nucleic Acid Chemistry Facility at the University of Cambridge, where the oligonucleotide primers were synthesised.  相似文献   

8.
In previous studies, aluminium was found to retard bacterial growth and enhance porphyrin formation in Arthrobacter aurescens RS-2. The aim of this study was to establish the mechanism of action of aluminium which leads to increased porphyrin production. Cultures of Arthrobacter aurescens RS-2 were incubated in the absence and presence of 0.74 mm aluminium. After 6 and 24 h of incubation, various parameters of the haem biosynthetic pathway were determined. After 6 h of incubation with aluminium, the activities of the enzymes aminolevulinate synthase (ALAS), aminolevulinate dehydratase (ALAD), porphobilinogen deaminase (PBGD) and uroporphyrinogen decarboxylase (UROD) were increased by 120, 170, 190 and 203%, respectively, while that of ferrochelatase (FC) was found to be unchanged. However, after 24 h of incubation, no change in the activities of ALAS and ALAD was noted, while an about 2-fold increase in PBGD and UROD activities were observed. FC activity was decreased by 63%. It was concluded that aluminium exerts its effect by inducing the enzymes PBGD and UROD rather than by a direct or indirect effect on ALAS. Its effect on the final step in the haem biosynthetic pathway is discussed.  相似文献   

9.
10.
11.
We have cloned and sequenced a full-length cDNA for uroporphyrinogen decarboxylase (UROD, EC 4.1.1.37) from tobacco (Nicotiana tabacum L.) and a partial cDNA clone from barley (Hordeum vulgare L.). The cDNA of tobacco encodes a protein of 43 kDa, which has 33% overall similarity to UROD sequences determined from other organisms. We propose that tobacco UROD has an N-terminal extension of 39 amino acid residues. This extension is most likely a chloroplast transit sequence. The in vitro translation product of UROD was imported into pea chloroplasts and processed to ca. 39 kDa. A truncated cDNA, from which the putative transit peptide had been deleted, was used to over-express the mature UROD in Escherichia coli. Purified protein showed UROD activity, thus providing an adequate source for subsequent enzymatic characterization and inhibition studies. Expression of UROD was investigated by northern and western blot analysis during greening of etiolated barley seedlings, and in segments of barley primary leaves grown under day/night cycles. The amount of RNA and protein increased during illumination Maximum UROD-RNA levels were detected in the basal segments relative to the top of the leaf.Abbreviations ALA 5-aminolevulinic acid - copro coproporphyrin - coprogen coproporphyrinogen - protogen IX protoporphyrinogen IX - UROD uroporphyrinogen decarboxylase - uro uroporphyrin - urogen uroporphyrinogen  相似文献   

12.
The hybrid pathway for heme biosynthesis in the malarial parasite proposes the involvement of parasite genome-coded enzymes of the pathway localized in different compartments such as apicoplast, mitochondria, and cytosol. However, knowledge on the functionality and localization of many of these enzymes is not available. In this study, we demonstrate that porphobilinogen deaminase encoded by the Plasmodium falciparum genome (PfPBGD) has several unique biochemical properties. Studies carried out with PfPBGD partially purified from parasite membrane fraction, as well as recombinant PfPBGD lacking N-terminal 64 amino acids expressed and purified from Escherichia coli cells (DeltaPfPBGD), indicate that both the proteins are catalytically active. Surprisingly, PfPBGD catalyzes the conversion of porphobilinogen to uroporphyrinogen III (UROGEN III), indicating that it also possesses uroporphyrinogen III synthase (UROS) activity, catalyzing the next step. This obviates the necessity to have a separate gene for UROS that has not been so far annotated in the parasite genome. Interestingly, DeltaPfP-BGD gives rise to UROGEN III even after heat treatment, although UROS from other sources is known to be heat-sensitive. Based on the analysis of active site residues, a DeltaPfPBGDL116K mutant enzyme was created and the specific activity of this recombinant mutant enzyme is 5-fold higher than DeltaPfPBGD. More interestingly, DeltaPfPBGDL116K catalyzes the formation of uroporphyrinogen I (UROGEN I) in addition to UROGEN III, indicating that with increased PBGD activity the UROS activity of PBGD may perhaps become rate-limiting, thus leading to non-enzymatic cyclization of preuroporphyrinogen to UROGEN I. PfPBGD is localized to the apicoplast and is catalytically very inefficient compared with the host red cell enzyme.  相似文献   

13.
Uroporphyrinogen III (urogen III) was produced from 5-aminolevulinic acid (ALA), which is a common precursor of all metabolic tetrapyrroles, using thermostable ALA dehydratase (ALAD), porphobilinogen deaminase (PBGD), and urogen III synthase (UROS) of Thermus thermophilus HB8. The UROS-coding gene (hemD 2 ) of T. thermophilus HB8 was identified by examining the gene product for its ability to produce urogen III in a coupled reaction with ALAD and PBGD. The genes encoding ALAD, PBGD, and UROS were separately expressed in Escherichia coli BL21 (DE3). To inactivate indigenous mesophilic enzymes, the E. coli transformants were heated at 70 °C for 10 min. The bioconversion of ALA to urogen III was performed using a mixture of heat-treated E. coli transformants expressing ALAD, PBGD, and UROS at a cell ratio of 1:1:1. When the total cell concentration was 7.5 g/l, the mixture of heat-treated E. coli transformants could convert about 88 % 10 mM ALA to urogen III at 60 °C after 4 h. Since eight ALA molecules are required for the synthesis of one porphyrin molecule, approximately 1.1 mM (990 mg/l) urogen III was produced from 10 mM ALA. The present technology has great potential to supply urogen III for the biocatalytic production of vitamin B12.  相似文献   

14.
High-field NMR spectroscopic methods have been applied to study the reactions catalyzed by porphobilinogen (PBG) deaminase and uroporphyrinogen III (uro'gen III) cosynthase, which are the enzymes responsible for the formation of the porphyrin macrocycle. The action of these enzymes in the conversion of PBG, [2,11-13C]PBG, and [3,5-13C]PBG to uro'gens I and III has been followed by 1H and 13C NMR, and assignments are presented. The principal intermediate that accumulated was the correspondingly labeled (hydroxymethyl)bilane (HMB), the assignments for which are also presented.  相似文献   

15.
16.
A 3.8-kilobase DNA fragment from Bacillus subtilis containing the hemA gene has been cloned and sequenced. Four open reading frames were identified. The first is hemA, encoding a protein of 50.8 kilodaltons. The primary defect of a B. subtilis 5-aminolevulinic acid-requiring mutant was identified as a cysteine-to-tyrosine substitution in the HemA protein. The predicted amino acid sequence of the B. subtilis HemA protein showed 34% identity with the Escherichia coli HemA protein, which is known to code for the NAD(P)H:glutamyl-tRNA reductase of the C5 pathway for 5-aminolevulinic acid synthesis. The B. subtilis HemA protein also complements the defect of an E. coli hemA mutant. The second open reading frame in the cloned fragment, called ORF2, codes for a protein of about 30 kilodaltons with unknown function. It is not the proposed hemB gene product porphobilinogen synthase. The third open reading frame is hemC, coding for porphobilinogen deaminase. The fourth open reading frame extends past the sequenced fragment and may be identical to hemD, coding for uroporphyrinogen III cosynthase. Analysis of deletion mutants of the hemA region suggests that (at least) hemA, ORF2, and hemC may be part of an operon.  相似文献   

17.
Altered hepatic microsomal drug metabolism has been reported to occur in afflicted with hyperbilirubinemia. Similarities of the chemical structures of hydroxymethylbilane, an intermediate in the biosynthesis of uroporphyrinogen, to bilirubin prompted investigations of the effect of bilirubin on the activity of uroporphyrinogen I synthase (porphobilinogen deaminase, EC 4.3.1.8) and the biosynthesis of heme. Bilirubin was found to be a reversible, noncompetitive inhibitor of uroporphyrinogen I synthase. The inhibition constant (Ki) for bilirubin was 1.5 microM. Bile acids had no effect on rat hepatic uroporphyrinogen I synthase activity. Hyperbilirubinemia was achieved in rats by biliary ligation in order to investigate whether elevated levels of bilirubin impair the biosynthesis of hepatic heme in vivo. The relative rate of heme biosynthesis, as measured by the rate of incorporation of delta-[4-14C]aminolevulinic acid into heme, was decreased 59% 24 h after biliary obstruction. The levels of hepatic microsomal heme and cytochrome P-450 were decreased by 43 and 40%, respectively, 72 h after biliary obstruction. The activities of hepatic delta-aminolevulinic acid synthase and uroporphyrinogen I synthase were increased by 39 and 46%, respectively, 72 h after biliary obstruction. During the 48- to 72-h period following biliary obstruction, the urinary excretion of porphobilinogen and uroporphyrin was increased 3.0- and 3.5-fold, respectively, whereas, the urinary excretion of delta-aminolevulinic acid was not altered. During this 48-to 72-h time interval following biliary obstruction, 100% of the uroporphyrin was excreted as isomer I. These results indicate that bilirubin is capable of depressing the biosynthesis of rat hepatic heme and thus cytochrome P-450-mediated drug metabolism by inhibition of the formation of uroporphyrinogen. These findings are a plausible mechanism for reports of impaired clearance of various drugs in patients afflicted with hyperbilirubinemic disease states.  相似文献   

18.
A protein had been previously described, which was labeled by radioactive 5-aminolevulinic acid in isolated developing chloroplasts. In the present study we have shown that this protein (Mr approximately equal to 43,000) probably exists as a monomer in the chloroplast stroma. The labeling is blocked if known inhibitors of 5-aminolevulinic acid dehydratase are added to the incubation mixture, and is markedly decreased in intensity if nonradioactive 5-aminolevulinate or porphobilinogen are added to the incubation mixture; other intermediates in the porphyrin biosynthetic pathway, uroporphyrinogen III, uroporphyrin III, and protoporphyrin IX, do not decrease the labeling of the 43-kDa protein appreciably. Nondenaturing gels of the proteins isolated from the incubation with radioactive 5-aminolevulinic acid were stained for porphobilinogen deaminase activity. A series of red fluorescent bands was obtained which coincided with the radioactive bands visualized by autoradiography. It is concluded that the soluble chloroplast protein that is labeled in organello by radioactive 5-aminolevulinic acid is porphobilinogen deaminase.  相似文献   

19.
The detection and accumulation of tetrapyrrole intermediates synthesized by the action of bovine liver porphobilinogen deaminase immobilized to Sepharose 4B is reported. Employing Sepharose-deaminase preparations, two phases in uroporphyrinogen I synthesis as a function of time were observed, suggesting the accumulation of free and enzyme-bound intermediates, the concentration and distribution of which were time dependent. The deaminase-bound intermediate behaves as a substrate in uroporphyrinogen I synthesis whereas the free intermediates produce enzyme inhibition. The tetrapyrrole intermediate bound to the Sepharose-enzyme is removed from the protein by the binding of porphobilinogen. Free as well as enzyme-bound intermediates are shown to be substrates for cosynthetase with formation of 80% uroporphyrinogen III.  相似文献   

20.
Summary Heme-deficient mutants of Saccharomyces cerevisiae have been isolated from two isogenic strains with the use of an enrichment method based on photodynamic properties of Zn-protoporphyrin. They defined seven non-overlapping complementation groups. A mutant representative of each group was further analysed. Genetic analysis showed that each mutant carried a single nuclear recessive mutation. Biochemical studies showed that the observed accumulation and/or excretion of the different heme synthesis precursors by the mutant cells correlated well with the enzymatic deficiencies measured in acellular extracts. Six of the seven mutants were blocked in a different enzyme activity: 5-aminolevulinate synthase, porphobilinogen synthase, uroporphyrinogen I synthase, uroporphyrinogen decarboxylase, coproporphyrinogen III oxidase and ferrochelatase. The other mutant had the same phenotype as the mutant deficient in ferrochelatase activity. However, it possessed a normal ferrochelatase activity when measured in vitro, so this mutant was assumed to be deficient in protoporphyrinogen oxidase activity or in the transport and/or reduction of iron.The absence of PBG synthesis led to a total lack of uroporphyrinogen I synthase activity. The absence of heme, the end product, led to an important increase of coproporphyrinogen III oxidase activity, while the activity of 5-aminolevulinate synthase, the first enzyme of the pathway, was not changed. These results are discussed in terms of possible modes of regulation of heme synthesis pathway in yeast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号