首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sifuvirtide, a novel fusion inhibitor against human immunodeficiency virus type I (HIV-1), which is more potent than enfuvirtide (T20) in cell culture, is currently under clinical investigation for the treatment of HIV-1 infection. We now report that in vitro selection of HIV-1 variants resistant to sifuvirtide in the presence of increasing concentrations of sifuvirtide has led to several specific mutations in the gp41 region that had not been previously reported. Many of these substitutions were confined to the N-terminal heptad repeat region at positions 37, 38, 41, and 43, either singly or in combination. A downstream substitution at position 126 (N126K) in the C-terminal heptad repeat region was also found. Site-directed mutagenesis studies have further identified the critical amino acid substitutions and combinations thereof in conferring the resistant genotypes. Furthermore, the mutant viruses demonstrated variable degrees of cross-resistance to enfuvirtide, some of which are preferentially more resistant to sifuvirtide. Impaired infectivity was also found for many of the mutant viruses. Biophysical and structural analyses of the key substitutions have revealed several potential novel mechanisms against sifuvirtide. Our results may help to predict potential resistant patterns in vivo and facilitate the further clinical development and therapeutic utility of sifuvirtide.  相似文献   

2.
Li L  Ben Y  Yuan S  Jiang S  Xu J  Zhang X 《PloS one》2012,7(5):e37381
Sifuvirtide is a proven effective HIV-1 entry inhibitor and its safety profile has been established for systemic administration. The present study evaluated the potential of sifuvirtide formulated in a universal gel for topical use as a microbicide candidate for preventing sexual transmission of HIV. Our data showed that sifuvirtide formulated in HEC gel is effective against HIV-1 B, C subtypes, CRF07_BC and CRF01_AE, the latter two recombinants represents the most prevalent strains in China. In addition, we demonstrated that sifuvirtide in gel is stable for at least 8 weeks even at 40°C, and did not cause the disruption of integrity of mucosal epithelial surface, or the up-regulation of inflammatory cytokines both in vitro or in vivo. These results suggest that sifuvirtide gel is an effective, safe and stable product, and should be further tested as a vaginal or rectal microbicide in pre-clinical model or clinical trial for preventing HIV sexual transmission.  相似文献   

3.
CP32M is a newly designed peptide fusion inhibitor possessing potent anti-HIV activity, especially against T20-resistant HIV-1 strains. In this study, we show that CP32M can efficiently inhibit a large panel of diverse HIV-1 variants, including subtype B', CRF07_BC, and CRF01_AE recombinants and naturally occurring or induced T20-resistant viruses. To elucidate its mechanism of action, we determined the crystal structure of CP32M complexed with its target sequence. Differing from its parental peptide, CP621-652, the (621)VEWNEMT(627) motif of CP32M folds into two α-helix turns at the N terminus of the pocket-binding domain, forming a novel layer in the six-helix bundle structure. Prominently, the residue Asn-624 of the (621)VEWNEMT(627) motif is engaged in the polar interaction with a hydrophilic ridge that borders the hydrophobic pocket on the N-terminal coiled coil. The original inhibitor design of CP32M provides several intra- and salt bridge/hydrogen bond interactions favoring the stability of the helical conformation of CP32M and its interactions with N-terminal heptad repeat (NHR) targets. We identified a novel salt bridge between Arg-557 on the NHR and Glu-648 of CP32M that is critical for the binding of CP32M and resistance against the inhibitor. Therefore, our data present important information for developing novel HIV-1 fusion inhibitors for clinical use.  相似文献   

4.
Chong H  Yao X  Zhang C  Cai L  Cui S  Wang Y  He Y 《PloS one》2012,7(3):e32599
Albuvirtide (ABT) is a 3-maleimimidopropionic acid (MPA)-modified peptide HIV fusion inhibitor that can irreversibly conjugate to serum albumin. Previous studies demonstrated its in vivo long half-life and potent anti-HIV activity. Here, we focused to characterize its biophysical properties and evaluate its antiviral spectrum. In contrast to T20 (Enfuvirtide, Fuzeon), ABT was able to form a stable α-helical conformation with the target sequence and block the fusion-active six-helix bundle (6-HB) formation in a dominant-negative manner. It efficiently inhibited HIV-1 Env-mediated cell membrane fusion and virus entry. A large panel of 42 HIV-1 pseudoviruses with different genotypes were constructed and used for the antiviral evaluation. The results showed that ABT had potent inhibitory activity against the subtypes A, B and C that predominate the worldwide AIDS epidemics, and subtype B', CRF07_BC and CRF01_AE recombinants that are currently circulating in China. Furthermore, ABT was also highly effective against HIV-1 variants resistant to T20. Taken together, our data indicate that the chemically modified peptide ABT can serve as an ideal HIV-1 fusion inhibitor.  相似文献   

5.
CP621-652 is a potent HIV-1 fusion inhibitor peptide derived from the C-terminal heptad repeat of gp41. We recently identified that its N-terminal residues Met-626 and Thr-627 adopt a unique hook-like structure (termed M-T hook) thus stabilizing the interaction of the inhibitor with the deep pocket on the N-terminal heptad repeat. In this study, we further demonstrated that the M-T hook structure is a key determinant of CP621-652 in terms of its thermostability and anti-HIV activity. To directly define the structure and function of the M-T hook, we generated the peptide MT-C34 by incorporating Met-626 and Thr-627 into the N terminus of the C-terminal heptad repeat-derived peptide C34. The high resolution crystal structure (1.9 Å) of MT-C34 complexed by an N-terminal heptad repeat-derived peptide reveals that the M-T hook conformation is well preserved at the N-terminal extreme of the inhibitor. Strikingly, addition of two hook residues could dramatically enhance the binding affinity and thermostability of 6-helix bundle core. Compared with C34, MT-C34 exhibited significantly increased activity to inhibit HIV-1 envelope-mediated cell fusion (6.6-fold), virus entry (4.5-fold), and replication (6-fold). Mechanistically, MT-C34 had a 10.5-fold higher increase than C34 in blocking 6-helix bundle formation. We further showed that MT-C34 possessed higher potency against T20 (Enfuvirtide, Fuzeon)-resistant HIV-1 variants. Therefore, this study provides convincing data for our proposed concept that the M-T hook structure is critical for designing HIV-1 fusion inhibitors.  相似文献   

6.
The HIV-1 envelope gp120/gp41 glycoprotein complex plays a critical role in virus-host cell membrane fusion and has been a focus for the development of HIV fusion inhibitors. In this Letter, we present the synthesis of dimers of HIV fusion inhibitor peptides C37H6 and CP32M, which target the trimeric gp41 in the pre-hairpin intermediate state to inhibit membrane fusion. Reactive peptide modules were synthesized using native chemical ligation and then assembled into dimers with varying linker lengths using Cu(I)-catalyzed azide–alkyne cycloaddition (CuAAC) ‘click’ chemistry. Cell–cell fusion inhibition assays demonstrated that dimers with a (PEG)7 linker showed enhanced antiviral potency over the corresponding monomers. Moreover, the bio-orthogonal nature of the CuAAC ‘click’ reaction provides a practical way to assemble heterodimers of HIV fusion inhibitors. Heterodimers consisting of the T20-sensitive strain inhibitor C37H6 and the T20-resistant strain inhibitor CP32M were produced that may have broader spectrum activities against both T20-sensitive and T20-resistant strains.  相似文献   

7.
HIV-1 entry into target cells requires the fusion of viral and cellular membranes. This process is an attractive target for therapeutic intervention, and a first-generation fusion inhibitor, T20 (Enfuvirtide; Fuzeon), was approved for clinical use in 2003. Second-generation (T1249) and third-generation (T2635) fusion inhibitors with improved stability and potency were developed. Resistance to T20 and T1249 usually requires one or two amino acid changes within the binding site. We studied the in vitro evolution of resistance against T2635. After 6 months of culturing, a multitude of resistance mutations was identified in all gp41 subdomains, but no single mutation provided meaningful T2635 resistance. In contrast, multiple mutations within gp41 were required for resistance, and this was accompanied by a dramatic loss of viral infectivity. Because most of the escape mutations were situated outside the T2635 binding site, a decrease in drug target affinity cannot account for most of the resistance. T2635 resistance is likely to depend on altered kinetics of six-helix bundle formation, thus limiting the time window for T2635 to interfere with membrane fusion. Interestingly, the loss of virus infectivity caused by T2635 resistance mutations in gp41 was partially compensated for by a mutation at the base of the V3 domain in gp120. Thus, escape from the third-generation HIV-1 fusion inhibitor T2635 is mechanistically distinct from resistance against its predecessors T20 and T1249. It requires the accumulation of multiple mutations in gp41, is accompanied with a dramatic loss of gp41 function, and induces compensatory mutations in gp120.  相似文献   

8.
T20 (enfuvirtide, Fuzeon) is the first generation HIV-1 fusion inhibitor approved for salvage therapy of HIV-1-infected patients refractory to current antiretroviral drugs. However, its application is limited by the high cost of peptide synthesis, rapid proteolysis, and poor efficacy against emerging drug-resistant strains. Here we reported the design of a novel chimera protein-based fusion inhibitor targeting gp41, TLT35, that uses a flexible 35-mer linker to couple T20 and T1144, the first and next generation HIV-1 fusion inhibitors, respectively. TLT35, which was expressed in Escherichia coli with good yield, showed low nm activity against HIV-1-mediated cell-cell fusion and infection by laboratory-adapted HIV-1 strains (X4 or R5), including T20-resistant variants and primary HIV-1 isolates of clades A to G and group O (R5 or X4R5). TLT35 was stable in human sera and in peripheral blood mononuclear cell culture and was more resistant to proteolysis than either T20 or T1144 alone. Circular dichroism spectra showed that TLT35 folded into a thermally stable conformation with high α-helical content and T(m) value in aqueous solution. It formed a highly stable complex with gp41 N-terminal heptad repeat peptide and blocked formation of the gp41 six-helix-bundle core. These merits combined with an anticipated low production cost for expression of TLT35 in E. coli make this novel protein-based fusion inhibitor a promising candidate for further development as an anti-HIV-1 microbicide or therapeutic for the prevention and treatment of HIV-1 infection.  相似文献   

9.

Background

Topical microbicides, used by women to prevent the transmission of HIV and other sexually transmitted infections are urgently required. Dendrimers are highly branched nanoparticles being developed as microbicides. However, the anti-HIV and HSV structure-activity relationship of dendrimers comprising benzyhydryl amide cores and lysine branches, and a comprehensive analysis of their broad-spectrum anti-HIV activity and mechanism of action have not been published.

Methods and Findings

Dendrimers with optimized activity against HIV-1 and HSV-2 were identified with respect to the number of lysine branches (generations) and surface groups. Antiviral activity was determined in cell culture assays. Time-of-addition assays were performed to determine dendrimer mechanism of action. In vivo toxicity and HSV-2 inhibitory activity were evaluated in the mouse HSV-2 susceptibility model. Surface groups imparting the most potent inhibitory activity against HIV-1 and HSV-2 were naphthalene disulfonic acid (DNAA) and 3,5-disulfobenzoic acid exhibiting the greatest anionic charge and hydrophobicity of the seven surface groups tested. Their anti-HIV-1 activity did not appreciably increase beyond a second-generation dendrimer while dendrimers larger than two generations were required for potent anti-HSV-2 activity. Second (SPL7115) and fourth generation (SPL7013) DNAA dendrimers demonstrated broad-spectrum anti-HIV activity. However, SPL7013 was more active against HSV and blocking HIV-1 envelope mediated cell-to-cell fusion. SPL7013 and SPL7115 inhibited viral entry with similar potency against CXCR4-(X4) and CCR5-using (R5) HIV-1 strains. SPL7013 was not toxic and provided at least 12 h protection against HSV-2 in the mouse vagina.

Conclusions

Dendrimers can be engineered with optimized potency against HIV and HSV representing a unique platform for the controlled synthesis of chemically defined multivalent agents as viral entry inhibitors. SPL7013 is formulated as VivaGel® and is currently in clinical development to provide protection against HIV and HSV. SPL7013 could also be combined with other microbicides.  相似文献   

10.
We have previously shown that the first generation human immunodeficiency virus (HIV) fusion inhibitor T20 (Fuzeon) contains a critical lipid-binding domain (LBD), whereas C34, another anti-HIV peptide derived from the gp41 C-terminal heptad repeat, consists of an important pocket-binding domain (PBD), and both share a common 4-3 heptad repeat (HR) sequence (Liu, S., Jing, W., Cheung, B., Lu, H., Sun, J., Yan, X., Niu, J., Farmar, J., Wu, S., and Jiang, S. (2007) J. Biol. Chem. 282, 9612-9620). T1249, the second generation HIV fusion inhibitor, has both LBD and PBD but a different HR sequence, suggesting that these three anti-HIV peptides may have distinct mechanisms of action. Here we rationally designed a set of peptides that contain multiple copies of a predicted HR sequence (5HR) or the HR sequence plus either LBD (4HR-LBD) or PBD (PBD-4HR) or both (PBD-3HR-LBD), and we compared their anti-HIV-1 activity and biophysical properties. We found that the peptide 5HR exhibited low-to-moderate inhibitory activity on HIV-1-mediated cell-cell fusion, whereas addition of LBD and/or PBD to the HR sequence resulted in a significant increase of the anti-HIV-1 activity. The peptides containing PBD, including PBD-4HR and PBD-3HR-LBD, could form a stable six-helix bundle with the N-peptide N46 and effectively blocked the gp41 core formation, whereas the peptides containing LBD, e.g. 4HR-LBD and PBD-3HR-LBD, could interact with the lipid vehicles. These results suggest that the HR sequence in these anti-HIV peptides acts as a structure domain and is responsible for its interaction with the HR sequence in N-terminal heptad repeat, whereas PBD and LBD are critical for interactions with their corresponding targets. T20, C34, and T1249 may function like 4HR-LBD, PBD-4HR, and PBD-3HR-LBD, respectively, to interact with different target sites for inhibiting HIV fusion and entry. Therefore, this study provides important information for understanding the mechanisms of action of the peptic HIV-1 fusion inhibitors and for rational design of novel antiviral peptides against HIV and other viruses with class I fusion proteins.  相似文献   

11.
T20 (generic name, enfuvirtide; brand name, Fuzeon) is a first-generation human immunodeficiency virus (HIV) fusion inhibitor approved for salvage therapy of HIV-infected patients refractory to current antiretroviral drugs. However, its clinical use is limited because of rapid emergence of T20-resistant viruses in T20-treated patients. Therefore, T1249 and T1144 are being developed as the second- and third-generation HIV fusion inhibitors, respectively, with improved efficacy and drug resistance profiles. Here, we found that combinations of T20 with T1249 and/or T1144 resulted in exceptionally potent synergism (combination index, <0.01) against HIV-1-mediated membrane fusion by 2 to 3 orders of magnitude in dose reduction. Highly potent synergistic antiviral efficacy was also achieved against infection by laboratory-adapted and primary HIV-1 strains, including T20-resistant variants. The mechanism underlying the synergistic effect could be attributed to the fact that T20, T1249, and T1144 all contain different functional domains and have different primary binding sites in gp41. As such, they may work cooperatively to inhibit gp41 six-helix bundle core formation, thereby suppressing virus-cell fusion. Therefore, these findings strongly imply that, rather than replacing T20, combining it with HIV fusion inhibitors of different generations might produce synergistic activity against both T20-sensitive and -resistant HIV-1 strains, suggesting a new therapeutic strategy for the treatment of HIV-1 infection/AIDS.In the early 1990s, a number of highly potent anti-human immunodeficiency virus type 1 (HIV-1) peptides derived from the C-heptad repeat (CHR) domain of the HIV-1 envelope glycoprotein (Env) transmembrane subunit gp41 were discovered (21, 22, 35, 59, 61). Biophysical and biochemical analyses suggest that the CHR peptides inhibit HIV-1 Env-mediated membrane fusion by interacting with the viral gp41 N-heptad repeat (NHR) domain to form heterologous trimer-of-heterodimer complexes, thus blocking gp41 six-helix bundle (6-HB) core formation, a critical step in virus-cell fusion (4, 5, 31, 52, 57).T20 (generic name, enfuvirtide; brand name, Fuzeon), a 36-mer CHR peptide (amino acids [aa] 638 to 673) containing a heptad repeat (HR) sequence-binding domain (HBD) and a tryptophan-rich domain (TRD) (Fig. (Fig.1)1) (30, 61), was licensed by the U.S. FDA as a first-generation HIV fusion inhibitor. T20 is very effective in inhibiting infection by HIV-1, especially the strains resistant to current antiretroviral therapies (24). However, many patients are now failing to respond to T20 because the viruses have developed T20 resistance (34, 51, 56, 62).Open in a separate windowFIG. 1.Functional domains of HIV fusion inhibitors and the interaction model. (A) Schematic view of the HIV-1HXB2 gp41 molecule and sequences of the first-, second-, and third-generation HIV fusion inhibitors. FP, fusion peptide; TM, transmembrane domain; CP, cytoplasmic domain. (B) Interaction between the NHR and CHR peptides. The dashed lines between the NHR and CHR domains indicate the interaction between the residues located at the e and g and a and d positions in the NHR and CHR, respectively. The PBD, HBD, and TRD in the CHR peptides are shown in blue, light blue, and orange, respectively. The HR sequence, the region of aa 36 to 45 (determinant for T20 resistance and the primary binding site for T20), and the pocket-forming sequence in the NHR are shown in red, purple, and green, respectively. The interaction between the PBD and pocket-forming sequence is critical for stabilization of the 6-HB (3).T1249, a second-generation HIV fusion inhibitor, is a 39-mer peptide consisting of a pocket-binding domain (PBD), an HBD, and a TRD (Fig. (Fig.1).1). T1249 was shown to have a longer half-life than T20 in primates (7) and greater anti-HIV-1 potency than T20 in clinical studies and to be active against some T20-resistant HIV-1 variants (7, 14, 27, 38). However, the clinical development of T1249 was discontinued due to formulation difficulties (37).T1144, a third-generation HIV fusion inhibitor, is a 38-mer peptide containing a PBD and an HBD (Fig. (Fig.1).1). T1144 was designed by modifying the amino acid sequence of T651 (peptide C38; aa 626 to 673) to increase α-helicity and 6-HB stability and to improve pharmacokinetic properties (10). T1144 and its analog peptides are effective against viruses that are resistant to T20 (11).Sifuvirtide, a new generation of HIV fusion inhibitor, is a 34-mer peptide analogue of C34 containing a PBD and an HBD. Our previous studies have shown that sifuvirtide is more effective than T20 against both primary and laboratory-adapted HIV-1 strains. Pharmacokinetic studies of sifuvirtide demonstrated longer decay half-lives than T20 (19). Sifuvirtide is under phase II clinical trial (www.fusogen.com). Most recently, we found that the combination of sifuvirtide with T20 resulted in potent synergistic effect against T20-sensitive and -resistant HIV-1 strains (43). These findings encouraged us to test whether combining T20 with T1249 and/or T1144 would also have synergistic anti-HIV-1 activity since next-generation HIV fusion inhibitors, like C34 and sifuvirtide, also contain a PBD that can interact with pocket-forming sequence in the gp41 NHR. In this study, we were also motivated to address the mechanism(s) underlying a synergic effect. Once this effect is confirmed, a novel combination therapy could be designed for the treatment of HIV/AIDS patients who have failed to respond to T20 or other antiretroviral drugs.  相似文献   

12.
A variety of molecules in human blood have been implicated in the inhibition of HIV-1. However, it remained elusive which circulating natural compounds are most effective in controlling viral replication in vivo. To identify natural HIV-1 inhibitors we screened a comprehensive peptide library generated from human hemofiltrate. The most potent fraction contained a 20-residue peptide, designated VIRUS-INHIBITORY PEPTIDE (VIRIP), corresponding to the C-proximal region of alpha1-antitrypsin, the most abundant circulating serine protease inhibitor. We found that VIRIP inhibits a wide variety of HIV-1 strains including those resistant to current antiretroviral drugs. Further analysis demonstrated that VIRIP blocks HIV-1 entry by interacting with the gp41 fusion peptide and showed that a few amino acid changes increase its antiretroviral potency by two orders of magnitude. Thus, as a highly specific natural inhibitor of the HIV-1 gp41 fusion peptide, VIRIP may lead to the development of another class of antiretroviral drugs.  相似文献   

13.
Covalent inhibitors form covalent adducts with their target, thus permanently inhibiting a physiological process. Peptide fusion inhibitors, such as T20 (Fuzeon, enfuvirtide) and C34, interact with the N-terminal heptad repeat of human immunodeficiency virus type 1 (HIV-1) gp41 glycoprotein to form an inactive hetero six-helix bundle (6-HB) to prevent HIV-1 infection of host cells. A covalent strategy was applied to peptide fusion inhibitor design by introducing a thioester group into C34-like peptide. The modified peptide maintains the specific interaction with its target N36. After the 6-HB formation, a covalent bond between C- and N-peptides was formed by an inter-helical acyl transfer reaction, as characterized by various biophysical and biochemical methods. The covalent reaction between the reactive C-peptide fusion inhibitor and its N-peptide target is highly selective, and the reaction greatly increases the thermostability of the 6-HB. The modified peptide maintains high potency against HIV-1-mediated cell–cell fusion and infection.  相似文献   

14.
Enfuvirtide (ENF) is currently the only FDA approved HIV fusion inhibitor in clinical use. Searching for more drugs in this category with higher efficacy and lower toxicity seems to be a logical next step. In line with this objective, a synthetic peptide with 36 amino acid residues, called Sifuvirtide (SFT), was designed based on the crystal structure of gp41. In this study, we show that SFT is a potent anti-HIV agent with relatively low cytotoxicity. SFT was found to inhibit replication of all tested HIV strains. The effective concentrations that inhibited 50% viral replication (EC50), as determined in all tested strains, were either comparable or lower than benchmark values derived from well-known anti-HIV drugs like ENF or AZT, while the cytotoxic concentrations causing 50% cell death (CC50) were relatively high, rendering it an ideal anti-HIV agent.A GST-pull down assay was performed to confirm that SFT is a fusion inhibitor. Furthermore, the activity of SFT on other targets in the HIV life cycle was also investigated, and all assays showed negative results. To further understand the mechanism of action of HIV peptide inhibitors, resistant variants of HIV-1IIIB were derived by serial virus passage in the presence of increasing doses of SFT or ENF. The results showed that there was cross-resistance between SFT and ENF.In conclusion, SFT is an ideal anti-HIV agent with high potency and low cytotoxicity, but may exhibit a certain extent of cross-resistance with ENF.  相似文献   

15.
He Y  Cheng J  Li J  Qi Z  Lu H  Dong M  Jiang S  Dai Q 《Journal of virology》2008,82(13):6349-6358
Human immunodeficiency virus type 1 (HIV-1) entry into the host cell involves a cascade of events and currently represents one of most attractive targets in the search for new antiviral drugs. The fusion-active gp41 core structure is a stable six-helix bundle (6-HB) folded by its trimeric N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR). Peptides derived from the CHR region of HIV-1 gp41 are potent fusion inhibitors that target the NHR to block viral and cellular membrane fusion in a dominant negative fashion. However, all CHR peptides reported to date are derived primarily from residues 628 to 673 of gp41; little attention has been paid to the upstream sequence of the pocket binding domain (PBD) in the CHR. Here, we have identified a motif ((621)QIWNNMT(627)) located at the upstream region of the gp41 CHR, immediately adjacent to the PBD ((628)WMEWEREI(635)). Biophysical characterization demonstrated that this motif is critical for the stabilization of the gp41 6-HB core. The peptide CP621-652, containing the (621)QIWNNMT(627) motif, was able to interact with T21, a counterpart peptide derived from the NHR, to form a typical 6-HB structure with a high thermostability (thermal unfolding transition [T(m)] value of 82 degrees C). In contrast, the 6-HB formed by the peptides N36 and C34, which has been considered to be a core structure of the fusion-active gp41, had a T(m) of 64 degrees C. Different from T-20 (brand name Fuseon), which is the first and only HIV-1 fusion inhibitor approved for clinical use, CP621-652 could efficiently block 6-HB formation in a dose-dependent manner. Significantly, CP621-652 had potent inhibitory activity against HIV-1-mediated cell-cell fusion and infection, especially against T-20- and C34-resistant virus. Therefore, our works provide important information for understanding the core structure of the fusion-active gp41 and for designing novel anti-HIV peptides.  相似文献   

16.
17.
The anti-HIV-1 effect of scutellarin   总被引:5,自引:0,他引:5  
Scutellarin was purified from the plant Erigeron breviscapus (Vant.) Hand.-Mazz. The activity against 3 strains of human immunodeficiency virus (HIV) was determined in vitro in this study. These were laboratory-derived virus (HIV-1IIIB), drug-resistant virus (HIV-1(74V)), and low-passage clinical isolated virus (HIV-1(KM018)). From syncytia inhibition study, the EC50 of scutellarin against HIV-1IIIB direct infection in C8166 cells was 26 microM with a therapeutic index of 36. When the mode of infection changed from acute infection to cell-to-cell infection, this compound became even more potent and the EC50 reduced to 15 microM. This suggested that cell fusion might be affected by this compound. By comparing the inhibitory effects on p24 antigen, scutellarin was also found to be active against HIV-1(74V) (EC50 253 microM) and HIV-1KM018 (EC50 136 microM) infection with significant difference in potency. The mechanism of its action was also explored in this study. At a concentration of 433 microM, scutellarin inhibited 48% of the cell free recombinant HIV-1 RT activity. It also caused 82% inhibition of HIV-1 particle attachment and 45% inhibition of fusion at the concentrations of 54 microM. In summary, scutellarin was found to inhibit several strains of HIV-1 replication with different potencies. It appeared to inhibit HIV-1 RT activity, HIV-1 particle attachment and cell fusion. These are essential activities for viral transmission and replication.  相似文献   

18.
The envelope spike (S) glycoprotein of the severe acute respiratory syndrome associated coronavirus (SARS-CoV) mediates the entry of the virus into target cells. Recent studies point out to a cell entry mechanism of this virus similar to other enveloped viruses, such as HIV-1. As it happens with other viruses peptidic fusion inhibitors, SARS-CoV S protein HR2-derived peptides are potential therapeutic drugs against the virus. It is believed that HR2 peptides block the six-helix bundle formation, a key structure in the viral fusion, by interacting with the HR1 region. It is a matter of discussion if the HIV-1 gp41 HR2-derived peptide T20 (enfuvirtide) could be a possible SARS-CoV inhibitor given the similarities between the two viruses. We tested the possibility of interaction between both T20 (HIV-1 gp41 HR2-derived peptide) and T-1249 with S protein HR1- and HR2-derived peptides. Our biophysical data show a significant interaction between a SARS-CoV HR1-derived peptide and T20. However, the interaction is only moderate (K(B)=(1.1+/-0.3)x10(5) M(-1)). This finding shows that the reasoning behind the hypothesis that T20, already approved for clinical application in AIDS treatment, could inhibit the fusion of SARS-CoV with target cells is correct but the effect may not be strong enough for application.  相似文献   

19.
20.
Sifuvirtide (SFT) is an electrostatically constrained α-helical peptide fusion inhibitor showing potent anti-HIV activity, good safety, and pharmacokinetic profiles, and it is currently under phase II clinical trials in China. In this study, we demonstrate its potent and broad anti-HIV activity by using diverse HIV-1 subtypes and variants, including subtypes A, B, and C that dominate the AIDS epidemic worldwide, and subtypes B', CRF07_BC, and CRF01_AE recombinants that are currently circulating in China, and those possessing cross-resistance to the first and second generation fusion inhibitors. To elucidate its mechanism of action, we determined the crystal structure of SFT in complex with its target N-terminal heptad repeat region (NHR) peptide (N36), which fully supports our rational inhibitor design and reveals its key motifs and residues responsible for the stability and anti-HIV activity. As anticipated, SFT adopts fully helical conformation stabilized by the multiple engineered salt bridges. The designing of SFT also provide novel inter-helical salt bridges and hydrogen bonds that improve the affinity of SFT to NHR trimer. The extra serine residue and acetyl group stabilize α-helicity of the N-terminal portion of SFT, whereas Thr-119 serves to stabilize the hydrophobic NHR pocket. In addition, our structure demonstrates that the residues critical for drug resistance, located at positions 37, 38, 41, and 43 of NHR, are irreplaceable for maintaining the stable fusogenic six-helix bundle structure. Our data present important information for developing SFT for clinical use and for designing novel HIV fusion inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号