首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
CD4+ve Th1 clones, as well as normal splenic T cells, were found to suppress LPS-driven antibody secretion in a non-Ag-specific and non-MHC-restricted manner when the T cells were activated with the anti-CD3 mAb, 145-2C11. Suppression was observed with both primed and naive B cells, as well as with purified hapten-specific B cells, a result that suggests a direct effect of anti-CD3-activated T cells on B cell differentiation. Th1 clones activated by cognate Ag also suppressed LPS-driven antibody secretion. Furthermore, suppression of LPS-driven antibody secretion could be achieved across a cell-impermeable porous membrane when T cells were activated with anti-CD3. Suppression by Th1 clones and by normal T cells could not be attributed to a concomitant decrease in B cell proliferation or to a shift in the kinetics or isotype of the antibody response. These data demonstrate that CD4+ve Th1 clones, as well as normal T cells, can effect suppression of polyclonal antibody formation.  相似文献   

2.
Culture of murine T cells with immobilized (platebound) anti-CD3 antibody results in autocrine growth factor secretion in both Th1 (IL-2 producing) and Th2 (IL-4 producing) cells. Using a panel of murine T cell clones, we demonstrate that the IL-2-induced proliferation of Th1 clones is dramatically inhibited by immobilized anti-CD3 antibody, whereas that of Th2 clones is not. This unresponsiveness of Th1 clones to IL-2 is not due to decreases in IL-2R expression. Supernatants from Th1 or Th2 cell cultures fail to alter the effects of anti-CD3 on the two types of clones, suggesting that unresponsiveness induced in Th1 clones or the lack thereof in Th2 clones is not mediated by a stable cytokine(s). Accessory cells enhance the proliferation of Th1 cells exposed to low concentrations of anti-CD3, but the unresponsiveness induced by high concentrations of anti-CD3 is not prevented by accessory cells. Finally, soluble anti-CD4 antibody prevents the induction of the unresponsive state even at high concentrations of anti-CD3. These experiments demonstrate that two subsets of cloned CD4+ T cells differ in their responses to anti-CD3, and that CD4 molecules may play a critical role in regulating the outcome of receptor-mediated stimulation.  相似文献   

3.
Accessory cell function of Th2 clones   总被引:2,自引:0,他引:2  
We have investigated the ability of T helper clones to serve as accessory cells and in the presence of mitogen activate freshly-isolated, splenic T cells. In this type of costimulatory assay, the Th cells that secrete IL-4 but not the Th cells that secrete IL-2 function as AC to induce T cell proliferation in the presence of various T cell mitogens (Con A, anti-CD3 mAb, anti-TCR mAb, and anti-Thy-1 mAb). The signal provided by the accessory Th2 cells occurred independently of MHC restriction, and the analysis of dose-response curves showed the involvement of a single stimulator cell. CD4, as well as CD8 expressing splenic T cells were induced to proliferate by the Th2 clones and mitogen, but mAb specific for CD4 or CD8 failed to affect the response. These findings indicate that cloned Th2 cells functioned as accessory cells and induced naive T cells to proliferate in the presence of mitogen.  相似文献   

4.
We recently have devised a method for the derivation of OVA-specific Th1 and Th2 clones from the same primed lymph node cell preparation. Using a panel of such cells, we have examined the ability of distinct APC populations to stimulate proliferation of Th1 and Th2 clones. Both subsets proliferated well in response to OVA in the presence of whole spleen cells. However, purified B cells stimulated optimal proliferation of Th2 clones, whereas adherent cells stimulated optimal proliferation of Th1 clones. The proliferative response of Th2 cells stimulated with spleen cells irradiated with 3300 rad was dramatically less than that observed in response to spleen cells treated with 1000 rad; Th1 clones responded similarly to spleen cells exposed to either irradiation dose. Differential activation of Th1 and Th2 clones did not correlate with MHC-restricting element, or susceptibility to inhibition by mAb directed against CD4 or LFA-1. Lymphokine production by each subset still occurred under conditions of suboptimal proliferation, suggesting that the appropriate Ag processing and presentation events had transpired. The same pattern of response was observed using a specific OVA peptide that does not require processing, suggesting that differential responsiveness of Th1 and Th2 clones to different APC populations is not a result of defective Ag processing. Neither rIL-1 nor rIL-6 restored optimal proliferation of either subset. Our results suggest that unique cofactors are necessary for the optimal proliferation of Th1 and Th2 clones, and that these cofactors are produced by specialized APC populations.  相似文献   

5.
Cloned murine Th having properties of either Th1 or Th2 cells as well as CD8+ CTL were tested for the capacity to lyse: 1) nucleated target cells bearing Ag or coated with anti-CD3 mAb, or 2) SRBC target cells coated with anti-CD3 mAb in a short term 51Cr-release assay. The lysis of SRBC occurs by a mechanism that does not involve nuclear degradation but presumably does involve membrane damage. Three patterns were observed: CTL and some Th2 cells lysed efficiently nucleated target cells and SRBC coated with anti-CD3 mAb. Th1 and some Th2 T cells lysed nucleated target cells but did not lyse efficiently the SRBC coated with anti-CD3 mAb. Finally, some Th2 cells failed to lyse efficiently either nucleated or SRBC targets. We also examined these clones for their expression of N-alpha-benzyloxycarbonyl-L-lysin thiobenzyl esterase activity, and for the expression of perforin or CTLA-1 (granzyme B) mRNA. Total N-alpha-benzyloxycarbonyl-L-lysin thiobenzyl esterase activity expressed by CTL and Th2 clones tended to be higher than that of Th1 cells. Perforin mRNA and CTLA-1 mRNA were readily detectable in CTL and some Th2 clones. Expression of perforin and CLTA-1 mRNA correlated well with the capacity of these clones to lyse SRBC coated with anti-CD3 mAb. Our results show that some but not all Th2 clones have lytic characteristics similar to those of CD8+ CTL. Two mechanisms appear to contribute to their lytic process, one mechanism of lysis involves membrane damage that correlates with the expression of perforin mRNA; a second mechanism involves the induction of DNA degradation in the target cells. In contrast, some CD4+ effector cells appear to lack the capacity to lyse efficiently via the mechanism involving membrane damage and may only have the lytic activity associated with the capacity to induce DNA degradation.  相似文献   

6.
The role of leukocyte function-associated Ag-1 (LFA-1) in intercellular adhesion is well documented. Previously, we demonstrated that the LFA-1 molecule (CD11a/CD18) can also regulate the induction of proliferation of peripheral blood T cells. In these studies, we observed opposite effects of antibodies against CD11a (LFA-1-alpha-chain) or CD18 (LFA-1-beta-chain). Here, we determined the effects of anti-CD11a and anti-CD18 mAb on proliferation of cloned influenza virus-specific T cells. Anti-CD18 mAb had similar inhibiting effects on the proliferative response of T cell clones induced by immobilized anti-CD3 mAb as it had on the response of peripheral blood T cells. In contrast to its costimulatory effect on resting peripheral blood T cells, anti-CD11a mAb did not increase the proliferation of cloned T cells. Similar differences in effects of anti-CD11a and anti-CD18 mAb were observed when proliferation of the T cell clones was induced by immobilized anti-TCR mAb. When proliferation was induced by influenza virus presented by monocytes as APC, both anti-CD11a and anti-CD18 mAb inhibited T cell proliferation. However, when EBV-transformed B cells were used as APC, neither anti-CD11a nor anti-CD18 mAb inhibited proliferation. These results demonstrate that the effects of antibodies against CD11a (LFA-1-alpha) or CD18 (LFA-1-beta) on T cell proliferation depend on 1) the stage of activation of the T cells, 2) the activation stimulus and its requirement for intercellular adhesion involving LFA-1, and 3) the type of cell used to present Ag.  相似文献   

7.
Early events of TCR signaling are distinct in human Th1 and Th2 cells   总被引:4,自引:0,他引:4  
To study the requirements for activation of human Th1 and Th2 cells, soluble peptide/DR1 complexes were prepared from naturally expressed DR1 protein. When immobilized, this material induced T cell activation, as revealed by CD25 up-regulation. Unexpectedly, Th2 cells required a higher density of peptide/DR1 complexes than Th1 cells to initiate CD25 up-regulation. Similar findings were obtained with immobilized or soluble and cross-linked anti-CD3 mAb. In contrast, peptide/DR1 complexes displayed on the surface of nonprofessional APC similarly induced CD25 up-regulation in Th1 and Th2 cells. Signaling events distinguishing human Th1 and Th2 cells following TCR engagement by anti-CD3 mAb were then studied. It was observed that upon TCR triggering, the overall tyrosine phosphorylation profiles were fainter in Th2 than in Th1 clones. Similar results were obtained with Th1- and Th2-polarized polyclonal lines. Varying the dose of anti-CD3 mAb, the kinetics of activation, and coengagement of CD3 and CD28 failed to increase tyrosine phosphorylation in Th2 cells to levels reached in Th1 cells. In contrast, treatment with the tyrosine phosphatase inhibitor phenylarsine oxide resulted in similar tyrosine phosphorylation levels in Th2 and Th1 cells. These findings indicated that Th2 cells had an intrinsically lower TCR-induced tyrosine phosphorylation capacity than Th1 cells, which might be controlled by Th1- and Th2-specific phosphatase profiles. Finally, a weaker association was found between ZAP-70 and CD3zeta in Th2 than in Th1 cells after TCR engagement. Taken together, these results constituted evidence that early events in the TCR signaling cascades are distinct in human Th1 and Th2 cells.  相似文献   

8.
Lightly irradiated (950 R) splenic B cells were inefficient, in comparison to unseparated spleen cells, in stimulating antigen-specific proliferation of Th1 clones specific for human gamma globulin (HGG). This inefficiency was due to antigen-specific inactivation: Th1 clones preincubated with HGG and lightly irradiated B cells or mitomycin C-treated B cells were unable to proliferate to HGG in secondary cultures. In contrast to Th1 clones, Th2 clones proliferated well in response to B cell APC, and showed no decrease in their subsequent antigen-induced proliferative capacity after exposure to lightly irradiated B cells and HGG. However, preincubation of Th2 with lightly irradiated B cells and HGG did inactivate the capacity of Th2 to provide help for antibody production in secondary cultures. These results suggest that under certain conditions B cells may present antigen to Th1 and Th2 cells in a tolerogenic rather than an immunogenic manner.  相似文献   

9.
Activated CD4+ T cells can be classified into distinct subsets; the most divergent among them may be considered to be the IL-2 and IFN-gamma-producing Th1 clones and the IL-4 and IL-5-producing Th2 clones. Because Th1 and Th2 clones can usually be detected only after several months of culture, we used conditions that modulate the IL-2 and IL-4 production in short term culture. Here we show that freshly isolated and subsequently in vitro-activated CD4+ T cells that were cultured for 11 days with rIL-2 and restimulated showed a IFN-gamma+ IL-2+ IL-3+ IL-4- IL-5- pattern. Because these cells were not capable of providing B cell help for IgG1, IgG2a, or IgE in an APC- and TCR-dependent T-B cell assay, they expressed a phenotype typical for most Th1 clones. In contrast, activated T cells that were cultured for 11 days with IL-2 plus a mAb to CD3 and then restimulated produced a IFN-gamma- IL-2- IL-3+ IL-4+ IL-5+ pattern. These cells were capable of providing B cell help for IgG1, IgG2a, and IgE synthesis and thus presented a phenotype typical for Th2 clones. Similar results were observed when mitogenic mAb to Thy-1.2 or to framework determinants of the alpha beta TCR were used. The induction of Th1- and Th2-like cells did not depend on the relative expression of CD44 or CD45 by the T cells before activation in vitro. Because the incubation of activated T cells with anti-CD3/TCR mAb induced high unrestricted lymphokine production, the latter might be responsible for the Th2-like lymphokine pattern observed after restimulation. To address this point, TCR V beta 8+ and V beta 8- T cell blasts were co-cultured in the presence of mAb to V beta 8. After restimulation, V beta 8+ cells had a IL-4high IL-2low phenotype and V beta 8- cells had a IL-4low IL-2high phenotype. This demonstrates that TCR ligation but not lymphokines alone are capable of inducing Th2-like cells, and this points out a central role for the TCR in the generation of T cell subsets.  相似文献   

10.
Plasma membranes from the mitogen-activated mouse Th2 cell clone D10.G4.1 have recently been shown to provide the cell contact-dependent signals necessary for the induction of small B cell proliferation. Together with the Th2-derived lymphokines IL-4 and IL-5, these membranes stimulate production of Ig isotypes identical to those produced when B cells were stimulated by intact Th2 cells. In contrast, Th1 clones are poor inducers of Ig production in vitro. This could be solely due to differences in the lymphokines released by Th1 and Th2 cells or to differences in the cell-cell contact signals delivered by activated Th1 and Th2 cells. We report that membranes from three different activated Th1 clones induced strong Ag-independent proliferation of small dense B cells. The level of B cell proliferation was enhanced approximately fourfold by the addition of lymphokine-containing supernatant from Con A-activated Th2 cells and was unaffected by any of the lymphokine-containing supernatants from Con A-activated Th1 clones. As with D10.G4.1 membranes, Th1 membranes alone induced B cell proliferation but not secretion of Ig. However, addition of supernatant from Con A-activated D10.G41 cells, but not any supernatants from Con A-activated Th1 cells, induced Ig secretion of all isotypes. These effects were shown to not simply result from increased B cell numbers after stimulation with Th2 lymphokines. Thus, Th1 cell clones seem to poorly induce antibody responses entirely because of their lymphokine repertoire and not because of differences or deficiencies in the ability of these cells to deliver cell contact-dependent signals to B cells.  相似文献   

11.
To test the hypothesis that resting and previously activated B lymphocytes differ in their proliferative and differentiative responses to various Th cell-derived stimuli, we have examined the interactions of purified small (resting) and large (activated) murine B cells with rabbit Ig-specific Th1 and Th2 clones in the presence of the Ag analogue, rabbit anti-mouse Ig antibody. Small numbers of Th2 cells induce strong Ag-dependent proliferation of and Ig secretion by both resting and activated B lymphocytes. In contrast, Th1 clones stimulate lower responses of activated B cells and fail to stimulate small resting B cells. An interaction with Th1 clones does make small B cells responsive to the Th2-derived cytokine, IL-4, indicating that Th1 clones are capable of delivering some but not all the stimuli necessary for the induction of humoral immunity. Finally, in order to compare the responses of small and large B cells to cognate interactions and secreted cytokines, we used an autoreactive I-Ak-specific Th2 line. This line induces proliferation of and Ig secretion by I-Ak expressing but not H-2d resting and activated B cells as a result of cognate interactions. However, when the H-2d B cells are bystanders in the presence of cytokine secretion by this Th2 line, or are directly exposed to Th2-derived cytokines, both small and large B cells are induced to proliferate but only the large B cells secrete antibody. These results indicate that the magnitude and nature of antibody responses depend on three principal factors: the cytokines produced by Th cells, the state of activation of the responding B lymphocytes, and whether the B cells are recipients of cognate help or are bystanders at the site of T cell stimulation. Our findings also confirm the view that cognate T-B interactions are most efficient for initiating B cell responses and may allow B cells to subsequently respond to a variety of T cell-derived cytokines.  相似文献   

12.
Coculture of resting human B cells with T cells stimulated with immobilized mAb to the CD3 molecular complex induces polyclonal activation and the production of Ig of all isotypes. The current experiments were carried out to determine the nature of the signals provided to B cells by the anti-CD3-activated T cells. For these experiments, fresh T cells or T cell clones were activated with immobilized mAb to CD3 and then fixed with 1% paraformaldehyde. Upon coculture, the fixed activated T cells or T cell clones induced B cell RNA synthesis and IL-2R expression, but only minimal DNA synthesis and no Ig production. Induction of B cell RNA synthesis by fixed activated T cells was not inhibited by mAb to the alpha-chain of the IL-2R, and was not enhanced by supplementing cultures with IL-2, IL-4, IL-6, or supernatants of mitogen-activated T cells. Upon the addition of IL-2, but not IL-4 or IL-6, to cultures of B cells and fixed activated T cells, sustained proliferation was noted along with the production of Ig. Control fixed T cells or T cell clones did not induce any of these responses. The presence of cycloheximide or cyclosporin A during the activation with anti-CD3 prevented T cells from developing the capacity to provide help for B cells. The use of mAb to a variety of cell surface molecules indicated that several T cell surface molecules including CD11a/CD18, CD44, CD54, and class I MHC molecules are involved in the induction of B cell responses. Among the mAb that inhibited B cell DNA synthesis and/or Ig production, only mAb to CD11a, CD18, or CD54 inhibited initial B cell activation as assessed by RNA synthesis. Even though mAB to CD11a/CD18 inhibited the capacity of fixed activated T cells to induce B cell responses, the finding that fixed activated CD18 deficit clones provided help for B cells indicated that expression of the beta 2 family of integrins by T cells was not necessary. These results indicate that activated T cells acquire the capacity to stimulate B cells polyclonally and induce cytokine responsiveness, proliferation, and Ig production by utilization of a variety of surface molecules. Moreover, these results indicate that the initial activation of the B cell is independent of the metabolic activity of the T cell and the production of cytokines.  相似文献   

13.
Murine CD4+ T cell clones have been classified into at least two subsets, Th1 and Th2, on the basis of their distinct lymphokine secretion profiles and functions. In the present study, we compared the functional responses of Th1 and Th2 clones to Ag presentation by splenic B cells and peritoneal macrophages. Th2 clones secreted IL-4 in response to Ag presented by resting B cells, but their optimal proliferation required the addition of IL-1 or a source of IL-1. The degree of IL-1 dependence varied among the four Th2 clones examined. In contrast, Th1 clones secreted IL-2 and proliferated in response to Ag presented by both B cells and macrophages, without any requirement for exogenous IL-1. Furthermore, the proliferation of Th2 clones in response to Ag presented by splenocytes or macrophages was inhibited by an IL-1R antagonist. These results indicate that IL-1 is an important costimulator for the expansion of the Th2 subset of CD4+ T cells. The different requirements for the proliferation of Th1 and Th2 cells may be responsible for the preferential expansion of one or the other subset under different conditions of immunization.  相似文献   

14.
We have developed an in vitro system to assess the early stages of B cell activation induced by peripheral blood T helper cells. Peripheral blood mononuclear cells are cultured for 16 hr with anti-CD3 monoclonal antibody (mAb), T lymphocytes are then removed by sheep red blood cell rosette depletion, and expression of the B cell surface activation antigen CD23 (BLAST-2) is assessed by indirect immunofluorescence. Anti-CD3 mAb, but not a control anti-CD5 mAb, stimulates the expression of CD23 on 20-50% of peripheral blood B cells cultured with autologous T cells. T cell subset depletion studies show that the CD4+ T cell subset is responsible for anti-CD3-mediated induction of CD23 on autologous B cells. Anti-CD3-induced, T helper cell-dependent CD23 expression is not MHC-restricted, as allogeneic combinations of T and non-T cells, cultured in the presence of anti-CD3 antibody, also result in the expression of B cell CD23. Individuals whose monocyte Fc receptors bind murine IgG1 mAb poorly fail to trigger T cell proliferation in response to murine IgG1 anti-CD3 mAb and also fail to express B cell CD23 following culture of PBMC with IgG1 anti-CD3 mAb, while the usual expression of CD23 is seen after culture with IgG2a anti-CD3 mAb. The mechanism of anti-CD3-induced B cell activation was addressed in experiments using a two-chamber culture system. While little IL-4 activity was detected in anti-CD3-stimulated culture supernatants, optimal induction of CD23 was observed when T and B cells were cultured together in a single chamber. This suggests that under physiologic conditions, in which quantities of lymphokine may be limiting, close physical contact between the anti-CD3-activated Th cell and B cell may be required for CD23 expression. The anti-CD3-induced BLAST-2 assay will facilitate the analysis of Th cell-mediated B cell activation in any individual and should permit us to separately evaluate the roles of Th cells and B cells in the impaired immunoregulation characteristic of autoimmune disorders.  相似文献   

15.
We used an adoptive transfer system and CD4+ T cell clones with defined lymphokine profiles to examine the role of CD4+ T cells and the types of lymphokines involved in the development of B cell memory and affinity maturation. Keyhole limpet hemocyanin (KLH)-specific CD4+ Th2 clones (which produce IL-4 and IL-5 but not IL-2 or IFN-gamma) were capable of inducing B cell memory and affinity maturation, after transfer into nude mice or after transfer with unprimed B cells into irradiated recipients and immunization with TNP-KLH. In addition, KLH-specific Th1 clones, which produce IL-2 and IFN-gamma but not IL-4 or IL-5, were also effective in inducing B cell memory and high affinity anti-TNP-specific antibody. The induction of affinity maturation by Th1 clones occurred in the absence of IL-4, as anti-IL-4 mAb had no effect on the affinity of the response whereas anti-IFN-gamma mAb completely blocked the response. Th1 clones induced predominantly IgG2a and IgG3 antibody, although Th2 clones induced predominantly IgG1 and IgE antibody. We thus demonstrated that some Th1 as well as some Th2 clones can function in vivo to induce Ig synthesis. These results also suggest that a single type of T cell with a restricted lymphokine profile can induce both the terminal differentiation of B cells into antibody secreting cells as well as induce B cell memory and affinity maturation. Moreover, these results suggest that B cell memory and affinity maturation can occur either in the presence of Th2 clones secreting IL-4 but not IFN-gamma, or alternatively in the presence of Th1 clones secreting IFN-gamma but not IL-4.  相似文献   

16.
p38 mitogen-activated protein kinase regulates human T cell IL-5 synthesis.   总被引:4,自引:0,他引:4  
Involvement of p38 mitogen-activated protein (MAP) kinase in human T cell cytokine synthesis was investigated. p38 MAP kinase was clearly induced in human Th cells activated through the TCR. SB203580, a highly selective inhibitor of p38 MAP kinase, inhibited the induction of p38 MAP kinase in human Th cells. Major T cell cytokines, IL-2, IL-4, IL-5, and IFN-gamma, were produced by Der f 2-specific Th clones upon stimulation through the TCR. IL-5 synthesis alone was significantly inhibited by SB203580 in a dose-dependent manner, whereas the production of IL-2, IL-4, and IFN-gamma was not affected. The proliferation of activated T cells was not affected. IL-5 synthesis of human Th clones induced upon stimulation with rIL-2, phorbol ester plus anti-CD28 mAb, and immobilized anti-CD3 mAb plus soluble anti-CD28 mAb was also suppressed by SB203580 in the same concentration response relationship. The results clearly indicated that IL-5 synthesis by human Th cells is dependent on p38 MAP kinase activity, and is regulated distinctly from IL-2, IL-4, and IFN-gamma synthesis. Selective control of IL-5 synthesis will provide a novel treatment devoid of generalized immune suppression for bronchial asthma and atopic dermatitis that are characterized by eosinophilic inflammation.  相似文献   

17.
The mAb Tm 1 was obtained from a fusion of SP2/O tumor cells with spleen cells from CF1 mouse immunized with T cells modulated by an IgM anti-CD3 mAb.mAb Tm 1 reacted with IgM anti-CD3 modulated T cells (66.6%) but not with unmodulated T cells (4.4%). Tm 1 was not expressed on T cells modulated with either IgG2a or IgG1 anti-CD3 mAb. Immunoprecipitation from 125I-labeled CD3-modulated T cells showed that Tm 1 Ag is a single polypeptide of 33 kDa under reducing and nonreducing conditions. Kinetic studies revealed that Tm 1 was detectable on T cells 10 min after incubation and maximally expressed after 4 h of incubation with IgM anti-CD3 mAb. CD3 expression was markedly modulated by this anti-CD3 mAb after the same period of incubation. Studies with cycloheximide revealed that Tm 1 expression on T cells does not require new protein synthesis. Tm 1 expression persisted long after CD3-reexpression 24 h later. Tm 1 was present on a small fraction of circulating T cells, B cells, and monocytes and absent from granulocytes, platelets, E, and thymocytes. Tm 1 was not expressed on T cells after various activation stimuli but was expressed on B cells upon activation. Additional studies indicate that IgM mAb against other T cell differentiation Ag and IgM mAb against B cell Ag also lead to the expression of Tm 1 on these cells. Thus, modulation of surface Ag by IgM mAb externalizes this cytoplasmic Ag. However, one exception has been noted. Purified mAb Tm 1 was not mitogenic and was unable to block either the T cell proliferation induced by 12-O-tetradecanoyl phorbol-13-acetate plus anti-CD3 mAb and other T cell stimuli, or the B cell proliferation induced by B cell mitogens. The role of Tm 1 on lymphocyte function remains to be determined.  相似文献   

18.
We have recently shown that engagement of the human monocytic Ag CD14 by murine mAb induces lymphocyte function-associated antigen-1/intercellular adhesion molecule-1-dependent homotypic adhesion. To determine whether CD14 plays a role in monocyte-T cell interactions, we tested the effect of anti-CD14 mAb on the proliferation of human T cells. Our results show that anti-CD14 mAb strongly inhibited T cell proliferation induced by Ag, anti-CD3 mAb, and mitogenic lectins. Inhibition by anti-CD14 mAb was epitope-dependent and required physical contact between monocytes and T cells. CD14 engagement did not affect IL-2R expression or IL-2 synthesis but induced a state of unresponsiveness that was not IL-2 specific; proliferation of anti-CD3-activated T cell blasts in response to both IL-2 and IL-4 was abrogated by addition of monocytes preincubated with anti-CD14 mAb. Inhibition of T cell proliferation after engagement of CD14 on monocytes was likely to result from delivery of a negative signal to T cells, rather than from disruption of a costimulatory monocyte-derived signal, because incubation of monocytes with anti-CD14 mAb also inhibited monocyte-independent T cell proliferation induced by PMA and ionophore. These results, together, point to a role of CD14 in the monocyte-dependent regulation of T cell proliferation.  相似文献   

19.
The role of leukocyte function-associated Ag-1 (LFA-1, CD11a/CD18) and intercellular adhesion molecule 1 (ICAM-1, CD54) interactions in human T cell and B cell collaboration was examined by studying the effect of mAb to these determinants on B cell proliferation and differentiation stimulated by culturing resting B cells with CD4+ T cells activated with immobilized mAb to the CD3 molecular complex. In this model system, mAb to either the alpha (CD11a) or beta (CD18) chain of LFA-1 or ICAM-1 (CD54) inhibited B cell responses significantly. The mAb did not directly inhibit B cell function, inasmuch as T cell-independent activation induced by formalinized Staphylococcus aureus and IL-2 was not suppressed. Moreover, DNA synthesis and IL-2 production by immobilized anti-CD3-stimulated CD4+ T cells were not suppressed by the mAb to LFA-1 or ICAM-1. Although the mAb to LFA-1 inhibited enhancement of IL-2 production by co-culture of immobilized anti-CD3-stimulated CD4+ T cells with B cells, addition of exogenous IL-2 or supernatants of mitogen-activated T cells could not abrogate the inhibitory effects of the mAb to LFA-1 or ICAM-1 on B cell responses. Inhibition was most marked when the mAb were present during the initial 24 h in culture. Immobilized anti-CD3-stimulated LFA-1-negative CD4+ T cell clones from a child with leukocyte adhesion deficiency could induce B cell responses, which were inhibited by mAb to LFA-1 or ICAM-1. These results indicate that the interactions between LFA-1 and ICAM-1 play an important role in mediating the collaboration between activated CD4+ T cells and B cells necessary for the induction of B cell proliferation and differentiation, and for enhancement of IL-2 production by CD4+ T cells. Moreover, the data are consistent with a model of T cell-B cell collaboration in which interactions between LFA-1 on resting B cells and ICAM-1 on activated CD4+ T cells play a critical role in initial T cell-dependent B cell activation.  相似文献   

20.
Ag-specific and MHC-restricted Th clones of different Ag specificities and MHC haplotypes were tested for their ability to produce soluble factors capable of providing the signals required for B cell activation and IgG antibody production. Each of five Th clones tested generated significant helper activity in supernatants derived from coculture of the T cell clone with specific Ag and syngeneic APC. The same helper activity was detected in supernatants of clones stimulated with immobilized anti-CD3 antibody in the absence of Ag or APC. The secreted helper activity resembled the activity of the intact Th cells in that it was Ag-specific, carrier-hapten-linked and MHC-restricted. These T cell products functioned to activate only those B cells expressing MHC products which corresponded to the specificity of each Th clone. Thus, the specificity of the cell-free T cell product mimicked precisely that expressed by the intact Th cell and presumably mediated by the cell surface TcR. In addition to the apparent presence of specific helper factor in Th clone supernatants, a role for nonspecific lymphokines was also identified in these preparations. Although recombinant or purified IL-4 alone was not sufficient to stimulate hapten-primed B cells to secrete hapten-specific IgG antibodies, mAb specific for IL-4 blocked the induction of antibody secretion by Th cell supernatant. These results indicate that stimulation of B cells to produce hapten-specific IgG antibody requires at least two distinct signals: an Ag-specific T cell signal which is restricted by MHC products expressed on the B cells, and a nonspecific signal mediated at least in part by the lymphokine IL-4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号