首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Liu B  Raeth T  Beuerle T  Beerhues L 《Planta》2007,225(6):1495-1503
Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.  相似文献   

3.
Li N  Ma DL  Liu X  Wu L  Chu X  Wong KY  Li D 《The protein journal》2007,26(8):569-576
The structurally related tetrapyrrolic pigments are a group of natural products that participate in many of the fundamental biosynthetic and catabolic processes of living organisms. Urogen III synthase catalyzes a key step in the formation of urogen III, a common intermediate for tetrapyrrolic natural products. In the present study, we cloned, purified, and characterized His-tagged rat urogen III synthase. The mechanism of enzymatic reaction was studied through site-directed mutagenesis of eight highly conserved residues with functional side chains around the active site followed with activity tests. Lys10, Asp17, Glu68, Tyr97, Asn121, Lys147, and His173 have not been studied previously, which were found to be unessential for enzymatic reaction. Tyr168 was identified as an important residue for enzymatic reaction catalyzed by rat urogen III synthase. Molecular modeling suggests the hydroxyl group of Tyr168 side chain is 3.5 A away from the D ring, and is within hydrogen bond distance (1.9 A) with acetate side chain of the D ring.  相似文献   

4.
Two forms of sucrose-phosphate synthase (EC 2.4.1.14) were resolved from leaves of three species, maize (Zea mays L. cv. Pioneer 3184), soybean (Glycine max (L.) Merr., cv. Ransom) and spinach (Spinacia oleracea L. cv. Resistoflay) by hydroxyapatite Ultrogel chromatography, using a 75-mM (designated peak 1) and 250-mM (peak 2) K-phosphate discontinuous-gradient elution. Rechromatography of the two forms showed that they were not readily interconvertible. The distribution of activity between the two forms differed among species and changed during purification of the enzyme. Recovery of peak-1 activity was specifically lowered when maize leaf extracts were prepared in the absence of magnesium, indicating that the two forms may differ in stability. In addition, the forms of the enzyme from maize differed in the extent of glucose-6-phosphate activation. These results provide evidence for the existence of multiple forms of sucrose-phosphate synthase in leaves of different species and that the forms differ in regulatory properties.Abbreviations Fru6P fructose 6-phosphate - Glc6P glucose 6-phosphate - HAU hydroxyapatite Ultrogel - Pi inorganic phosphate - SPS sucrose-phosphate synthase - UDP uridine 5-diphosphate - UDPG uridinediphosphate glucose Cooperative investigations of the United States Department of Agriculture, Agricultural Research Service, and the North Carolina Agricultural Research Service, Raleigh. Paper No. 10511 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh. Supported in part by USDA Competitive Research Grant No. 85-CRCR-1-1568  相似文献   

5.
The biosynthesis of one riboflavin molecule requires one molecule of GTP and two molecules of ribulose 5-phosphate as substrates. GTP is hydrolytically opened, converted into 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione by a sequence of deamination, side chain reduction and dephosphorylation. Condensation with 3,4-dihydroxy-2-butanone 4-phosphate obtained from ribulose 5-phosphate leads to 6,7-dimethyl-8-ribityllumazine. The final step in the biosynthesis of the vitamin involves the dismutation of 6,7-dimethyl-8-ribityllumazine catalyzed by riboflavin synthase. The mechanistically unusual reaction involves the transfer of a four-carbon fragment between two identical substrate molecules. The second product, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, is recycled in the biosynthetic pathway by 6,7-dimethyl-8-ribityllumazine synthase. This article will review structures and reaction mechanisms of riboflavin synthases and related proteins up to 2007 and 122 references are cited.  相似文献   

6.
7.
We have cloned the first bifunctional gene dihydrofolate reductase-thymidylate synthase (DHFR-TS) from a free-living, ciliated protozoan,Paramecium tetraurelia, and determined its macronuclear sequence using a modified ligation-mediated polymerase chain reaction (PCR) that can be of general use in cloning strategies, especially where cDNA libraries are limiting. While bifunctional enzyme sequences are known from parasitic protozoa, none had previously been found in free-living protozoa. The AT-rich (68%) coding region spanning 1386 bp appears to lack introns. DHFR-TS localizes to a 500 kb macronuclear chromosome and is transcribed as an mRNA of 1.66 kb, predicted to encode a 53 kDa protein of 462 residues. The N-terminal one-third of the protein is encoded by DHFR, which is joined by a short junctional peptide of 12 amino acids to the highly conserved C-terminal TS domain. Among known DHFR-TS sequences, theP. tetraurelia gene is most similar to that fromToxoplasma gondii, based on primary sequence and parsimony analyses. The predicted secondary protein structure is similar to those of previously crystallized monofunctional sequences.  相似文献   

8.
The Escherichia coli fabH gene encoding 3-ketoacyl-acyl carrier protein synthase III (KAS III) was isolated and the effect of overproduction of bacterial KAS III was compared in both E. coli and Brassica napus. The change in fatty acid profile of E. coli was essentially the same as that reported by Tsay et al. (J Biol Chem 267 (1992) 6807–6814), namely higher C14:0 and lower C18:1 levels. In our study, however, an arrest of cell growth was also observed. This and other evidence suggests that in E. coli the accumulation of C14:0 may not be a direct effect of the KAS III overexpression, but a general metabolic consequence of the arrest of cell division. Bacterial KAS III was expressed in a seed- and developmentally specific manner in B. napus in either cytoplasm or plastid. Significant increases in KAS III activities were observed in both these transformation groups, up to 3.7 times the endogenous KAS III activity in mature seeds. Only the expression of the plastid-targeted KAS III gene, however, affected the fatty acid profile of the storage lipids, such that decreased amounts of C18:1 and increased amounts of C18:2 and C18:3 were observed as compared to control plants. Such changes in fatty acid composition reflect changes in the regulation and control of fatty acid biosynthesis. We propose that fatty acid biosynthesis is not controlled by one rate-limiting enzyme, such as acetyl-CoA carboxylase, but rather is shared by a number of component enzymes of the fatty acid biosynthetic machinery.  相似文献   

9.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   

10.
Chalcone synthase (CHS) genes in Petunia hybrida comprise a multigene family containing at least 7 complete members in the strain Violet 30 (V30). Based on a high sequence homology in both coding and non-coding sequence, a number of CHS genes can be placed into two subfamilies. By restriction fragment length polymorphism (RFLP) analysis it was shown that both chromosomes II and V carry one of these subfamilies, in addition to the other CHS genes identified so far. Members of a subfamily were found to be closely linked genetically. Analysis of the Petunia species that contributed to the hybrid nature of P. hybrida (P. axillaris, P. parodii, P. inflata and P. violacea) shows that none of the CHS gene clusters is specific for either one of the parents and therefore did not arise as a consequence of the hybridization. The number of CHS genes within a subfamily varies considerably among these Petunia species. From this we infer that the CHS subfamilies arose from very recent gene duplications.  相似文献   

11.
12.
13.
We have analysed the expression of the 8–10 members of the gene family encoding the flavonoid biosynthetic enzyme chalcone synthase (CHS) from Petunia hybrida. During normal plant development only two members of the gene family (CHS-A and CHS-J) are expressed. Their expression is restricted to floral tissues mainly. About 90% of the total CHS mRNA pool is transcribed from CHS-A, wheares CHS-J delivers about 10% in flower corolla, tube and anthers. Expression of CHS-A and CHS-J during flower development is coordinated and (red) light-dependent. In young seedlings and cell suspension cultures expression of CHS-A and CHS-J can be induced with UV light. In addition to CHS-A and CHS-J, expression of another two CHS genes (CHS-B and CHS-G) is induced in young seedlings by UV light, albeit at a low level. In contrast to CHS genes from Leguminoseae, Petunia CHS genes are not inducible by phytopathogen-derived elicitors. Expression of CHS-A and CHS-J is reduced to a similar extent in a regulatory CHS mutant, Petunia hybrida Red Star, suggesting that both genes are regulated by the same trans-acting factors. Comparison of the promoter sequences of CHS-A and CHS-J reveals some striking homologies, which might represent cis-acting regulatory sequences.  相似文献   

14.
15.
The F0 sector of the ATP synthase complex facilitates proton translocation through the membrane, and via interaction with the F1 sector, couples proton transport to ATP synthesis. The molecular mechanism of function is being probed by a combination of mutant analysis and structural biochemistry, and recent progress on theEscherichia coli F0 sector is reviewed here. TheE. coli F0 is composed of three types of subunits (a, b, andc) and current information on their folding and organization in F0 is reviewed. The structure of purified subunitc in chloroform-methanol-H2O resembles that in native F0, and progress in determining the structure by NMR methods is reviewed. Genetic experiments suggest that the two helices of subunitc must interact as a functional unit around an essential carboxyl group as protons are transported. In addition, a unique class of suppressor mutations identify a transmembrane helix of subunita that is proposed to interact with the bihelical unit of subunitc during proton transport. The role of multiple units of subunitc in coupling proton translocation to ATP synthesis is considered. The special roles of Asp61 of subunitc and Arg210 of subunita in proton translocation are also discussed.  相似文献   

16.
The major class of glucosinolates in Arabidopsis thaliana (L.) Heynh. are biosynthesized from methionine involving a three-step chain-elongation cycle. Each passage through the cycle results in the net addition of a single methylene group, with up to six cycles of elongation occurring in A. thaliana. The first reaction of the cycle is catalyzed by a methylthioalkylmalate synthase (MAMS), which condenses a -methylthio-2-oxoalkanoic acid with acetyl-CoA. Here we have demonstrated that MAM1, one of two similar genes in the A. thaliana ecotype Columbia, encodes a MAMS catalyzing the condensing reactions of the first two elongation cycles but not those of further cycles. The Columbia ecotype is dominated by compounds that have undergone only two elongation cycles. The A. thaliana MAM1 protein exhibits basic sequence similarity to other previously described enzymes catalyzing the condensation of 2-oxo acids and acetyl-CoA, such as isopropylmalate synthase (EC 2.3.3.13), an enzyme of leucine biosynthesis, and homocitrate synthase (EC 2.3.3.14). It also shares similar properties with them, including the catalytic requirements for a divalent metal ion and an adenine nucleotide. However, the MAM1 protein does not show activity with the substrates of any of these other enzymes, and was chromatographically separable from isopropylmalate synthase in extracts of A. thaliana. Thus, MAM1 is exclusively an enzyme of secondary metabolism, distinct from primary metabolic enzymes catalyzing similar reactions.Abbreviations IPMS Isopropylmalate synthase - MAM Methylthioalkylmalate - MAMS Methylthioalkylmalate synthase  相似文献   

17.
A novel sulfite oxidase has been identified from Thermus thermophilus AT62. Despite this enzyme showing significant amino-acid sequence homology to several bacterial and eukaryal putative and identified sulfite oxidases, the kinetic analysis, performed following the oxidation of sulfite and with ferricyanide as the electron acceptor, already pointed out major differences from representatives of bacterial and eukaryal sources. Sulfite oxidase from T. thermophilus, purified to homogeneity, is a monomeric enzyme with an apparent molecular mass of 39.1 kDa and is almost exclusively located in the periplasm fraction. The enzyme showed sulfite oxidase activity only when ferricyanide was used as electron acceptor, which is different from most of sulfite-oxidizing enzymes from several sources that use cytochrome c as co-substrate. Spectroscopic studies demonstrated that the purified sulfite oxidase has no cytochrome like domain, normally present in homologous enzymes from eukaryotic and prokaryotic sources, and for this particular feature it is similar to homologous enzyme from Arabidopsis thaliana. The identified gene was PCR amplified on T. thermophilus AT62 genome, expressed in Escherichia coli and the recombinant protein identified and characterized.  相似文献   

18.
A method to assemble linear expression elements for rapid gene expression is described. Primers containing target specific sequences and N.Bpu10 I nickase recognition sites were used to amplify promoter, open reading frame and terminator fragments. Amplified fragments were treated with N.Bpu10 I nickase and exonuclease III to generate overhangs for directional ligation. These fragments were ligated and further amplified with element-specific primers. The amplified DNA was transfected into mammalian cells for gene expression.  相似文献   

19.
The light-harvesting complex of photosystem II (LHC II) contains one major (LHC IIb) and at least three minor chlorophyll-protein components. The apoproteins of LHC IIb (LHCP) are encoded by nuclear genes and synthesized in the cytoplasm as a higher molecular weight precursor(s) (pLHCP). Several genes coding for pLHCP have been cloned from various higher plant species. The expression of these genes is dependent upon a variety of factors such as light, the developmental stage of the plastids and the plant. After its synthesis in the cytoplasm, pLHCP is imported into plastids, inserted into thylakoids, processed to its mature form, and assembled into LHC IIb. The pathway of assembly of LHC IIb in the thylakoid membranes is currently being investigated in several laboratories. We present a model that gives some details of the steps in the assembly process. Many of the steps involved in the synthesis and assembly are dependent on light and the stage of plastid development.Abbreviations PS Photosystem - LHC II Light-harvesting complex of PS II - LHCP Apoproteins of LHC IIb - pLHCP Precursor of LHCP - PAGE Polyacrylamide gel electrophoresis  相似文献   

20.
The chalcone synthase is a key enzyme that catalyses the first dedicated reaction of the flavonoid pathway in higher plants. The chs gene and its protein product in rice has been investigated. The presence of a chalcone synthase (CHS) protein in rice seedlings and its developmental stage-specific expression has been demonstrated by western analysis. The chalcone synthase of rice was found to be immunologically similar to that of maize. A rice cDNA clone, Os-chs cDNA, encoding chalcone synthase, isolated from a leaf cDNA library of an indica rice variety Purpleputtu has been mapped to the centromeric region of chromosome 11 of rice. It was mapped between RFLP markers RG2 and RG103. RG2 is the nearest RFLP marker located at a genetic distance of 3.3 cM. Some segments of chromosome 11 of rice including chs locus are conserved on chromosome 4 of maize. The markers, including chs locus on chromosome 11 of rice are located, though not in the same order, on chromosome 4 of maize. Genetic analysis of purple pigmentation in two rice lines, Abhaya and Shyamala, used in the present mapping studies, indicated the involvement of three genes, one of which has been identified as a dominant inhibitor of leaf pigmentation. The Os-chs cDNA shows extensive sequence homology, both for DNA and protein (deduced), to that of maize, barley and also to different monocots and dicots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号