首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mapping QTLs for tissue culture response of mature wheat embryos   总被引:4,自引:0,他引:4  
Jia H  Yi D  Yu J  Xue S  Xiang Y  Zhang C  Zhang Z  Zhang L  Ma Z 《Molecules and cells》2007,23(3):323-330
The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of "Wangshuibai" with "Nanda2419" which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.  相似文献   

2.
Callus tissue cultures were initiated from immature embryos, mature embryos and young inflorescences of Guinea grass (Panicum maximum Jacq.) on Murashige and Skoog's (MS) medium supplemented with 2.5–10 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D). Calluses were transferred onto the same nutrient medium with 0.2 mg/l 2,4-D, or without 2,4-D. In callus cultures derived from immature embryos and young inflorescence segments, plantlets were produced via somatic embryogenesis after 3–5 wk. Young plants were successfully transplanted to pots and grown in the greenhouse. Plant development in callus obtained from mature embryos took place through the organization of shoot meristems. Regenerated plants were shown to have the normal tetraploid chromosome number of 2n = 4x = 32.  相似文献   

3.
This study was conducted in order to identify quantitative trait loci (QTLs) for the in vitro culture response of winter rye (Secale cereale L.) immature embryos and immature inflorescences. A genetic linkage map comprising 67 SSRs, 9 ISSRs, 13 SAMPLs, 7 RAPDs, 2 SCARs and one EST marker was created based on the analyses of 102 recombinant inbred lines from the cross between lines L318 (which has a good response in tissue cultures) and L9 (which is unable to regenerate plants from somatic tissues and anthers). The map spans 979.2 cM, and the average distance between markers is 9.9 cM. Two characteristics were evaluated: callus induction (CI) and somatic embryogenesis ability (SE). They were expressed as the percentage of immature embryos/inflorescences producing callus (designated ECI/ICI) and the percentage of explants producing somatic embryos (ESE/ISE). All the analysed traits showed continuous variation in the mapping population but a non-normal frequency distribution. We identified nine putative QTLs controlling the tissue culture response of rye, explaining up to 41.6% of the total phenotypic variation: two QTLs for ECI — eci-1, eci-2; 4 for ESE — ece-1, ese-2, ese-3, ese-4; 2 for ICI — ici-1, ici2; and 1 for ISE — ise-1. They were detected on chromosomes 1R, 4R, 5R, 6R and 7R.  相似文献   

4.
Summary The ability of immature embryos, inflorescences and leaves of Secale vavilovii to form embryogenic callus was tested on Murashige and Skoog (1962) medium supplemented with different concentrations of 2,4-D. All cultured immature embryos formed calluses. The highest percentage of embryogenic callus production was from 1–2 mm embryos. Young leaves also formed calluses, mainly from the 10–15 mm basal segment, the percentages of embryogenic calluses being higher when cultures were maintained in darkness. Embryogenic calluses were obtained also from all the cultured immature inflorescences, in the three cases, rooted green plants were obtained and grown in soil. Comparison of the responses of the three explants used indicates that immature inflorescence is the most useful explant for obtaining regenerated plants in Secale vavilovii.  相似文献   

5.
Fusarium head blight (FHB or scab) caused by Fusarium species is a destructive disease in wheat, not only causing dramatic decrease of grain yield and quality, but also leading to serious mycotoxin contamination in the infected grains. This study was conducted to identify and quantify quantitative trait loci (QTLs) contributing to resistance to deoxynivalenol (DON) accumulation as well as to grain yield loss in a population of 152 F7 recombinant inbred lines (RILs) derived from the cross Veery/CJ 9306. DON content in scabby grains and relative decreases of yield components were analyzed. Two new QTLs (QFhs.nau-2DL and QFhs.nau-1AS) for resistance to DON accumulation caused by FHB in wheat were detected, and QTLs QFhs.ndsu-3BS and QFhs.nau-5AS were also validated in CJ 9306, based on a constructed genetic linkage map. On the average of three experiments, major QTLs QFhs.ndsu-3BS and QFhs.nau-2DL explained up to 23 and 20% of phenotypic variation, respectively. QFhs.nau-1AS and QFhs.nau-5AS separately explained 4–6% of phenotypic variation. The differences among years/experiments were significant for all the four QTLs. However, the QTL × environment interaction was significant only for QFhs.nau-2DL, but not for the others. The results suggest that simple sequence repeat (SSR) markers Xgwm533b associated with QFhs.ndsu-3BS, and Xgwm539 associated with QFhs.nau-2DL could be used in marker-assisted selection to enhance resistance to DON accumulation. QFhs.ndsu-3BS + QFhs.nau-2DL and QFhs.nau-2DL + QFhs.nau-5AS would be the optimum choices for two-locus combinations. QFhs.ndsu-3BS was also validated in CJ 9306 for resistance to grain yield loss, explaining 8–15% of phenotypic variation. No QTLs for resistance to DON accumulation or grain yield loss independent of Type II resistance were found. By comparison, however, either of QFhs.nau-2DL or QFhs.nau-5AS alone and their combination were more contributive to resistance to DON accumulation than to Type II resistance.  相似文献   

6.
Summary Quantitative data are presented on the efficiency of three stages of plant regeneration from somatic embryos of Norway spruce (Picea abies L.): 1) Maturation, the development of immature embryos to the cotyledonary stage; 2) Germination, primary root growth; and 3) Conversion, plantlet survival and continued growth in nonaxenic conditions. Maturation frequency was calculated relative to the number of immature somatic embryos induced to develop on the basal medium of von Arnold and Eriksson (1981). The average number of immature somatic embryos was 700 per gram of embryogenic callus, on medium supplemented with ABA and IBA (1 μM each). Maturation was the least efficient stage of regeneration; an average of 3% of the embryos induced to develop reached the cotyledonary stage. Mean germination frequencies were improved on treatments which avoided immersion of the radicle in medium solidified with agar. Whereas, 27% of the somatic embryos germinated when radicles were immersed in agar medium, 45% germinated when placed on the surface of the medium, and 56% germinated when cotyledons were immersed in agar medium and the culture vessel inverted. Twenty-nine percent of the somatic embryos germinatedin vitro were converted to plants. Under greenhouse conditions these plants set dormant buds, subsequently survived overwintering (to −5°C), and renewed vegetative growth synchronously with seedlings grown under the same conditions. Our results verified long-term (2 year) growth and development potential of conifer somatic embryo plants.  相似文献   

7.
Cotyledonary tissue from immature embryos of Glycine canescens was induced to callus and then form embryo-like structures. These structures could be cultured into whole plants and grown in soil.  相似文献   

8.
Summary Kalopanax pictus (Thunb.) Nakai is a tall tree, and its wood has been used in making furniture, while its stem bark is used for medicinal purposes. Here, we report on the micropropagation of Kalopanax pictus via somatic embryogenesis. Embryogenic callus was induced from immature zygotic embryos. The frequency embryogenic callus induction is influenced by days of seed harvest. Callus formation was primarily observed along the radicle tips of zygotic embryos incubated on Murashige and Skoog (MS) medium with 4.4 μM 2,4-dichlorophenoxyacctic acid (2,4-D). Somatic embryogenesis was observed following transfer of embryogenic callus to MS medium lacking 2,4-D. Somatic embryos at the cotyledonary stage were obtained after 6 wk following culture. Frequency of conversion of somatic embryos into plantlets was low (35%) on a hormone-free MS basal medium, but it increased to 61% when the medium was supplemented with 0.05% charcoal. Gibberellic acid (GA3) treatment markedly enhanced the germination frequency of embryos up to 83%. All plantlets obtained showed 98% survival on moist peat soil (TKS2) artificial soil matrix. About 30 000 Kalopanax pictus plants were propagated via somatic embryogenesis and grown to 3-yr-old plants. These results indicate that production of woody medicinal Kalopanax pictus plantlets through somatic embryogenesis can be practically applicable for propagation.  相似文献   

9.
Summary With the aim of the development of a culture method for efficient plant regeneration from barley (Hordeum vulgare L.) protoplasts, we examined several culture conditions for primary calli from immature embryos of cvs. Dissa and Igri, which were used for initiation of cell suspensions. Among the primary callus culture conditions tested, growth condition of donor plants had a great impact on these efficiencies; Igri protoplasts derived from embryos of plants grown in a greenhouse gave rise to albino plants and few green shoots while several cell lines originating from embryos of plants grown in a growth chamber (16h light, 12°C) yielded protoplasts developing into green plants. In contrast, cell suspensions were produced at higher frequencies from calli derived from embryos of greenhouse-grown Dissa plants. In Igri, increased levels of 2,4-dichlorophenoxyaceticacid (2,4-D) significantly reduced the efficiency of cell suspension establishment and plant regeneration from protoplasts was achieved only with suspension cells derived from calli induced at the lowest level (2.5 mg/l), while the effect of the 2,4-D concentration was not clear in Dissa. The developmental stage of immature embryos also affected the efficiency of cell suspension establishment, and the optimal embryo size was determined to be approximately 1mm in diameter. These results demonstrate the importance of callus induction conditions for successful barley protoplast culture.  相似文献   

10.
Embryogenic calli were initiated from embryonic explants of Pinus roxburghii using female gametophytes containing immature pre-cotyledonary embryos. Zygotic embryos were collected at different developmental stages and cultured on various media. Initiation of embryogenic calli was achieved in pre-cotyledonary zygotic embryos of a 0.1-mm to 1.2-mm embryonal head on Douglus fir cotyledon revised medium (DCR) medium supplemented with 2,4-D or NAA and BA. Embryogenic callus development was initiated from the suspensor region of immature embryos. The method of immature embryo culture was significant as rapid embryogenic callus development occurred in megagametophytes where the suspensor was stretched onto the medium from the cut micropylar end. Sixty embryogenic lines were established from 2500 explants cultured during one season. A pro-embryo with six to eight meristematic cells and suspensor of six to ten long, vacuolated cells dominated the early phase of the callus development. Cleavage polyembryony occurred in proliferating callus, constituting a method of multiplication of these somatic embryos. Somatic embryos developed to stage-I and stage-II embryos on DCR medium supplemented with 5 μM 2,4-D or 10 μM NAA. Received: 30 June 1999 / Revision received: 15 November 1999 / Accepted: 3 December 1999  相似文献   

11.
Fertile regenerated plants were obtained from protoplasts via somatic embryogenesis in Coker 201 (Gossypium hirsutum L.). Protoplasts were isolated from six different explantsleaves, hypocotyls, young roots, embryogenic callus, immature somatic embryos and suspension cultures and cultured in liquid thin layer KM8P medium. Callus-forming percentage of 20–50% was obtained in protoplast cultures from embryogenic callus, immature embryos and suspension cultures, and visible callus formed within 2 months. Callus-forming percentage of 5–20% in protoplast cultures from young roots, hypocotyls and leaves, and visible callus formed in 3 months. NAA 5.371 μM/kinetin 0.929 μM was effective to stimulate protoplast division and callus formation from six explants. Percentage of callus formation in the medium with 2,4-D 0.452 μM/kinetin 0.465 μM was over 40% from suspension cultures and immature embryos, 25% from embryogenic callus and 10% from hypocotyls. Callus from protoplasts developed into plantlets via somatic embryogenesis. Over 100 plantlets were obtained from protoplasts derived from 6 explants. Ten plants have been transferred to the soil, where they all have set seeds.  相似文献   

12.
In the summer of 1983, immature embryos from 101 selfed inbred lines and germplasm stocks of Zea mays L. were examined for their ability to produce callus cultures capable of plant regeneration (regenerable cultures) using a medium with which some limited success had previously been obtained. Forty-nine of the genotypes (49%) produced callus which visually appeared similar to callus previously cultured and shown to be capable of plant regeneration. After five months, 38 of these genotypes were alive in culture and plants were subsequently regenerated from 35 (92%) of them. No correlation was observed between plant regeneration and callus growth rate, the vivipary mutation (genes vp1, 2, 5, 7, 8 and 9), or published vigor ratings based on K+ uptake by roots. When F1 hybrid embryos were cultured, 97% of the hybrids having at least one regenerable parent also produced callus capable of plant regeneration. No regenerable cultures were obtained from any hybrid lacking a parent capable of producing a regenerable callus culture.In the summer of 1984, immature embryos from 218 additional inbred lines and germplasm stocks were plated and examined for their ability to produce regenerable callus cultures on media containing altered micronutrient concentrations, 3,6-dichloro-o-anisic acid (dicamba), glucose, and elevated levels of vitamin-free casamino acids and thiamine. Of these genotypes 199 (91%) produced callus that was regenerable in appearance. In the 1984 study, plant regeneration was noted in many commercially important inbreds, including B73, Mo17, B84, A632, A634, Ms71, W117, H993H95 and Cm105. Thus tissue-culture techniques are now available to obtain callus cultures capable of plant regeneration from immature embryos of most maize genotypes.Abbreviations trade names 2,4-D 2,4-dichlorophenoxyacetic acid - dicamba 3,6-dichloro-o-anisic acid  相似文献   

13.
Summary Production of transgenic maize (Zea mays L.) callus, plants, and progeny from microprojectile bombardment of 2–5-d cultured Hi-II immature embryos is described. Histological evidence indicates that these tissues are amenable to transformation due to surface layer cell division of the scutellum. Two out of every 100 bombarded embryos produced transgenic callus and R0 transgenic plants were both male and female fertile. Expected segregation of transgenes was observed in progeny. The primary advantage of bombarding these tissues is increased male and female fertility of transgenic plants compared with those produced using long-term callus or suspension cultures.  相似文献   

14.
Embryogenic callus was induced from immature embryos of Angelica sinensis cultured on Murashige and Skoog (MS) basal medium. Embryogenic callus growth was more rapid on MS basal medium than on B5 or White medium. Embryogenic callus was used to establish a suspension culture and somatic embryos and germinating embryos developed during the culture. A shaking speed of 80 rpm was found to be optimal for establishing suspension cultures, while 100 rpm produced more somatic embryos and germinating embryos with an initiation cell density of 0.2 ml packed cell volume/25 ml medium. Adding 0.3% agar to the liquid medium also stimulated the formation of somatic and germinating embryos. While no plant growth regulators were needed for culture initiation and plant regeneration, the addition of 0.5–1 mg/l 2,4-dichlorophenoxyacetic acid was needed to maintain the embryogenic suspension culture by preventing embryo germination. Forty percent of the germinating embryos survived after culturing on filter paper moistened with liquid half-strength MS medium containing 3% sucrose. The plants were successfully transferred into soil. Received: 19 March 1997 / Revision received: 21 November 1997 / Accepted: 19 January 1998  相似文献   

15.
Somatic embryogenesis and plant regeneration were successfully established on Nitsch and Nitsch (NN) medium from immature zygotic embryos of six genotypes of grapevine (Vitis vinifera). The optimum hormone combinations were 1.0 mg dm−3 2,4-dichlorophenoxyacetic acid (2,4-D) for callus induction and 1.0 mg dm−3 α-naphthalene acetic acid (NAA) + 0.5 mg dm−3 6-benzyladenine (BA) for embryos production and 0.03 mg dm−3 NAA + 0.5 mg dm−3 BA for embryos conversion and plant regeneration. The frequency of somatic embryogenesis varied from 10.5 to 37.5 % among six genotypes and 15.5–42.1 % of somatic embryos converted into normal plantlets. The analysis of DNA content determined by flow cytometry and chromosome counting of the regenerated plantlets clearly indicated that no ploidy changes were induced during somatic embryogenesis and plant regeneration, the nuclear DNA content and ploidy levels of the regenerated plants were stable and homogeneous to those of the donor plants. RAPD markers were also used to evaluate the genetic fidelity of plants regenerated from somatic embryos. All RAPD profiles from regenerated plants were monomorphic and similar to those of the field grown donor plants. We conclude that somaclonal variation is almost absent in our grapevine plant regeneration system.  相似文献   

16.
An improved regeneration protocol suitable for transformation of sorghum was developed. The improvements focused on limiting the production of phenolic compounds and the use of suitable culture vessels for each developmental stage in plant regeneration from immature embryo derived calli. The addition of activated charcoal in the callus induction medium reduced the production of black pigments, however it also inhibited the callus formation on immature embryo explants. Cold pre-treatment of the immature seeds from which embryo explants were excised had a positive effect on both explant survival and callus formation. A one-day 4°C treatment of immature seeds significantly improved the callus formation from immature embryos and reduced the need for frequent subculture. Petri dishes with ventilation were suitable for the callus induction phase, but not for plant regeneration. Regeneration of plants could be improved by using disposal plastic boxes (250 ml volume) instead of Petri dishes. Agrobacterium-mediated transformation using the improved regeneration protocol and the hygromycin phosphotransferase gene as selectable marker resulted in the recovery of 15 transgenic plants from 300 initial immature embryos (5% efficiency). The transgenic nature of the obtained plants was demonstrated by Southern hybridisation and progeny analysis. The transgenes were inherited in a Mendelian fashion and were integrated at a single locus in the majority of the analysed lines.  相似文献   

17.
Summary This study investigated factors affecting the production of somatic embryos in Blighia sapida (ackee). Explants obtained from fully expanded leaves or cotyledons of immature zygotic embryos excised from brown (BSCZE) or green seeds (GSCZE) were cultured on Murashige and Skoog medium supplemented with 9, 18 and 36μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 4.4 or 22.1 μM benzylaminopurine (BAP) or 0.2–19.9 μM thidiazuron (TDZ). Leaf explants grown on media supplemented with the different combinations of 2,4-D and BAP formed callus, but they were non-embryogenic, while explants were not responsive on TDZ-supplemented media. GSCZE explants grown in the presence of 2,4-D/BAP combinations of 9/4.4, 18/4.4 or 36/4.4 μM formed non-embryogenic callus profusely, but explants gave rise to organized globular protuberances (GPs) and non-embryogenic callus on media containing TDZ, with the best concentration at 0.4 μM. BSCZE explants grown on TDZ-supplemented media also formed callus, but no GPs were detected. When GPs were cultured on media containing TDZ and abscisic acid they (ABA), gave rise to the highest number of somatic embryos. The medium was also beneficial for the development of somatic embryos from the globular to cotyledonary stage.  相似文献   

18.
Fusarium head blight or scab resistance in wheat is a complex quantitative trait affected greatly by environments. Therefore, the quantitative trait loci (QTL) for scab resistance found in mapping projects require validation to be effectively utilized in breeding programs. In this study, by employing both forward and background selections with the help of molecular markers, near-isogenic lines (NILs) for scab resistance QTLs Qfh.nau-2B, Qfhs.nau-3B, Qfhi.nau-4B and Qfhi.nau-5A, three of which originating in scab resistance germplasm Wangshuibai, were developed with the elite line Miangyang 99-323 as the recurrent parent. During the process of backcross, selection was based solely on marker genotypes of the target regions, and on recipient genome recovery rate in BC2F1 and BC3F1. All the identified BC3F1 plants with the target QTL regions have more than 94% recipient genome composition (RGC), and out of four to five of them a plant with over 97% RGC were obtained in each backcross combination. Compared with Mianyang 99-323, the Qfhs.nau-3B NIL showed much better resistance to disease spread within spikes, the Qfhi.nau-4B and Qfhi.nau-5A NILs showed much better resistance to initial infection, and the Qfh.nau-2B NIL showed improvement in both types of resistance. These results were consistent with findings in the previous QTL mapping studies. Morphologically and agronomically these NILs were similar to Mianyang 99-323 except that Qfhi.nau-4B NIL was taller and had a longer spike, and Qfhi.nau-5A NIL had narrower leaves. These results demonstrated the feasibility of marker-assisted utilization of scab resistance QTLs.  相似文献   

19.
Summary Indirect somatic embryogenesis, encapsulation, and plant regeneration was achieved with the rare rhoeophytic woody medicinal plant Rotula aquatica Lour. (Boraginaceae). Friable callus developed from leaf and internode explants on Murashige and Skoog (MS) medium with 0.45 μM 2,4-dichlorophenoxyacetic, acid (2,4-D) was most effective for the induction of somatic embryos. Subculture of the callus onto half-strength MS medium with the same concentration of 2,4-D resulted in highly embryogenic callus. Suspension culture was superior to solid medium culture for somatic embryogenesis. Embryogenic callus.during subsequent transfer to suspension cultures of half-strength MS medium having 0.23 μM 2,4-D induced the highest number of somatic embryos (a mean of 25.6 embryos per 100 mg callus) and the embryos were grown up to the torpedo stage. Transfer of embryos to half-strength MS basal solid medium allowed development, of 50% of the embryos to the cotyledonary stage. Of the cotyledonary embryos, 90% underwent conversion to plantlets on the same medium. Encapsulated cotyledonary embryos exhibited 100% conversion to plantlets. Ninety-five percent of the plantlets established in field conditions survived, and were morphologically identical to the mother plant.  相似文献   

20.
Leaf discs from olive (Olea europaea L.) grown in vitro and immature zygotic embryos collected at 50, 75, 90 and 105 days after full bloom were tested for their somatic embryogenic capacity. The embryos were grown in half-strength MS medium and half-strength OM medium with BAP combinated with either 2,4-D or NAA. Incubation was either in an initial dark period followed by 16h daylight or in 16h daylight throughout. Somatic embryogenesis, approx. 40%, mostly directly from the embryos, was observed only in 75-day-old embryos in medium containing low cytokinin and auxin concentrations. Differentiation was inhibited by 2,4-D whereas NAA did not. In leaf discs and younger and older zygotic embryos, only callus and root formation was observed. Somatic embryos were germinated and then potted-up to soil.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - BAP 6-benzylaminopurine - NAA naphtaleneacetic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号